## Constrained Optimization Problems

A problem in which some function of certain variables (called the optimization or objective function) is to be optimized (usually minimized or maximized) subject to some constraints.

## Types of solutions:

- Feasible solution: Any assignment of values to the variables that satisfies the given constraints.
- Optimal solution: A feasible solution that optimizes the objective function.


## Greedy Algorithms

- At each step in the algorithm, one of several choices can be made.
- Greedy Strategy: make the choice that is the best at the moment.
- After making a choice, we are left with one subproblem to solve.
- The solution is created by making a sequence of locally optimal choices.


## Greedy Algorithms: Optimality Conditions

Greedy Choice property:
A globally optimal solution can be arrived at by making a locally optimal (greedy) choice.

## Optimal Substructure:

An optimal solution to the problem contains within it optimal solutions to subproblems.

## Greedy Algorithms: Examples

- Prim's algorithm: Each step, include a new edge into the set $A$. Greedy criterion: select the minimum-weight edge connecting a vertex inside $A$ and a vertex outside $A$ (i.e., select a vertex that has smallest key value).
- Kruskal's algorithm: Each step, include a new edge into the set $A$. Greedy criterion: select the minimum-weight edge connecting two trees in $A$.
- Dijkstra's algorithm: Each step, include a new vertex into the set $S$. Greedy criterion: select the vertex with smallest $\mathrm{d}[u]$ value (i.e., the vertex that is closest to the source $s$ ).


## Fractional Knapsack Problem



A thief considers stealing $m$ pounds of merchandise. The loot is in the form of $n$ items, each with weight $w_{i}$ and value $p_{i}$. Any amount of an item can be put in the knapsack as long as the weight limit $m$ is not exceeded.

## Knapsack Problem: Formal Description

- Input: $n$ objects and a knapsack.
- Each object $i$ has a weight $w_{i}$, a value $p_{i}$ and the knapsack has a capacity $m$.
- A fraction of object $x_{i}, 0 \leq x_{i} \leq 1$ yields a profit of $p_{i} \cdot x_{i}$.
- Objective is to obtain a filling that maximizes the profit, under the weight constraint of $m$.
- Optimization Problem: find $x_{1}, x_{2}, \ldots, x_{n}$, such that:
$\begin{cases}\text { maximize: } & \sum_{i=1}^{n} p_{i} \cdot x_{i} \\ \text { subject to: } & \sum_{i=1}^{n} w_{i} \cdot x_{i} \leq m \\ & \text { and } 0 \leq x_{i} \leq 1,1 \leq i \leq n\end{cases}$


## Two Observations

Lemma 1 In case $\sum_{i=1}^{n} w_{i} \leq m$, then $x_{i}=1,1 \leq i \leq n$ is an optimal solution.

Lemma 2 In case $\sum_{i=1}^{n} w_{i} \geq m$, all optimal solutions will fit the knapsack exactly.

## Problem Instance

$n=3, m=20, P=(25,24,15)$ and $W=(18,15,10)$.
Solution 1: $x_{1}=0.5, x_{2}=\frac{1}{3}, x_{3}=\frac{1}{4}$

$$
\underbrace{\sum w_{i} \cdot x_{i}=16.5}_{\text {a feasible solution }} \Rightarrow \text { Total profits }=24.25
$$

Solution 2: $x_{1}=0.0, x_{2}=1.0, x_{3}=\frac{1}{2}$

$$
\underbrace{\sum w_{i} \cdot x_{i}=20}_{\text {a feasible solution }} \Rightarrow \text { Total profits }=31.5
$$

## Possible Greedy Strategies

Strategy 1: Pick the max-value object first. Choose the object in nonincreasing order of value.

$$
x_{1}=1, x_{2}=\frac{2}{15}, x_{3}=0 \Rightarrow \sum p_{i} \cdot x_{i}=28.2
$$

Strategy 2: Pick the lightest object first. Choose the object in nondecreasing order of weight.
$x_{3}=1, x_{2}=\frac{2}{3}, x_{1}=0 \Rightarrow \sum p_{i} \cdot x_{i}=31$

## Pick the object with the maximum value per pound



Strategy 3: Choose the object in nonincreasing order of $\frac{p_{i}}{w_{i}}$

$$
\begin{aligned}
& \frac{p_{i}}{w_{i}}=\left(\frac{25}{18}, \frac{24}{15}, \frac{15}{10}\right)=(1.39,1.60,1.5) \\
& \text { so } x_{2}=1, x_{3}=\frac{1}{2}, x_{1}=0 \Rightarrow \sum p_{i} \cdot x_{i}=31.5
\end{aligned}
$$

## Greedy Knapsack

void GreedyKnapsack(float m, int $n$ )
// $\mathrm{p}[1 . . \mathrm{n}]$ and $\mathrm{w}[1 . . \mathrm{n}]$ contain the profits and weights
// respectively of the n objects ordered such that $/ / \mathrm{p}[i] / \mathrm{w}[i] \geq \mathrm{p}[i+1] / \mathrm{w}[i+1]$. m is the knapsack $/ /$ capacity and $\times[1 . . n]$ is the solution vector.

