-

(

~

Constrained Optimization Problems |

A problem in which some function of certain variables (called
the optimization or objective function) is to be optimized

usually minimized or maximized) subject to some constraints.

Types of solutions:

e Feasible solution: Any assignment of values to the
variables that satisfies the given constraints.

e Optimal solution: A feasible solution that optimizes the
objective function.

CS404 /504 Computer Science
Design and Analysis of Algorithms: Lecture 15 1

-

~

Greedy Algorithms |

e At each step in the algorithm, one of several choices can be

made.

e Greedy Strategy: make the choice that is the best at the

moment.

e After making a choice, we are left with one subproblem to

solve.

e [he solution is created by making a sequence of locally

optimal choices.

CS404 /504

Design and Analysis of Algorithms: Lecture 15

Computer Science
2

-

~

Greedy Algorithms: Optimality Conditions |

CS404 /504

Greedy Choice property:
A globally optimal solution can be arrived at by making a
locally optimal (greedy) choice.

Optimal Substructure:
An optimal solution to the problem contains within it optimal
solutions to subproblems.

Design and Analysis of Algorithms: Lecture 15

Computer Science
3

4)

Greedy Algorithims: Examples |

e Prim’'s algorithm: Each step, include a new edge into the
set A. Greedy criterion: select the minimum-weight edge
connecting a vertex inside A and a vertex outside A (i.e.,
select a vertex that has smallest key value).

e Kruskal's algorithm: Each step, include a new edge into the
set A. Greedy criterion: select the minimum-weight edge
connecting two trees in A.

e Dijkstra’s algorithm: Each step, include a new vertex into
the set S. Greedy criterion: select the vertex with smallest
d[u] value (i.e., the vertex that is closest to the source s).

CS404 /504 Computer Science
Design and Analysis of Algorithms: Lecture 15 4

-~

~

Fractional Knapsack Problem |

CS404 /504

Design and Analysis of Algorithms: Lecture 15

A thief considers stealing m pounds of merchandise. The loot
is in the form of n items, each with weight w; and value p;. Any
amount of an item can be put in the knapsack as long as the
weight limit m is not exceeded.

Computer Science
5

-

~

Knapsack Problem: Formal Description |

e Input: n objects and a knapsack.

e Each object 7+ has a weight w;, a value p; and the knapsack
has a capacity m.

e A fraction of object z;,0 < z; < 1 yields a profit of p; - x;.

e ODbjective is to obtain a filling that maximizes the profit,
under the weight constraint of m.

e Optimization Problem: find z1,x»,...,zn, such that:

p

maximize: > 4 p; - x;

¢ subject to: Y w;-x; <m

and 0<z;<1,1<7:<n

CS404 /504 Computer Science

Design and Analysis of Algorithms: Lecture 15 6

-

~
Two Observations |

Lemma 1 Incase } ' jw; <m, thenz; =1,1<i<n

IS an optimal solution.

Lemma 2 In case > ' ; w; > m, all optimal solutions will fit

the knhapsack exactly.

CS404 /504 Computer Science

Design and Analysis of Algorithms: Lecture 15 7

~

n=3,m = 20, P = (25,24,15) and W = (18, 15, 10).

Solution 1: z1 = 0.5,2p = 4,23 =

Pl

> w;-x; =16.5 = Total profits = 24.25
a feasible solution

Solution 2: 1 = 0.0, 20 = 1.0, 23 = %

> w;-x; =20 = Total profits = 31.5
a feasible solution

CS404 /504

Design and Analysis of Algorithms: Lecture 15

Problem Instance |

Computer Science

8

~

4)

Possible Greedy Strategies |

Strategy 1: Pick the max-value object first.
Choose the object in nonincreasing order of
value.

r1 =1, af;2=12—5, 3 =0=) p;, -x; = 28.2

Strategy 2: Pick the lightest object first.
Choose the object in nondecreasing order of
weight.

r3 = 1, ZCQZ%, 1 =0= > p;,-x; = 31

CS404 /504 Computer Science
Design and Analysis of Algorithms: Lecture 15 9

4)

Pick the object with the maximum value per
pound

Gold Powder Silver Powder Flour Powder

—

wl = 0.51b, p1 = $1000
w2 = 20lb, p2 = $2000
$2000/1b w3 = 30001b, p3 = $1500
$100/1b $0.5/b

Strategy 3: Choose the object in nonincreasing order of L

1

p; — (25 24 15\ __
b= (83,25 13) = (1.39,1.60, 1.5)

