The 0/1 Knapsack Problem

If we limit the x_{i} to only 1 or 0 (take it or leave it), this results in the 0/1 Knapsack problem.

Optimization Problem: find $x_{1}, x_{2}, \ldots, x_{n}$, such that:

$$
\begin{cases}\text { maximize: } & \sum_{i=1}^{n} p_{i} \cdot x_{i} \\ \text { subject to: } & \sum_{i=1}^{n} w_{i} \cdot x_{i} \leq m \\ & x_{i} \in\{0,1\}, 1 \leq i \leq n\end{cases}
$$

The Greedy method does not work for the 0/1 Knapsack Problem!

Figure 17.2 The greedy strategy does not work for the $0-1$ knapsack problem. (a) The thief must select a subset of the three items shown whose weight must not exceed 50 pounds. (b) The optimal subset includes items 2 and 3. Any solution with item 1 is suboptimal, even though item 1 has the greatest value per pound. (c) For the fractional knapsack problem, taking the items in order of greatest value per pound yields an optimal solution.

The Knapsack Problem

There are two versions of the problem:

1. "Fractional" knapsack problem.
2. "O/1" knapsack problem.

1 Items are divisible: you can take any fraction of an item. Solved with a greedy algorithm.

2 Item are indivisible; you either take an item or not. Solved with dynamic programming.

0/1 Knapsack problem: the brute-force approach

Let's first solve this problem with a straightforward algorithm:

- Since there are n items, there are 2^{n} possible combinations of items.
- We go through all combinations and find the one with the maximum value and with total weight less or equal to m.
- Running time will be $O\left(2^{n}\right)$.

Can we do better?

- Yes, with an algorithm based on dynamic programming.
- Two key ingredients of optimization problems that lead to a dynamic programming solution:
- Optimal substructure: an optimal solution to the problem contains within it optimal solutions to subproblems.
- Overlapping subproblems: same subproblem will be visited again and again (i.e., subproblems share subsubproblems).

Optimal Substructure of 0/1 Knapsack problem

- Let $\operatorname{KNAP}(\mathbf{1}, \mathbf{n}, \mathbf{M})$ denote the $0 / 1$ Knapsack problem, choosing objects from [1..n] under the capacity constraint of M .
- If $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is an optimal solution for the problem $\operatorname{KNAP}(1, n, M)$, then:

1 If $x_{n}=0$ (we do not pick the n-th object), then ($x_{1}, x_{2}, \ldots, x_{n-1}$) must be an optimal solution for the problem $\operatorname{KNAP}(1, \mathrm{n}-1, \mathrm{M})$.

2 If $x_{n}=1$ (we pick the n-th object), then $\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)$ must be an optimal solution for the problem $\operatorname{KNAP}(1$, $\left.\mathrm{n}-1, \mathrm{M}-w_{n}\right)$.

Proof: Cut-and-Paste.

Solution in terms of subproblems

Based on the optimal substructure, we can write down the solution for the 0/1 Knapsack problem as follows:

- Let $C[\mathbf{n}, \mathbf{M}]$ be the value (total profits) of the optimal solution for $\operatorname{KNAP}(1, \mathbf{n}, \mathbf{M})$.
$C[n, M]=\max ($ profits for case 1 , profits for case 2)

$$
=\max \left(\mathrm{C}[\mathrm{n}-1, \mathrm{M}], \mathrm{C}\left[\mathrm{n}-1, \mathrm{M}-w_{n}\right]+p_{n}\right)
$$

Similarly
$C[n-1, M]=\max \left(C[n-2, M], C\left[n-2, M-w_{n-1}\right]+p_{n-1}\right)$. $\mathrm{C}\left[\mathrm{n}-1, \mathrm{M}-w_{n}\right]=\max \left(\mathrm{C}\left[\mathrm{n}-2, \mathrm{M}-w_{n}\right]\right.$,

$$
\left.\mathrm{C}\left[\mathrm{n}-2, \mathrm{M}-w_{n}-w_{n-1}\right]+p_{n-1}\right) .
$$

Use a table to store $C[\cdot, \cdot]$ and build it in a bottom up fashion

- For example, if $\mathrm{n}=4, \mathrm{M}=9 ; w_{4}=4, p_{4}=2$, then $C[4,9]=\max (C[3,9], C[3,9-4]+2)$.
- We can use a 2D table to contain C[$[, \cdot]$; If we want to compute $C[4,9], C[3,9]$ and $C[3,9-4]$ have to be ready.
- Look at the value $C[n, M]=\max (C[n-1, M], C[n-1, M-$ $\left.w_{n}\right]+p_{n}$), to compute $\mathrm{C}[\mathrm{n}, \mathrm{M}]$, we only need the values in the row $\mathrm{C}[\mathrm{n}-1, \cdot]$.
- So the table $C[\cdot, \cdot]$ can be built in a bottom up fashion: 1) compute the first row $\mathrm{C}[0,0], \mathrm{C}[0,1], \mathrm{C}[0,2] \ldots$ etc; 2) row by row, fill the table.

Programming $=$ Table

- The term "programming" used to refer to a tabular method, and it predates computer programming.

