
The 0/1 Knapsack ProblemThe 0/1 Knapsack Problem

If we limit the xi to only 1 or 0 (take it or leave it), this results

in the 0/1 Knapsack problem.

Optimization Problem: find x1, x2, ..., xn, such that:

maximize:
∑n

i=1 pi · xi

subject to:
∑n

i=1 wi · xi ≤ m

xi ∈ {0,1},1 ≤ i ≤ n

'

&

$

%CS404/504 Computer Science

1Design and Analysis of Algorithms: Lecture 16

The Greedy method does not work
for the 0/1 Knapsack Problem!

The Greedy method does not work
for the 0/1 Knapsack Problem!

'

&

$

%CS404/504 Computer Science

2Design and Analysis of Algorithms: Lecture 16

The Knapsack ProblemThe Knapsack Problem

There are two versions of the problem:

1. “Fractional” knapsack problem.

2. “0/1” knapsack problem.

1 Items are divisible: you can take any fraction of an item.

Solved with a greedy algorithm.

2 Item are indivisible; you either take an item or not. Solved

with dynamic programming.

'

&

$

%CS404/504 Computer Science

3Design and Analysis of Algorithms: Lecture 16

0/1 Knapsack problem: the brute-force
approach

0/1 Knapsack problem: the brute-force
approach

Let’s first solve this problem with a straightforward algorithm:

• Since there are n items, there are 2n possible combinations

of items.

• We go through all combinations and find the one with the

maximum value and with total weight less or equal to m.

• Running time will be O(2n).

'

&

$

%CS404/504 Computer Science

4Design and Analysis of Algorithms: Lecture 16

Can we do better?Can we do better?

• Yes, with an algorithm based on dynamic programming.

• Two key ingredients of optimization problems that lead to

a dynamic programming solution:

– Optimal substructure: an optimal solution to the

problem contains within it optimal solutions to

subproblems.

– Overlapping subproblems: same subproblem will be

visited again and again (i.e., subproblems share

subsubproblems).

'

&

$

%CS404/504 Computer Science

5Design and Analysis of Algorithms: Lecture 16

Optimal Substructure of 0/1 Knapsack
problem

Optimal Substructure of 0/1 Knapsack
problem

• Let KNAP(1, n, M) denote the 0/1 Knapsack problem,

choosing objects from [1..n] under the capacity constraint

of M.

• If (x1, x2, ..., xn) is an optimal solution for the problem

KNAP(1, n, M), then:

1 If xn = 0 (we do not pick the n-th object), then

(x1, x2, ..., xn−1) must be an optimal solution for the

problem KNAP(1, n-1, M).

2 If xn = 1 (we pick the n-th object), then (x1, x2, ..., xn−1)

must be an optimal solution for the problem KNAP(1,

n-1, M - wn).

Proof: Cut-and-Paste.

'

&

$

%CS404/504 Computer Science

6Design and Analysis of Algorithms: Lecture 16

Solution in terms of subproblemsSolution in terms of subproblems

Based on the optimal substructure, we can write down the

solution for the 0/1 Knapsack problem as follows:

• Let C[n, M] be the value (total profits) of the optimal

solution for KNAP(1, n, M).

C[n, M] = max (profits for case 1,

profits for case 2)

= max (C[n-1, M], C[n-1, M - wn] + pn).

Similarly

C[n-1, M] = max (C[n-2, M], C[n-2, M - wn−1] + pn−1).

C[n-1, M - wn] = max (C[n-2, M - wn],

C[n-2, M - wn - wn−1] + pn−1).

'

&

$

%CS404/504 Computer Science

7Design and Analysis of Algorithms: Lecture 16

Use a table to store C[·,·] and build it in a
bottom up fashion

Use a table to store C[·,·] and build it in a
bottom up fashion

• For example, if n = 4, M = 9; w4 = 4, p4 = 2, then

C[4, 9] = max(C[3, 9], C[3, 9 - 4] + 2).

• We can use a 2D table to contain C[·,·]; If we want to

compute C[4, 9], C[3, 9] and C[3, 9 - 4] have to be ready.

• Look at the value C[n, M] = max (C[n - 1, M], C[n-1, M -

wn] + pn), to compute C[n, M], we only need the values in

the row C[n - 1,·].

• So the table C[·,·] can be built in a bottom up fashion: 1)

compute the first row C[0, 0], C[0, 1], C[0, 2] ... etc; 2)

row by row, fill the table.

'

&

$

%CS404/504 Computer Science

8Design and Analysis of Algorithms: Lecture 16

Programming = TableProgramming = Table

• The term “programming” used to refer to a tabular

method, and it predates computer programming.

