
Greedy AlgorithmsGreedy Algorithms

• At each step in the algorithm, one of several choices can be

made.

• Greedy Strategy: make the choice that is the best at the

moment.

• After making a choice, we are left with one subproblem to

solve.

• The solution is created by making a sequence of locally

optimal choices.

A greedy algorithm does not always achieve a globally optimal solution.
But even when the final solution is not optimal:

“Greedy, for lack of a better solution, is good.”

'

&

$

%CS404/504 Computer Science

1Design and Analysis of Algorithms: Lecture 13

Greedy Algorithms: Optimality ConditionsGreedy Algorithms: Optimality Conditions

Greedy Choice property:

A globally optimal solution can be arrived at by making a

locally optimal (greedy) choice.

Optimal Substructure:

An optimal solution to the problem contains within it optimal

solutions to subproblems.

'

&

$

%CS404/504 Computer Science

2Design and Analysis of Algorithms: Lecture 13

Greedy Example: Minimum Spanning TreesGreedy Example: Minimum Spanning Trees

• A TV cable company wants to connect a set of N buildings

such that the total amount of cable is minimized.

• Interconnect N pins in an electronic circuit using the least

amount of wire.

• Create a highway infrastructure among N cities that

minimizes the total length, such that every city is reachable

from any other city.

• and many others ...

'

&

$

%CS404/504 Computer Science

3Design and Analysis of Algorithms: Lecture 13

Minimum Spanning TreesMinimum Spanning Trees

Problem:

Given: a connected, undirected graph G = (V, E), where each

edge (u, v) has a weight w(u, v).

Find: a tree T ⊆ E that connects all the vertices in V such that

it has a minimum total weight w(T) =
∑

(u,v)∈T w(u, v).

'

&

$

%CS404/504 Computer Science

4Design and Analysis of Algorithms: Lecture 13

Trees and ForestsTrees and Forests

Tree: A tree is a connected, acyclic, undirected graph.

Forest: If an undirected graph is acyclic, but possibly

disconnected, is it a forest.

a tree a forest

'

&

$

%CS404/504 Computer Science

5Design and Analysis of Algorithms: Lecture 13

Properties of Trees (Appendix B.5)Properties of Trees (Appendix B.5)

If G = (V, E) be an undirected graph, the following statements are
equivalent:

1 G is a tree;

2 Any two vertices in G are connected by a unique simple path;

3 G is connected, but if any edge is removed from E, the resulting graph
is disconnected;

4 G is connected, and |E| = |V | - 1;

5 G is acyclic, and |E| = |V | - 1;

6 G is acyclic, but if any edge is added to E, the resulting graph contains
a cycle.

'

&

$

%CS404/504 Computer Science

6Design and Analysis of Algorithms: Lecture 13

Minimum Spanning TreesMinimum Spanning Trees

- Definition: Let G(V, E) be any undirected graph, T(V, E′) is

said to be a spanning tree of G(V, E) if E′ ⊆ E and

T(V, E′) is a tree.

- Problem: given a connected, undirected weighted graph,

find a spanning tree using edges that minimize the total

weight.

- The weight of a spanning tree is the sum of the edge

weights.

- Input: An undirected graph G(V, E) where each edge has a

weight associated.

- Output: A minimum weight spanning tree of G.

'

&

$

%CS404/504 Computer Science

7Design and Analysis of Algorithms: Lecture 13

An ExampleAn Example

Which edges form the minimum spanning tree (MST) of the

graph below?

'

&

$

%CS404/504 Computer Science

8Design and Analysis of Algorithms: Lecture 13

An AnswerAn Answer

Is the MST of a graph unique?

No, a graph can have more than one MSTs!

'

&

$

%CS404/504 Computer Science

9Design and Analysis of Algorithms: Lecture 13

Optimal SubstructureOptimal Substructure

MSTs satisfy the optimal substructure property: an optimal

(minimum spanning) tree is composed of optimal (MS)

subtrees.

• Let T be an MST of G, and an edge (u, v) ∈ T .

• Removing (u, v) partitions T into two trees T1 and T2.

• Claim: T1 is an MST of G1 = (V1, E1) and T2 is an MST of

G2 = (V2, E2). (Do V1 and V2 share vertices? why?)

