
Driving directionsDriving directions

From Austin to Athens – many possible routes:

'

&

$

%CS404/504 Computer Science

1Design and Analysis of Algorithms: Lecture 14

Problem: Single-Pair Shortest PathProblem: Single-Pair Shortest Path

Input: A directed graph G = (V, E) where each edge

(vi, vj) has a weight w(i, j).

Output: A “shortest” path from u to v.

Weight of path: Given a path p =< v1, ..., vk >, its weight is:

w(p) =
k−1∑

i=1

w(vi, vi+1) (1)

“shortest” path = path of minimum weight. We use σ(u, v)

to denote this minimum weight.

'

&

$

%CS404/504 Computer Science

2Design and Analysis of Algorithms: Lecture 14

Different variants of shortest path problemsDifferent variants of shortest path problems

- Single-pair shortest path (SPSP):

Find a shortest path from u to v.

- Single-source shortest paths (SSSP):

Find a shortest path from source s to all vertices v ∈ V .

- All-pairs shortest paths (APSP):

Find a shortest path from u to v for all u, v ∈ V .

• No algorithm is known for computing a single-pair shortest

path better than solving the SSSP problem in the worst

case. So we will only focus on SSSP.

'

&

$

%CS404/504 Computer Science

3Design and Analysis of Algorithms: Lecture 14

Properties of shortest paths (1):
Optimal Substructure

Properties of shortest paths (1):
Optimal Substructure

Lemma 24.1: Subpaths of shortest paths are shortest paths.

Proof: Cut and paste:

If some subpath were not a shortest path, we could substitute

the shorter subpath and create an even shorter total path.

'

&

$

%CS404/504 Computer Science

4Design and Analysis of Algorithms: Lecture 14

Properties of shortest paths (2):
Triangle Inequality

Properties of shortest paths (2):
Triangle Inequality

σ[s, v] ≤ σ[s, u] + σ[u, v] (2)

'

&

$

%CS404/504 Computer Science

5Design and Analysis of Algorithms: Lecture 14

Is shortest-path well-defined?Is shortest-path well-defined?

Negative weigth cycle ⇒ no shortest path.

Argument: path can be shortened by traversing a negative cycle.

'

&

$

%CS404/504 Computer Science

6Design and Analysis of Algorithms: Lecture 14

Dijkstra’s algorithm: IdeaDijkstra’s algorithm: Idea

- Maintain a set S of vertices whose final shortest-path

weights from the source s have already been determined

(S is just like the set A in Prim’s algorithm).

- The set S initially contains only the source s.

- The algorithm repeteadly selects the vertex u ∈ V − S with

the minimum shortest-path estimate (like the key in Prim’s

algorithm), adds u to S, and relaxes all edges leaving u.

- Input requirement: w(u, v) ≥ 0, for all (u, v) ∈ E.

'

&

$

%CS404/504 Computer Science

7Design and Analysis of Algorithms: Lecture 14

Dijkstra’s algorithm: Data StructuresDijkstra’s algorithm: Data Structures

Data Structures:

S : Vertices whose shortest paths have already

been determined.

V − S : Remainder.

d : d[v] tells the current best estimate of shortest path

to the source.

π : π[v] tells the predecessor for vertex v in the current

shortest path.

'

&

$

%CS404/504 Computer Science

8Design and Analysis of Algorithms: Lecture 14

Dijkstra’s Algorithm: Auxiliary FunctionsDijkstra’s Algorithm: Auxiliary Functions

InitializeSingleSource(G,s) {

for each vertex v ∈ V do

d[v] = ∞

π[v] = nil

d[s] = 0

}

Relax(u, v, w) {

if d[v] > d[u] + w(u, v) then

d[v] = d[u] + w(u, v)

π[v] = u

}

'

&

$

%CS404/504 Computer Science

9Design and Analysis of Algorithms: Lecture 14

RelaxationRelaxation

'

