
Strassen’s Matrix Multiplication AlgorithmStrassen’s Matrix Multiplication Algorithm

• The standard method of matrix multiplication of two n × n

matrices takes O(n3) operations.

• Strassen’s algorithm is a Divide-and-Conquer algorithm that

is asymptotically faster, i.e. O(nlg 7).

• The usual multiplication of two 2 × 2 matrices takes 8

multiplications and 4 additions. Strassen showed how two

2× 2 matrices can be multiplied using only 7 multiplications

and 18 additions.
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MotivationMotivation

• For 2 × 2 matrices, there is no benefit in using the method.

• To see where this is of help, think about multiplication two

(2k) × (2k) matrices.

• For this problem, the scalar multiplications and additions

become matrix multiplications and additions.

• An addition of two matrices requires O(k2) time, a

multiplication requires O(k3).

• Hence, multiplications are much more expensive and it

makes sense to trade one multiplication operation for 18

additions.
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AlgorithmAlgorithm

Imagine that A and B are each partitioned into four square

sub-matrices, each submatrix having dimensions n
2 ×

n
2.

[

A11 A12
A21 A22

]

·

[

B11 B12
B21 B22

]

=

[

C11 C12
C21 C22

]

, where

C11 = A11B11 + A12B21
C12 = A11B12 + A12B22
C21 = A21B11 + A22B21
C22 = A21B12 + A22B22
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Strassen’s algorithmStrassen’s algorithm

Strassen “observed” that:
[

C11 C12
C21 C22

]

=

[

P5 + P4 − P2 + P6 P1 + P2
P3 + P4 P5 + P1 − P3 − P7

]

, where

P1 = A11(B12 − B22)
P2 = (A11 + A12)B22
P3 = (A21 + A22)B11
P4 = A22(B21 − B11)
P5 = (A11 + A22)(B11 + B22)
P6 = (A12 − A22)(B21 + B22)
P7 = (A11 − A21)(B11 + B12)
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ComplexityComplexity

• T(n) = 7T(n
2) + cn2, where c is a fixed constant. The term

cn2 captures the time for the matrix additions and

subtractions needed to compute P1, ..., P7 and C11, ..., C22.

• The solution works out to be:

T(n) = Θ(nlg7) = O(n2.81).

• Currently, the best known algorithm was given by

Coppersmith and Winograd and has time complexity

O(n2.376).
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Closest Pair ProblemClosest Pair Problem

• Given a set of n points in the plane, determine the two

points that are closest to each other.

• An attempt at a simple solution:

– Project the points onto a line.

– Sort the points along the line to find the smallest

distance.

– Problem: Projection changes the distance.

• Brute Force Algorithm: Compute the distances d(p, q) for

all possible vertex pairs, and select the minimum distance.

• Complexity: Θ(n2).
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A Divide and Conquer SolutionA Divide and Conquer Solution

Closest-Pair (PointSet)

• Split PointSet in half with a vertical line so that half are on

left and half are on right;

• Recursively determine closest pair in each half;

• Let d be smallest of those two distances;

• Search along the boundary between the two halves to see if

there are any pairs closer than d;
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Time ComplexityTime Complexity

• Analysis

– The last step appears to require time Θ(n2).

– Recurrence for total time is T(n) = 2T(n/2) + Θ(n2)

and T(1) = 1.

– Solution: T(n) = Θ(n2).

• The algorithm’s last step is the problem.

• How can we do the last step in linear time?
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We don’t have to examine all the pointsWe don’t have to examine all the points

• When we search along the boundary, we don’t have to look

at all the points in each half.

– We can ignore any point farther than d from the

boundary line. Why?

• But each side may still have Θ(n) point within distance d

from the boundary.
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There are just a few points to check on the
other side

There are just a few points to check on the
other side

• For a point q on the right to be close to a point p on the

left:

– q must be within distance d of p.

– q must fall within a rectangle of size d by 2d.

d

d

p

d

d
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Cont’dCont’d

• How many points (on the right) can fit into such a

rectangle?

– Any two points on the right are distance d or more apart.

– Thus, there are at most 6 points in the rectangle.

d

d

d

'

&

$

%CS404/504 Computer Science

11Design and Analysis of Algorithms: Lecture 12



Closest Pair Algorithm (Expanded)Closest Pair Algorithm (Expanded)

Close-Pair(PointSet):

• Step 1: Split PointSet in half with a vertical line so that

half are on left and half are on right;

• Step 2: Recursively determine the closest pair in each half

and let d be smallest of the two distances.

• Step 3: Let L (on the left) and R (on the right) be the sets

of points that are within distance d of the dividing line;

• Step 4: Sort L and R by y-coordinates;
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Cont’dCont’d

• Step 5: For each point p of L, inspect the points of R with

y-coordinate within distance d of p’s y-coordinate to

determine if there is a point within distance d of p;

/* The L pointer always advances. */

/* The R pointer may oscillate, but never by more

than 6; */

• Step 6: Return the shortest distance found.
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AnalysisAnalysis

• Step 1: Median + Partition: O(n);

• Step 2: 2T(n/2);

• Step 3: O(n);

• Step 4: O(nlgn);

• Step 5: O(n);

• Step 6: O(1).

• Running time recurrence T(n) = 2T(n/2) + O(nlgn) and

T(1) = 1. This does not solve to T(n) = O(nlgn).
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Final Trick: PresortingFinal Trick: Presorting

• Sort the set of points by y-coordinate before we start.

• Whenever we split a point set, we can run through the list

sorted by y-coordinate and create a new list for each part,

sorted by y-coordinates.

• Recurrence becomes T(n) = 2T(n/2) + n and T(1) = 1.

• Solution: T(n) = O(nlgn).

• It’s possible to show that the closest pair can be found in

O(nlgn) time for any number of dimensions.
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