• Proof (cut and paste): w(T) = w(u, v) + w(T1) + w(T2)

(there cannot be a better tree than T1 or T2, otherwise,

using cut and paste, we would get a spanning tree T ′ with

smaller total weight than T)

'

&

$

%CS404/504 Computer Science

10Design and Analysis of Algorithms: Lecture 13

Idea of solving the MST problem: grow a
MST

Idea of solving the MST problem: grow a
MST

General Idea: Grow a minimum spanning tree – prior to each

iteration, keep A as a subset of edges from a minimum

spanning tree.

Generic-MST (G, w)

A := ∅

while A does not form a spanning tree

find an edge (u, v) that is safe for A;

A := A ∪ (u, v));

return A;

safe means A ∪ {(u, v)} is also a subset of certain MST

'

&

$

%CS404/504 Computer Science

11Design and Analysis of Algorithms: Lecture 13

What kind of edges are safe?What kind of edges are safe?

Definitions:

• A cut (S, V − S) of an undirected graph G = (V, E) is a

partition of V .

• An edge (u, v) ∈ E crosses the cut (S, V − S) if u ∈ S and

v ∈ V − S, or vice versa.

• A cut respects a set A of edges if no edge in A crosses the

cut.

• An edge is a light edge crossing a cut if its weight is the

minimum of any edge crossing the cut.

'

&

$

%CS404/504 Computer Science

12Design and Analysis of Algorithms: Lecture 13

What kind of edges are safe?What kind of edges are safe?

Theorem 23.1

• Let G = (V, E) be a connected, undirected graph with a

real-valued weight function w defined on E.

• Let T be a MST of G, and let A be a subset of edges s.t.

A ⊆ T .

• Let (S, V − S) be a cut of G that respects A.

• Let (u, v) be a light edge crossing the cut (S, V − S).

• Then (u, v) is safe for A (i.e., A ∪ (u, v) will be a subset of

a MST).

'

&

$

%CS404/504 Computer Science

13Design and Analysis of Algorithms: Lecture 13

Theorem 23.1Theorem 23.1

Proof: Let T be a MST that includes A, and assume that T

does not contain the min-weight edge (u, v), since if it does, we

are done.

1. Construct another MST T ′ that includes A ∪ {(u, v)}.

T ′ = T − {(x, y)} ∪ {u, v} (Figure 23.3)

2. w(T ′) = w(T) − w(x, y) + w(u, v) ≤ w(T). But T is a MST,

so w(T) ≤ w(T ′); thus, T ′ must be a MST also.

3. Since A ⊆ T and (x, y) /∈ A ⇒ A ⊆ T ′; thus A ∪ {(u, v)} ⊂ T ′

Since T ′ is a MST, (u, v) is safe for A.

'

&

$

%CS404/504 Computer Science

14Design and Analysis of Algorithms: Lecture 13

Figure 23.3Figure 23.3

'

&

$

%CS404/504 Computer Science

15Design and Analysis of Algorithms: Lecture 13

Corollary 23.2Corollary 23.2

• Let A be a subset of an MST.

• Let GA = (V, A) be the forest induced by A.

• Let C = (VC , EC) be a tree in the forest GA.

• If (u, v) is a light edge connecting C to some other tree in

A, then (u, v) is safe for A (i.e, A ∪ (u, v) will be a subset of

a MST) .

'

&

$

%CS404/504 Computer Science

16Design and Analysis of Algorithms: Lecture 13

Two algorithms for MST:
Two different schemes of maintaining A

Two algorithms for MST:
Two different schemes of maintaining A

Based on different approaches of maintaining A, we have two

algorithms: Kruskal’s algorithm and Prim’s algorithm:

• Kruskal’s algorithm keeps the set A as a forest (a set of

disjoint sets).

• Prim’s algorithm grows a single tree A.

'

&

$

%CS404/504 Computer Science

17Design and Analysis of Algorithms: Lecture 13

Kruskal’s AlgorithmKruskal’s Algorithm

Basic idea: To grow a sparse forest A into a tree.

• At the beginning, each vertex is considered to be a different

tree. A is the forest containing those trees.

• Grow this forest into a tree

– Sort the edges in nondecreasing order by weight and put

them in a list L.