'

&

$

%CS404/504 Computer Science

9Design and Analysis of Algorithms: Lecture 16

Construct the table: A recursive solutionConstruct the table: A recursive solution

• Let C[i, ̟] be a cell in the table C[·,·]; it represents the

value (total profits) of the optimal solution for the problem

KNAP(1, i, ̟), which is the subproblem of selecting items

in [1..i] subject to the capacity constraint of ̟.

• Then C[i, ̟] = max(C[i − 1, ̟], C[i − 1, ̟ - wi] + pi).

'

&

$

%CS404/504 Computer Science

10Design and Analysis of Algorithms: Lecture 16

Boundary conditionsBoundary conditions

We need to consider the boundary conditions:

• When i = 0; no object to choose, so C[i, ̟] = 0;

• When ̟ = 0; no capacity available, C[i, ̟] = 0;

• When wi > ̟; the current object i exceeds the capacity,

definitely we can not pick it. So C[i, ̟] = C[i − 1, ̟] for

this case.

'

&

$

%CS404/504 Computer Science

11Design and Analysis of Algorithms: Lecture 16

Complete recursive formulationComplete recursive formulation

Thus overall the recursive solution is:

C[i, ̟] =

0 if i = 0 or ̟ = 0

C[i − 1, ̟] if wi > ̟

max(C[i − 1, ̟], C[i − 1, ̟ − wi] + pi)
if i > 0 and ̟ ≥ wi.

The solution (optimal total profits) for the original 0/1

problem KNAP(1, n, M) is in C[n, M].

'

&

$

%CS404/504 Computer Science

12Design and Analysis of Algorithms: Lecture 16

AlgorithmAlgorithm

DP-01KNAPSACK(p[], w[], n, M) // n: number of items; M: capacity

for ̟ := 0 to M C[0,̟] := 0;

for i := 0 to n C[i, 0] := 0;

for i := 1 to n

for ̟ := 1 to M

if (w[i] > ̟) // cannot pick item i

C[i, ̟] := C[i - 1, ̟];

else

if (p[i] + C[i-1, ̟ - w[i]]) > C[i-1, ̟])

C[i, ̟] := p[i] + C[i - 1, ̟ - w[i]];

else

C[i, ̟] := C[i - 1, ̟];

return C[n, M];

'

&

$

%CS404/504 Computer Science

13Design and Analysis of Algorithms: Lecture 16

Complexity: Θ(nM)Complexity: Θ(nM)

DP-01KNAPSACK(p[], w[], n, M) // n: number of items; M: capacity

for ̟ := 0 to M C[0,̟] := 0; — Θ(M)

for i := 0 to n C[i, 0] := 0; — Θ(n)

for i := 1 to n — n

for ̟ := 1 to M — M

if (w[i] > ̟)

C[i, ̟] := C[i - 1, ̟];

else

if (p[i] + C[i-1, ̟ - w[i]]) > C[i-1, ̟])

C[i, ̟] := p[i] + C[i - 1, ̟ - w[i]];

else

C[i, ̟] := C[i - 1, ̟];

return C[n, M];

'

&

$

%CS404/504 Computer Science

14Design and Analysis of Algorithms: Lecture 16

An exampleAn example

Let’s run our algorithm on the following data:

n = 4 (number of items)

M = 5 (knapsack capacity = maximum weight)

(wi, pi): (2, 3), (3, 4), (4, 5), (5, 6)

'

&

$

%CS404/504 Computer Science

15Design and Analysis of Algorithms: Lecture 16

ExecutionExecution

'

&

$

%CS404/504 Computer Science

16Design and Analysis of Algorithms: Lecture 16

Compute C[2, 5]Compute C[2, 5]

'

&

$

%CS404/504 Computer Science

17Design and Analysis of Algorithms: Lecture 16

Compute C[4, 5]Compute C[4, 5]

'

&

$

%CS404/504 Computer Science

18Design and Analysis of Algorithms: Lecture 16

How to find the actual items in the
Knapsack?

How to find the actual items in the
Knapsack?

• All of the information we need is in the table.

• C[n, M] is the maximal value of items that can be placed in

the Knapsack.

• Let i = n and k = M

if C[i, k] 6= C[i − 1, k] then

mark the i-th item as in the knapsack

i = i − 1, k = k − wi.

else

i = i − 1

'

&

$

%CS404/504 Computer Science

19Design and Analysis of Algorithms: Lecture 16

Finding the itemsFinding the items

'

&

$

%CS404/504 Computer Science

20Design and Analysis of Algorithms: Lecture 16

Solution: {1,1,0,0}Solution: {1,1,0,0}

'

&

$

%CS404/504 Computer Science

21Design and Analysis of Algorithms: Lecture 16