Construct the table: A recursive solution

- Let $C[i, \varpi]$ be a cell in the table $C[\cdot, \cdot]$; it represents the value (total profits) of the optimal solution for the problem $\operatorname{KNAP}(1, i, \varpi)$, which is the subproblem of selecting items in $[1 . . i]$ subject to the capacity constraint of ϖ.
- Then $\mathrm{C}[i, \varpi]=\max \left(\mathrm{C}[i-1, \varpi], \mathrm{C}\left[i-1, \varpi-w_{i}\right]+p_{i}\right)$.

Boundary conditions

We need to consider the boundary conditions:

- When $i=0$; no object to choose, so $C[i, \varpi]=0$;
- When $\varpi=0$; no capacity available, $\mathrm{C}[i, \varpi]=0$;
- When $w_{i}>\varpi$; the current object i exceeds the capacity, definitely we can not pick it. So $C[i, \varpi]=C[i-1, \varpi]$ for this case.

Complete recursive formulation

Thus overall the recursive solution is:
$C[i, \varpi]= \begin{cases}0 & \text { if } i=0 \text { or } \varpi=0 \\ C[i-1, \varpi] & \text { if } w_{i}>\varpi \\ \max \left(C[i-1, \varpi], C\left[i-1, \varpi-w_{i}\right]+p_{i}\right) & \text { if } i>0 \text { and } \varpi \geq w_{i} .\end{cases}$
The solution (optimal total profits) for the original $0 / 1$ problem $\operatorname{KNAP}(1, n, M)$ is in $C[n, M]$.

Algorithm

DP-01KNAPSACK(p[], w[], $\mathrm{n}, \mathrm{M}) / / n$: number of items; M: capacity for $\varpi:=0$ to $M \quad C[0, \varpi]:=0$;
for $i:=0$ to $\mathrm{n} \quad \mathrm{C}[i, 0]:=0$;
for $i:=1$ to n
for $\varpi:=1$ to M
if $(w[i]>\varpi) \quad / /$ cannot pick item i
$C[i, \varpi]:=C[i-1, \varpi] ;$
else

$$
\begin{aligned}
& \text { if }(\mathrm{p}[i]+\mathrm{C}[i-1, \varpi-\mathrm{w}[i]])>\mathrm{C}[i-1, \varpi]) \\
& \mathrm{C}[i, \varpi]:=\mathrm{p}[i]+\mathrm{C}[i-1, \varpi-\mathrm{w}[i]]
\end{aligned}
$$

else

$$
C[i, \varpi]:=C[i-1, \varpi] ;
$$

return $C[n, M]$;

Complexity: $\Theta(n M)$

DP-01KNAPSACK(p[], w[], $\mathrm{n}, \mathrm{M}) / / n$: number of items; M: capacity

$$
\begin{array}{rlr}
\text { for } \varpi:=0 \text { to } \mathrm{M} & \mathrm{C}[0, \varpi]:=0 ; & -\Theta(M) \\
\text { for } i:=0 \text { to } \mathrm{n} \quad \mathrm{C}[i, 0]:=0 ; & & -\Theta(n) \\
& \\
\text { for } i:=1 \text { to } \mathrm{n} & & -\mathrm{n} \\
& \text { for } \varpi:=1 \text { to } \mathrm{M} & \\
& \text { if }(\mathrm{w}[i]>\varpi) & \\
& \mathrm{C}[i, \varpi]:=\mathrm{C}[i-1, \varpi] ; & \\
& \text { else } & \\
& \text { if }(\mathrm{p}[i]+\mathrm{C}[i-1, \varpi-\mathrm{w}[i]])>\mathrm{C}[i-1, \varpi]) \\
& C[i, \varpi]:=\mathrm{p}[i]+\mathrm{C}[i-1, \varpi-\mathrm{w}[i]] ;
\end{array}
$$

else

$$
C[i, \varpi]:=C[i-1, \varpi] ;
$$

return C[n, M];

An example

Let's run our algorithm on the following data:
$\mathrm{n}=4$ (number of items)
$M=5$ (knapsack capacity $=$ maximum weight)
$\left(w_{i}, p_{i}\right):(2,3),(3,4),(4,5),(5,6)$

$i \backslash W$	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0					
2	0					
3	0					
4	0					

Compute C[2, 5]

ilW	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0					
4	0					

ilW	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	${ }_{7}$

How to find the actual items in the Knapsack?

- All of the information we need is in the table.
- $C[n, M]$ is the maximal value of items that can be placed in the Knapsack.
- Let $i=\mathrm{n}$ and $k=\mathrm{M}$

$$
\begin{aligned}
& \text { if } \mathrm{C}[i, k] \neq \mathrm{C}[i-1, k] \text { then } \\
& \quad \text { mark the } i \text {-th item as in the knapsack } \\
& \quad i=i-1, k=k-w_{i} . \\
& \text { else } \\
& \quad i=i-1
\end{aligned}
$$

Finding the items

ilW	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7)
4	0	0	3	4	5	(7)

i\W	0	1		3	4	5
0	0	0	(0)	0	0	0
(1)	0	0		,	3	3
(2)	0	0	3	4	4	
3	0	0	3	4	5	
4	0	0	3	4	5	(7)

