
Constrained Optimization ProblemsConstrained Optimization Problems

A problem in which some function of certain variables (called

the optimization or objective function) is to be optimized

(usually minimized or maximized) subject to some constraints.

Types of solutions:

• Feasible solution: Any assignment of values to the

variables that satisfies the given constraints.

• Optimal solution: A feasible solution that optimizes the

objective function.

'

&

$

%CS404/504 Computer Science

1Design and Analysis of Algorithms: Lecture 15



Greedy AlgorithmsGreedy Algorithms

• At each step in the algorithm, one of several choices can be

made.

• Greedy Strategy: make the choice that is the best at the

moment.

• After making a choice, we are left with one subproblem to

solve.

• The solution is created by making a sequence of locally

optimal choices.

'

&

$

%CS404/504 Computer Science

2Design and Analysis of Algorithms: Lecture 15



Greedy Algorithms: Optimality ConditionsGreedy Algorithms: Optimality Conditions

Greedy Choice property:

A globally optimal solution can be arrived at by making a

locally optimal (greedy) choice.

Optimal Substructure:

An optimal solution to the problem contains within it optimal

solutions to subproblems.

'

&

$

%CS404/504 Computer Science

3Design and Analysis of Algorithms: Lecture 15



Greedy Algorithms: ExamplesGreedy Algorithms: Examples

• Prim’s algorithm: Each step, include a new edge into the

set A. Greedy criterion: select the minimum-weight edge

connecting a vertex inside A and a vertex outside A (i.e.,

select a vertex that has smallest key value).

• Kruskal’s algorithm: Each step, include a new edge into the

set A. Greedy criterion: select the minimum-weight edge

connecting two trees in A.

• Dijkstra’s algorithm: Each step, include a new vertex into

the set S. Greedy criterion: select the vertex with smallest

d[u] value (i.e., the vertex that is closest to the source s).

'

&

$

%CS404/504 Computer Science

4Design and Analysis of Algorithms: Lecture 15



Fractional Knapsack ProblemFractional Knapsack Problem

A thief considers stealing m pounds of merchandise. The loot

is in the form of n items, each with weight wi and value pi. Any

amount of an item can be put in the knapsack as long as the

weight limit m is not exceeded.

'

&

$

%CS404/504 Computer Science

5Design and Analysis of Algorithms: Lecture 15



Knapsack Problem: Formal DescriptionKnapsack Problem: Formal Description

• Input: n objects and a knapsack.

• Each object i has a weight wi, a value pi and the knapsack

has a capacity m.

• A fraction of object xi,0 ≤ xi ≤ 1 yields a profit of pi · xi.

• Objective is to obtain a filling that maximizes the profit,

under the weight constraint of m.

• Optimization Problem: find x1, x2, ..., xn, such that:






maximize:
∑n

i=1 pi · xi

subject to:
∑n

i=1 wi · xi ≤ m

and 0 ≤ xi ≤ 1,1 ≤ i ≤ n

'

&

$

%CS404/504 Computer Science

6Design and Analysis of Algorithms: Lecture 15



Two ObservationsTwo Observations

Lemma 1 In case
∑n

i=1 wi ≤ m, then xi = 1,1 ≤ i ≤ n

is an optimal solution.

Lemma 2 In case
∑n

i=1 wi ≥ m, all optimal solutions will fit

the knapsack exactly.

'

&

$

%CS404/504 Computer Science

7Design and Analysis of Algorithms: Lecture 15



Problem InstanceProblem Instance

n = 3, m = 20, P = (25,24,15) and W = (18,15,10).

Solution 1: x1 = 0.5, x2 = 1
3, x3 = 1

4

∑

wi · xi = 16.5
︸ ︷︷ ︸

a feasible solution

⇒ Total profits = 24.25

Solution 2: x1 = 0.0, x2 = 1.0, x3 = 1
2

∑

wi · xi = 20
︸ ︷︷ ︸

a feasible solution

⇒ Total profits = 31.5

'

&

$

%CS404/504 Computer Science

8Design and Analysis of Algorithms: Lecture 15



Possible Greedy StrategiesPossible Greedy Strategies

Strategy 1: Pick the max-value object first.

Choose the object in nonincreasing order of

value.

x1 = 1, x2 = 2
15, x3 = 0 ⇒

∑
pi · xi = 28.2

Strategy 2: Pick the lightest object first.