$$
\begin{aligned}
& \text { for } i:=1 \text { to } \mathrm{n} \quad \times[i]=0.0 ; \quad / / \text { initialize } \times \\
& \mathrm{U}:=\mathrm{m} ; \\
& \text { for } i:=1 \text { to } \mathrm{n} \\
& \\
& \quad \text { if }(\mathrm{w}[i]>\mathrm{U}) \text { break; } \\
& \\
& \quad \times[i]:=1.0 ; \\
& \\
& \quad \cup:=\mathrm{U}-\mathrm{w}[i] ;
\end{aligned}
$$

$$
\text { if }(i \leq \mathrm{n}) \times[i]:=\mathrm{U} / \mathrm{w}[i] ; \quad / / \text { the last object to be put in }
$$

## Proving the correctness of a Greedy algorithm is not trivial

- Prim's algorithm: Corollary 23.2 proves $A \cup u$ is still a subset of certain MST.
- Kruskal's algorithm: Corollary 23.2 proves $A \cup u$ is still a subset of certain MST.
- Dijkstra's algorithm: Theorem 24.6 proves that when we insert a vertex $u$ into the set $S$, it's shortest path is determined, $d[u]=\sigma[s, u]$.

Note: Optimal solutions are not unique in some cases.

## Correctness of Greedy Strategy

Theorem: If objects are included in the nonincreasing order of $p_{i} / w_{i}$, then this results in an optimal solution to the knapsack problem.

Proof Sketch: We use the following technique, which is typically useful in proving optimality of greedy algorithms.

Compare the greedy solution with the optimal. If the two solutions differ, then find the first $x_{i}$ at which they differ.
Then show how to make $x_{i}$ in the optimal solution equal to that of the greedy solution without loss of the total value. Show that the greedy solution is optimal by repeatedly using this transformation.

## Proof of Correctness

Let $x=\left(x_{1}, \ldots, x_{n}\right)$ be the solution generated by the greedy algorithm. If $x_{i}=1$ for all $i$, then clearly the solution is optimal. Let $j$ be the first index such that $x_{j} \neq 1$. Then:

- $x_{i}=1$ for $i \in[1, j)$
- $x_{j} \in[0,1)$
- $x_{i}=0$ for $i \in(j, n]$.

Let $\left(y_{1}, \ldots, y_{n}\right)$ be an optimal solution. Then $\sum w_{i} y_{i}=m$, by Lemma 2. Let $k$ be the least index such that $y_{k} \neq x_{k}$. Then we can prove $y_{k}<x_{k}$, by considering the three possibilities below:

- If $k<j$, then $x_{k}=1$. Then $y_{k}<x_{k}$, since $y_{k} \neq x_{k}$.
- If $k=j$, then since $\sum_{i=1}^{j} w_{i} x_{i}=m$ and $y_{i}=x_{i}$ for all $1 \leq i<j$, we obtain $y_{k}=x_{k}($ contradiction $)$, otherwise we would have $\sum w_{i} y_{i} \neq m$.
- If $k>j$, then $y_{k}=0=x_{k}$ (contradiction), otherwise we would have $\sum w_{i} y_{i}>m$.


## Proof of Correctness

Suppose we increase $y_{k}$ to $x_{k}$ and decrease as many of $\left(y_{k+1}, \ldots, y_{n}\right)$ as necessary. This results in a new solution $\left(z_{1}, \ldots, z_{n}\right)$ with $z_{i}=x_{i}$, for $1 \leq i \leq k$ and:

$$
\sum_{k<i \leq n} w_{i}\left(y_{i}-z_{i}\right)=w_{k}\left(z_{k}-y_{k}\right)
$$

Then the total profit for $z$ is:

$$
\begin{aligned}
\sum_{1 \leq i \leq n} p_{i} z_{i} & =\sum_{1 \leq i \leq n} p_{i} y_{i}+p_{k}\left(z_{k}-y_{k}\right)-\sum_{k<i \leq n} p_{i}\left(y_{i}-z_{i}\right) \\
& =\sum_{1 \leq i \leq n} p_{i} y_{i}+\frac{p_{k}}{w_{k}}\left(z_{k}-y_{k}\right) w_{k}-\sum_{k<i \leq n} \frac{p_{i}}{w_{i}}\left(y_{i}-z_{i}\right) w_{i} \\
& \geq \sum_{1 \leq i \leq n} p_{i} y_{i}+\frac{p_{k}}{w_{k}}\left(\left(z_{k}-y_{k}\right) w_{k}-\sum_{k<i \leq n}\left(y_{i}-z_{i}\right) w_{i}\right) \\
& =\sum_{1 \leq i \leq n} p_{i} y_{i}
\end{aligned}
$$

## Proof of Correctness

Hence, $\sum p_{i} z_{i} \geq \sum p_{i} y_{i}$. There are two possible cases:

1. $\sum p_{i} z_{i}>\sum p_{i} y_{i}$, which means that $y$ cannot be optimal, which is a contradiction, because $y$ was chosen to be an optimal solution.
Therefore our assumption (that there is an index $k$ such that $x_{k} \neq y_{k}$, where $y$ was an optimal solution) is false, which means that $x$ is an optimal solution.
2. $\sum p_{i} z_{i}=\sum p_{i} y_{i}$, which means that we made the $y_{k}$ in the optimal solution equal with the $x_{k}$ in the greedy solution without loss of the total value. Substitute $y$ with $z$ and repeat the entire procedure for $x_{k+1}, \ldots, x_{n}$. We will either exit through case 1 , obtaining a contradiction, or end up with an optimal solution $z$ that is the same as $x$, in which case $x$ is an optimal solution.