SO xo = 1,$3:%,ZC1 =0= > p;-x; =315

CS404 /504 Computer Science
Design and Analysis of Algorithms: Lecture 15 10

- N
Greedy Knapsack |

void GreedyKnapsack(float m, int n)

// p[1..n] and w[l..n] contain the profits and weights
// respectively of the n objects ordered such that

// pli]/wli] > pli+1]/w[i4+1]. m is the knapsack

// capacity and x[1..n] is the solution vector.

fori:=1ton x[i] = 0.0; // initialize x
U= m;
for: :=1ton
if (w[i] > U) break;
X[:] ;= 1.0; // put the whole object in
U := U - wli];
if (1 < n) x[i] ;= U/wli]; // the last object to be put in
CS404 /504 Computer Science

Design and Analysis of Algorithms: Lecture 15 11

4)

Proving the correctness of a Greedy
algorithm is not trivial

e Prim’s algorithm: Corollary 23.2 proves AU w is still a
subset of certain MST.

e Kruskal's algorithm: Corollary 23.2 proves A U w is still a
subset of certain MST.

e Dijkstra’s algorithm: Theorem 24.6 proves that when we
insert a vertex v into the set S, it's shortest path is
determined, d[u] = o[s, u].

Note: Optimal solutions are not unique in some cases.

CS404 /504 Computer Science
Design and Analysis of Algorithms: Lecture 15 12

4)

Correctness of Greedy Strategy |

Theorem: If objects are included in the nonincreasing order of
p;/w;, then this results in an optimal solution to the knapsack

problem.

Proof Sketch: We use the following technique, which is
typically useful in proving optimality of greedy algorithms.

Compare the greedy solution with the optimal. If the two
solutions differ, then find the first x; at which they differ.
Then show how to make z; in the optimal solution equal to
that of the greedy solution without loss of the total value.
Show that the greedy solution is optimal by repeatedly using
this transformation.

CS404 /504 Computer Science
Design and Analysis of Algorithms: Lecture 15 13

-

b

\
Proof of Correctness |

Let £ = (x1,...,xz,) be the solution generated by the greedy algorithm.
If x; = 1 for all 7, then clearly the solution is optimal. Let 5 be the first index
such that z; # 1. Then:

° :1:7;:1f0ri6[1,j)
° LCjE[O,].)

e x; =0 for i € (4,n].

Let (y1,...,yn) be an optimal solution. Then) w;y; = m, by Lemma 2.
Let k£ be the least index such that yi. # x,. Then we can prove y. < x,

y considering the three possibilities below:

o If £ < g, then z; = 1. Then y; < x, SinCe yi #* .

e If k = j, then since > !, wyzi = m and y; = z; for all 1 <14 < j, we obtain
yr = x (contradiction), otherwise we would have) w;y; # m.

e If k> 7, then y, = 0 = x;, (contradiction), otherwise we would have
Zwiyi > m.

CS404 /504 Computer Science
Design and Analysis of Algorithms: Lecture 15 14

4)

Proof of Correctness |

Suppose we increase y; to x; and decrease as many of (yg+1,...,Yn) aS
necessary. This results in a new solution (z1,...,2,) With z; = x;, for 1 <i <k

and:

> wily — 2i) = wilze — ui)-

k<i<n

Then the total profit for z is

Z pizi = Z piyi + pr(2e — yk) — Z pi(yi —)

1<i<n 1<i<n k<i<n
Di
= E DiYi _(Zk:_yk:)wk_ § E(yi_zi)wi
1<i<n k<i<n "

> pzyz-l-— (ze —yp)we — Y (yi — z)w;

1<i<n k<i<n

CS404 /504 Computer Science
Design and Analysis of Algorithms: Lecture 15 15

-

~

Proof of Correctness |

Hence, > pizi > > piyi. There are two possible cases:

1. Y pizi > > piyi, which means that y cannot be optimal, which is a
contradiction, because y was chosen to be an optimal solution.
Therefore our assumption (that there is an index k such that x, #= vy,
where y was an optimal solution) is false, which means that z is an
optimal solution.

2. > pizi = > piyi, which means that we made the y; in the optimal
solution equal with the x; in the greedy solution without loss of the
total value. Substitute y with z and repeat the entire procedure for
Tk+1, ..., Tn. VWe Will either exit through case 1, obtaining a
contradiction, or end up with an optimal solution z that is the same as
x, in which case x is an optimal solution.

CS404 /504 Computer Science
Design and Analysis of Algorithms: Lecture 15 16