– For each edge in L, in order:

• Remove the first edge (u, v) from L (i.e. the cheapest edge);

• If (u, v) connects two trees (i.e., Ti and Tj) without introducing
any cycle, then grow Ti and Tj into a bigger tree; otherwise
discard (u, v).

> (u, v) is safe for A by Corollary 23.2.

'

&

$

%CS404/504 Computer Science

18Design and Analysis of Algorithms: Lecture 13

An exampleAn example

'

&

$

%CS404/504 Computer Science

19Design and Analysis of Algorithms: Lecture 13

An example, Cont’dAn example, Cont’d

'

&

$

%CS404/504 Computer Science

20Design and Analysis of Algorithms: Lecture 13

An example, Cont’dAn example, Cont’d

'

&

$

%CS404/504 Computer Science

21Design and Analysis of Algorithms: Lecture 13

An example, Cont’dAn example, Cont’d

'

&

$

%CS404/504 Computer Science

22Design and Analysis of Algorithms: Lecture 13

Kruskal’s algorithm: Implement a ForestKruskal’s algorithm: Implement a Forest

Q: How to implement a forest?

A: use a disjoint-set data structure to maintain several

disjoint sets of elements. Each set represents a tree.

Q: How to check if a cycle is formed?

A: Each set/tree has a set/tree ID (unique representative).

When you try to connect two vertices in the same tree

(with the same tree ID), a cycle will be formed.

'

&

$

%CS404/504 Computer Science

23Design and Analysis of Algorithms: Lecture 13

A simple data structure for Forests
(Disjoint sets)

A simple data structure for Forests
(Disjoint sets)

The operations we need to support:

• Find-Set (return the set/tree ID).

• Union (combine two sets/trees into one larger set/tree).

• Make-Set (construct set/tree).

A simple solution: linked lists:

• Maintain elements in same set as a linked list with each

element having a pointer to the first element of the list

(unique representative).

• Each list maintains pointers head to the representative, and

tail to the last object in the list.

'

&

$

%CS404/504 Computer Science

24Design and Analysis of Algorithms: Lecture 13

Disjoint Sets: ImplementationDisjoint Sets: Implementation

10
32

6

12 10 63 5

Union-Set

Sets

Representation

56102 13

812
45

1

1248

1248

'

&

$

%CS404/504 Computer Science

25Design and Analysis of Algorithms: Lecture 13

Disjoint Sets: Time complexityDisjoint Sets: Time complexity

• Make-Set(v): make a list with one element

⇒ O(1) time.

• Find-Set(u): follow pointer and return the unique

representative

⇒ O(1) time.

• Union(u, v): point all the pointers of v’s elements to u’s

unique representative

⇒ O(|v|) time.

⇒ |V | Union operations can take Θ(|V |2) time.

Can do better, using the weighted union heuristic.

'

&

$

%CS404/504 Computer Science

26Design and Analysis of Algorithms: Lecture 13

Disjoint Sets: Weighted union heuristicDisjoint Sets: Weighted union heuristic

Augment the representation:

• Store the length of the list with each list.

• Always append the smaller list onto the longer list.

Theorem 21.1

Using the linked-list representation of disjoint sets and the

weighted-union heuristic, a sequence of m Make-Set, Union,

and Find-Set operations, n of which are Make-Set operations,

takes O(m + n lgn) time.

'

&

$

%CS404/504 Computer Science

27Design and Analysis of Algorithms: Lecture 13

Kruskal’s AlgorithmKruskal’s Algorithm

MST-Kruskal (G, w)

A := Ø;

for each vertex v ∈ V

Make-Set(v); /* construct trees */

Sort the edges of E by weight ;

for each edge (u, v) ∈ E, in oder

if Find-Set(u) 6= Find-Set(v) /* Not in the same tree */

A := A ∪ {(u, v)}

Union-Set(u, v); /* combine two trees into one */

'

&

$

%CS404/504 Computer Science

28Design and Analysis of Algorithms: Lecture 13

Running time for Kruskal’s algorithmRunning time for Kruskal’s algorithm

1. Sort: O(|E|lg|E|).

2. |V | Make-Set calls.

