
Review: Dynamic ProgrammingReview: Dynamic Programming

• Dynamic Programming is a technique for algorithm

design. It is a tabular method in which we break down the

problem into subproblems, and place the solution to the

subproblems in a matrix. The matrix elements can be

computed:

– iteratively, in a bottom-up fashion;

– recursively, using memoization.

• Dynamic Programming is often used to solve

optimization problems. In these cases, the solution

corresponds to an objective function whose value needs to

be optimal (e.g. maximal or minimal). Usually it is

sufficient to produce one optimal solution, even though

there may be many optimal solutions for a given problem.

'

&

$

%CS404/504 Computer Science

1Design and Analysis of Algorithms: Lecture 17



Developing Dynamic Programming
Algorithms

Developing Dynamic Programming
Algorithms

Four steps:

(i) Characterize the structure of an optimal solution.

(ii) Recursively define the value of an optimal solution.

(iii) Compute the value of an optimal solution in a bottom

up fashion.

(iv) Construct an optimal solution from the computed

information.

'

&

$

%CS404/504 Computer Science

2Design and Analysis of Algorithms: Lecture 17



Matrix Chain MultiplicationMatrix Chain Multiplication

Basics

Let A be a p × q matrix and let B be a q × r matrix. Then

we can multiply Ap×q ∗ Bq×r = Cp×r, where the elements of

Cp×r are defined as:

cij =
q

∑

k=1

aikbkj

The straightforward algorithm to compute Ap×q ∗ Bq×r

takes p ∗ q ∗ r multiplications.

Chains of Matrices

Consider A1 · A2 · ... · An. We can compute this product if

the number of columns in Ai is equal to the number of rows

in Ai+1 (Cols[Ai] =Rows[Ai+1]) for every 1 ≤ i ≤ n − 1.

'

&

$

%CS404/504 Computer Science

3Design and Analysis of Algorithms: Lecture 17



How to order the multiplications?How to order the multiplications?

Notice that matrix multiplication is associative, i.e.

A · (B · C) = (A · B) · C. This results in many possible

paranthesizations (i.e. orderings of matrix multiplications).

A product of matrices is fully parenthesized if it is either a

single matrix or the product of two fully parenthesized matrix

products.

For example, A1 · A2 · A3 · A4, can be fully parenthesized as:

(A1 · (A2 · (A3 · A4)))

(A1 · ((A2 · A3) · A4))

((A1 · A2) · (A3 · A4))

(((A1 · A2) · A3) · A4)

((A1 · (A2 · A3)) · A4)

'

&

$

%CS404/504 Computer Science

4Design and Analysis of Algorithms: Lecture 17



The parenthesization is importantThe parenthesization is important

Different parenthesizations of A1 · ... · An may lead to

different total numbers of scalar multiplications.

For example, let A1 be a 10 × 100 matrix, A2 be a 100 × 5

matrix, and A3 be a 5 × 50 matrix. Then

cost[(A1 · A2) · A3] = (10 ∗ 100 ∗ 5) + (10 ∗ 5 ∗ 50)

= 7,500 multiplications

And

cost[A1 · (A2 · A3)] = (100 ∗ 5 ∗ 50) + (10 ∗ 100 ∗ 50)

= 75,000 multiplications

'

&

$

%CS404/504 Computer Science

5Design and Analysis of Algorithms: Lecture 17



There are Ω(2n) possible parenthesizationsThere are Ω(2n) possible parenthesizations

We can think of a parenthesization as a binary parse tree.

Examples:

– left-branching: ((...((A1 · A2) · A3)...) · An)

– right-branching: (A1 · (...(An−2 · (An−1 · An))...))

Total number of paranthesizations is:

P(n) =















1 if n = 1,
n−1
∑

k=1

P(k)P(n − k) if n ≥ 2.

P(n) is the sequence of Catalan numbers, which grows as

Ω(2n) (Exercise 15.2-3) ⇒ Brute force is ruled out!

'

&

$

%CS404/504 Computer Science

6Design and Analysis of Algorithms: Lecture 17



The Matrix Chain Multiplication ProblemThe Matrix Chain Multiplication Problem

Input:

A chain of n matrices 〈A1, A2, ..., An〉 such that

Cols[Ai] =Rows[Ai+1], for i = 1,2, ..., n

Output:

An optimal, fully parenthesized product A1 ·A2 · ... ·An (i.e., in a

way that minimizes the total number of scalar multiplications).