Choose the object in nondecreasing order of

weight.

x3 = 1, x2 = 2
3, x1 = 0 ⇒

∑
pi · xi = 31

'

&

$

%CS404/504 Computer Science

9Design and Analysis of Algorithms: Lecture 15



Pick the object with the maximum value per
pound

Pick the object with the maximum value per
pound

Strategy 3: Choose the object in nonincreasing order of pi
wi

pi
wi

= (25
18, 24

15, 15
10) = (1.39,1.60,1.5)

so x2 = 1, x3 = 1
2, x1 = 0 ⇒

∑
pi · xi = 31.5

'

&

$

%CS404/504 Computer Science

10Design and Analysis of Algorithms: Lecture 15



Greedy KnapsackGreedy Knapsack

void GreedyKnapsack(float m, int n)

// p[1..n] and w[1..n] contain the profits and weights

// respectively of the n objects ordered such that

// p[i]/w[i] ≥ p[i+1]/w[i+1]. m is the knapsack

// capacity and x[1..n] is the solution vector.

for i := 1 to n x[i] = 0.0; // initialize x

U := m;

for i := 1 to n

if (w[i] > U) break;

x[i] := 1.0; // put the whole object in

U := U - w[i];

if (i ≤ n) x[i] := U/w[i]; // the last object to be put in

'

&

$

%CS404/504 Computer Science

11Design and Analysis of Algorithms: Lecture 15



Proving the correctness of a Greedy
algorithm is not trivial

Proving the correctness of a Greedy
algorithm is not trivial

• Prim’s algorithm: Corollary 23.2 proves A ∪ u is still a

subset of certain MST.

• Kruskal’s algorithm: Corollary 23.2 proves A ∪ u is still a

subset of certain MST.

• Dijkstra’s algorithm: Theorem 24.6 proves that when we

insert a vertex u into the set S, it’s shortest path is

determined, d[u] = σ[s, u].

Note: Optimal solutions are not unique in some cases.

'

&

$

%CS404/504 Computer Science

12Design and Analysis of Algorithms: Lecture 15



Correctness of Greedy StrategyCorrectness of Greedy Strategy

Theorem: If objects are included in the nonincreasing order of

pi/wi, then this results in an optimal solution to the knapsack

problem.

Proof Sketch: We use the following technique, which is

typically useful in proving optimality of greedy algorithms.

Compare the greedy solution with the optimal. If the two

solutions differ, then find the first xi at which they differ.

Then show how to make xi in the optimal solution equal to

that of the greedy solution without loss of the total value.

Show that the greedy solution is optimal by repeatedly using

this transformation.

'

&

$

%CS404/504 Computer Science

13Design and Analysis of Algorithms: Lecture 15



Proof of CorrectnessProof of Correctness

Let x = (x1, ..., xn) be the solution generated by the greedy algorithm.
If xi = 1 for all i, then clearly the solution is optimal. Let j be the first index
such that xj 6= 1. Then:

• xi = 1 for i ∈ [1, j)

• xj ∈ [0,1)

• xi = 0 for i ∈ (j, n].

Let (y1, ..., yn) be an optimal solution. Then
∑

wiyi = m, by Lemma 2.
Let k be the least index such that yk 6= xk. Then we can prove yk < xk,
by considering the three possibilities below:

• If k < j, then xk = 1. Then yk < xk, since yk 6= xk.

• If k = j, then since
∑j

i=1 wixi = m and yi = xi for all 1 ≤ i < j, we obtain
yk = xk (contradiction), otherwise we would have

∑
wiyi 6= m.

• If k > j, then yk = 0 = xk (contradiction), otherwise we would have
∑

wiyi > m.

'

&

$

%CS404/504 Computer Science

14Design and Analysis of Algorithms: Lecture 15



Proof of CorrectnessProof of Correctness

Suppose we increase yk to xk and decrease as many of (yk+1, ..., yn) as
necessary. This results in a new solution (z1, ..., zn) with zi = xi, for 1 ≤ i ≤ k
and:

∑

k<i≤n

wi(yi − zi) = wk(zk − yk).

Then the total profit for z is:
∑

1≤i≤n

pizi =
∑

1≤i≤n

piyi + pk(zk − yk) −
∑

k<i≤n

pi(yi − zi)

=
∑

1≤i≤n

piyi +
pk

wk

(zk − yk)wk −
∑

k<i≤n

pi

wi
(yi − zi)wi

≥
∑

1≤i≤n

piyi +
pk

wk



(zk − yk)wk −
∑

k<i≤n

(yi − zi)wi





=
∑

1≤i≤n

piyi.

'

&

$

%CS404/504 Computer Science

15Design and Analysis of Algorithms: Lecture 15



Proof of CorrectnessProof of Correctness

Hence,
∑

pizi ≥
∑

piyi. There are two possible cases:

1.
∑

pizi >
∑

piyi, which means that y cannot be optimal, which is a
contradiction, because y was chosen to be an optimal solution.
Therefore our assumption (that there is an index k such that xk 6= yk,
where y was an optimal solution) is false, which means that x is an
optimal solution.

2.
∑

pizi =
∑

piyi, which means that we made the yk in the optimal
solution equal with the xk in the greedy solution without loss of the
total value. Substitute y with z and repeat the entire procedure for
xk+1, ..., xn. We will either exit through case 1, obtaining a
contradiction, or end up with an optimal solution z that is the same as
x, in which case x is an optimal solution.

'

&

$

%CS404/504 Computer Science

16Design and Analysis of Algorithms: Lecture 15