3. 2|E| Find-Set() calls.

4. |V | − 1 Union-Set calls.

Total: 2|E| + 2|V | − 1 operations on the disjoint sets, |V | of

each are Make-Set operations

⇒ O(2|E| + 2|V | − 1 + |V | lg |V |) time complexity, by

Theorem 21.1.

Overall, the complexity for Kruskal’s algorithm is:

O(|E|lg|E|) = O(|E|lg|V |).

'

&

$

%CS404/504 Computer Science

29Design and Analysis of Algorithms: Lecture 13

Prim’s algorithmPrim’s algorithm

Basic idea: To grow a single tree A (from a one-node tree to

a MST).

• Select an arbitrary vertex to start the tree A; Let VA be the

vertices covered by A.

• growing the tree A:

– each time select an edge (u, v) of minimum weight

connecting a vertex in VA and a vertex outside of VA.

– include (u, v) into A.

'

&

$

%CS404/504 Computer Science

30Design and Analysis of Algorithms: Lecture 13

An exampleAn example

'

&

$

%CS404/504 Computer Science

31Design and Analysis of Algorithms: Lecture 13

An example, Cont’dAn example, Cont’d

'

&

$

%CS404/504 Computer Science

32Design and Analysis of Algorithms: Lecture 13

Cont’dCont’d

'

&

$

%CS404/504 Computer Science

33Design and Analysis of Algorithms: Lecture 13

Prim’s algorithm: ImplementationPrim’s algorithm: Implementation

We need to keep a list for the vertices not covered by A, and

we hope that each time we can efficiently pick the closest one

to include. Thus we need a Priority Queue.

Extra variables:

• Q: a min-priority queue to store the vertices which are not

in VA yet.

• key: for each element v (a vertex) in Q, there is a field key

to record the minimum weight of any edge connecting v to

a vertex in the tree; i.e., key[v] tells the distance from v to

the tree A. If no such edge, key[v] = ∞.

'

&

$

%CS404/504 Computer Science

34Design and Analysis of Algorithms: Lecture 13

Prim’s algorithmPrim’s algorithm

MST-PRIM (G(V, E), w, r) /* r is the arbitrarily

selected starting point */

1 for each u ∈ V

2 key[u] := ∞;

3 key[r] := 0; /* the first to be picked into VA */

4 Q := V ; /* put all vertices into a PQ */

5 while Q is not empty

6 u := Extract-Min(Q); /* get the vertex which is

closest to the tree A, and

remove it from the queue */

7 for each v ∈ Adj[u] /* update the dist. to A */

8 if (v ∈ Q) and w(u, v) < key[v]

9 key[v] := w(u, v)

'

&

$

%CS404/504 Computer Science

35Design and Analysis of Algorithms: Lecture 13

Prim’s algorithm: ComplexityPrim’s algorithm: Complexity

Use a Binary Heap to implement the min-priority queue

MST-PRIM (G(V, E), w, r)

1 for each u ∈ V

2 key[u] := ∞;

3 key[r] := 0;

4 Q := V ; — Build-Min-Heap: O(|V |)

5 while Q is not empty — Totally execute |V | times

6 u := Extract-Min(Q); — Extract-Min: O(lg|V |)

7 for each v ∈ Adj[u] — What about this part?

8 if (v ∈ Q) and w(u, v) < key[v]

9 key[v] := w(u, v)

'

&

$

%CS404/504 Computer Science

36Design and Analysis of Algorithms: Lecture 13

Using Binary HeapsUsing Binary Heaps

If we use a Heap to implement the min-priority queue:

- Build-Min-Heap (line 4) takes O(|V |).

- while loop (line 5) will execute |V | times.

- Extract-Min (line 6) takes O(lg|V |).

- The for loop in lines 7 - 9 is executed O(|E|) times altogether,

because the sum of the lengths of all adjacency lists is 2|E|.

- line 8: O(1)

- line 9: It’s actually an operation of Decrease-Key.

With Heap: O(lg|V |).

Overall the complexity for Prim’s algorithm:

O(|V | + |V |lg|V | + |E|lg|V |) = O(|E|lg|V |).

'

&

$

%CS404/504 Computer Science

37Design and Analysis of Algorithms: Lecture 13