'

&

$

%CS404/504 Computer Science

7Design and Analysis of Algorithms: Lecture 17



A Dynamic Programming Solution: Step (i)A Dynamic Programming Solution: Step (i)

Step (i) characterize the structure of an optimal solution.

Assume that the optimal way to multiply A1A2......An is

(A1A2...Ak)(Ak+1...An), for some k.

Its associated cost is:

cost(A1...An) = cost(A1...Ak) + cost(Ak+1...An) +

rows[A1] · col[Ak] · col[An] (1)

If cost(A1...An) is minimal, then both both cost(A1...Ak) and

cost(Ak+1...An) are minimal. Why?

'

&

$

%CS404/504 Computer Science

8Design and Analysis of Algorithms: Lecture 17



A Dynamic Programming Solution: Step (ii)A Dynamic Programming Solution: Step (ii)

Step (ii) Recursively define the value of an optimal solution.

Consider the general case of multiplying Ai, ...Aj.

Use an array p[] to record the dimensions of matrices. Thus,

each matrix Ai is pi−1 × pi, where pi−1 = rows[Ai], pi = col[Ai].

Define m[i, j] to be the minimum cost of multiplying Ai, ...Aj.

Then:

m[i, j] =







0 if i = j,

min
i≤k<j

{m[i, k] + m[k + 1, j] + pi−1 ∗ pk ∗ pj} if i < j

'

&

$

%CS404/504 Computer Science

9Design and Analysis of Algorithms: Lecture 17



Compute m[i,j]: A Simple Recursive ApproachCompute m[i,j]: A Simple Recursive Approach

Directly compute m[i, j] based on the recursive solution:

RECURSIVE-MATRIX-CHAIN (p, i, j)

if i = j return 0;

m[i, j] := ∞;

for k := i to j − 1

q := RECURSIVE-MATRIX-CHAIN (p, i, k)

+ RECURSIVE-MATRIX-CHAIN (p, k + 1, j)

+ pi−1 · pk · pj

if q < m[i, j]

m[i, j] := q;

return m[i, j]

'

&

$

%CS404/504 Computer Science

10Design and Analysis of Algorithms: Lecture 17



Recursive-Matrix-Chain(p, 1, 4)Recursive-Matrix-Chain(p, 1, 4)

'

&

$

%CS404/504 Computer Science

11Design and Analysis of Algorithms: Lecture 17



Time AnalysisTime Analysis

The following recurrence relation describes the running time of

RECURSIVE-MATRIX-CHAIN():

T(1) ≥ 1

T(n) ≥ 1 +
n−1
∑

k=1

(T(k) + T(n − k) + 1)

= 2
n−1
∑

i=1

T(i) + n

Exercise

Prove that T(n) ≥ 2n−1

'

&

$

%CS404/504 Computer Science

12Design and Analysis of Algorithms: Lecture 17



Compute m[i,j]: A Bottom-Up Iterative
Approach

Compute m[i,j]: A Bottom-Up Iterative
Approach

We can compute m[1..n] in O(n3) steps.

'

&

$

%CS404/504 Computer Science

13Design and Analysis of Algorithms: Lecture 17



Bottom-Up Iterative ExampleBottom-Up Iterative Example

Example:

A1 30x35

A2 35x15

A3 15x5

A4 5x10

A5 10x20

A6 20x25

Let’s fill in part of the m array for this example.

'

&

$

%CS404/504 Computer Science

14Design and Analysis of Algorithms: Lecture 17



Bottom-Up Iterative ExampleBottom-Up Iterative Example

'

&

$

%CS404/504 Computer Science

15Design and Analysis of Algorithms: Lecture 17



Working it outWorking it out

m[2,6] = min
2≤k≤6

{m[2, k] + m[k + 1,6] + p1 · pk · p6}

= min



















m[2,2] + m[3,6] + 35 × 15 × 25 = 18,500
m[2,3] + m[4,6] + 35 × 5 × 25 = 10,510
m[2,4] + m[5,6] + 35 × 10 × 25 = 18,125
m[2,5] + m[6,6] + 35 × 20 × 25 = 24,625

Thus, S[2,6] = k = 3.