&

$

%CS404/504 Computer Science

10Design and Analysis of Algorithms: Lecture 14

Dijkstra’s algorithm: ExampleDijkstra’s algorithm: Example

'

&

$

%CS404/504 Computer Science

11Design and Analysis of Algorithms: Lecture 14

ExampleExample

'

&

$

%CS404/504 Computer Science

12Design and Analysis of Algorithms: Lecture 14

Dijkstra’s algorithmDijkstra’s algorithm

DIJKSTRA (G(V, E), w, s) /* s is the source */

1 InitializeSingleSource(G, s);

2 S := Ø; /* Make S empty */

3 Q := V ; /* put all vertices into

a Priority Queue */

4 while Q is not empty

5 u := Extract-Min(Q); /* get the vertex which is

closest to the source s, and

remove it from the queue */

6 S := S ∪ u; /* Add u to S */

7 for each v ∈ Adj[u] /* update the ds to s */

8 Relax (u, v, w, Q);

'

&

$

%CS404/504 Computer Science

13Design and Analysis of Algorithms: Lecture 14

Similarity with Prim’s algorithmSimilarity with Prim’s algorithm

MST-PRIM (G(V, E), w, r) /* r is the arbitrarily

selected starting point */

1 for each u ∈ V

2 key[u] := ∞;

3 key[r] := 0; /* the first to be picked into VA */

4 Q := V ; /* put all vertices into a PQ */

5 while Q is not empty

6 u := Extract-Min(Q); /* extract the vertex which

is closest to the tree A */

7 for each v ∈ Adj[u] /* update the dist. to A */

8 if v ∈ Q and w(u, v) < key[v]

9 key[v] := w(u, v)

'

&

$

%CS404/504 Computer Science

14Design and Analysis of Algorithms: Lecture 14

Complexity depends on priority queue
implementation

Complexity depends on priority queue
implementation

Use a Binary Heap to implement the min-priority queue.

DIJKSTRA (G(V, E), w, r)

1 InitializeSingleSource(G, s); — Θ(|V |)

2 S := Ø; — Θ(1)

3 Q := V ; — Build-Min-Heap: O(|V |)

4 while Q is not empty — |V | times

5 u := Extract-Min(Q); — Extract-Min: O(lg|V |)

6 S := S ∪ u; — Θ(1)

7 for each v ∈ Adj[u] — O(|E|)

8 relax(u, v, w, Q); /*Decrease-Key */ O(lg(|V |)

'

&

$

%CS404/504 Computer Science

15Design and Analysis of Algorithms: Lecture 14

Correctness of Dijkstra’s algorithmCorrectness of Dijkstra’s algorithm

- We need to show that when the algorithm finishes,

d[u] = σ[s, u] for every u in V .

- We’ll show that when u is inserted to S, d[u] = σ[s, u].

'

&

$

%CS404/504 Computer Science

16Design and Analysis of Algorithms: Lecture 14

Assume: d[u] > σ[s, u] — Proof by
contradiction

Assume: d[u] > σ[s, u] — Proof by
contradiction

Let u be the first vertex such added to S s.t. d[u] > σ[s, u].

When x was added to S, d[x] = δ(s, x) and edge (x, y) was

relaxed => d[y] ≤ δ(s, x) + w(x, y) ≤ δ(s, u)

Thus, d[y] ≤ δ(s, u) ≤ d[u]. But d[u] ≤ d[y] because u was chosen

to be added before y => d[u] = δ(s, u) => contradiction!

'

&

$

%CS404/504 Computer Science

17Design and Analysis of Algorithms: Lecture 14

Dijkstra’s algorithmDijkstra’s algorithm

• Where are we using the assumption that the

weights are ≥ 0?

A historic note:

• Prim’s algorithm was invented in 1957.

• Dijkstra’s algorithm was invented in 1959, without

the use of a priority queue.

'

&

$

%CS404/504 Computer Science

18Design and Analysis of Algorithms: Lecture 14