'

&

$

%CS404/504 Computer Science

16Design and Analysis of Algorithms: Lecture 17



Iterative AlgorithmIterative Algorithm

Step (iii): Compute values in a bottom-up fashion.

MATRIX-CHAIN-ORDER(p)

for i := 1 to n

m[i, i] := 0;

for l := 2 to n // l is the moving line

for i := 1 to n − l + 1

j := i + l − 1;

m[i, j] := mini≤k<j {m[i, k] + m[k + 1, j]

+pi−1 ∗ pk ∗ pj}

'

&

$

%CS404/504 Computer Science

17Design and Analysis of Algorithms: Lecture 17



Complexity is Θ(n3)Complexity is Θ(n3)

MATRIX-CHAIN-ORDER(p)

for i := 1 to n Θ(n)

m[i, i] := 0;

for l := 2 to n O(n)

for i := 1 to n − l + 1 O(n)

j := i + l − 1;

m[i, j] := mini≤k<j {m[i, k] + m[k + 1, j] O(n)

+pi−1 ∗ pk ∗ pj}

Overal: O(n3). It’s also Ω(n3) (homework).

'

&

$

%CS404/504 Computer Science

18Design and Analysis of Algorithms: Lecture 17



Step (iv): Constructing an optimal solutionStep (iv): Constructing an optimal solution

Use another table s[1..n,1..n]. Each entry s[i, j] records the

value of k such that the optimal parenthesization of AiAi+1...Aj

splits the product between Ak and Ak+1.

MATRIX-CHAIN-ORDER(p)

for l := 2 to n

for i := 1 to n − l + 1

j := i + l − 1;

m[i, j] := min
i≤k<j

{m[i, k] + m[k + 1, j] + pi−1 ∗ pk ∗ pj}

s[i, j] := argmin
i≤k<j

{m[i, k] + m[k + 1, j] + pi−1 ∗ pk ∗ pj}

'

&

$

%CS404/504 Computer Science

19Design and Analysis of Algorithms: Lecture 17



Step (iv): Constructing an optimal solutionStep (iv): Constructing an optimal solution

How do we find the actual optimal parenthesization?

Notice that s[1, n] is the position of the outmost multiplication.

(A1...As[1,n])(As[1,n]+1)....An)

Similarly, the outermost multiplication for the left-hand side is

at the position s[1, s[1, n]], and the outermost multiplication for

the right-hand side is at the position s[s[1, n] + 1, n].

We can generalize this to give a simple recursive algorithm to

print the minimal parenthesization.

'

&

$

%CS404/504 Computer Science

20Design and Analysis of Algorithms: Lecture 17



Printing optimal parenthesizationPrinting optimal parenthesization

PRINT-OPTIMAL-PARENS(s, i, j)

if i = j

print ′′A′′
i ;

else

print ”(”;

PRINT-OPTIMAL-PARENS(s, i, s[i, j])

PRINT-OPTIMAL-PARENS(s, s[i, j] + 1, j)

print ”)”;

'

&

$

%CS404/504 Computer Science

21Design and Analysis of Algorithms: Lecture 17



S[1..n, 1..n]S[1..n, 1..n]

PRINT-OPTIMAL-PARENS (s, 1, 6):

( (A1 (A2 A3) ) ) ( ( A4 A5 ) A6 )

'

&

$

%CS404/504 Computer Science

22Design and Analysis of Algorithms: Lecture 17



The Recursive Approach RevisitedThe Recursive Approach Revisited

As we’ve seen already, we can solve the matrix chain

multiplication problem recursively using the following algorithm:

RECURSIVE-MATRIX-CHAIN (p, i, j)

if i = j return 0;

m[i, j] := ∞;

for k := i to j − 1

q := RECURSIVE-MATRIX-CHAIN (p, i, k)

+ RECURSIVE-MATRIX-CHAIN (p, k + 1, j)

+ pi−1 · pk · pj

if q < m[i, j]

m[i, j] := q;

return m[i, j]

'

&

$

%CS404/504 Computer Science

23Design and Analysis of Algorithms: Lecture 17



Time Analysis RevisitedTime Analysis Revisited

The following recurrence relation describes the running time of

RECURSIVE-MATRIX-CHAIN():

T(1) ≥ 1

T(n) ≥ 1 +
n−1
∑

k=1

(T(k) + T(n − k) + 1)

= 2
n−1
∑

i=1

T(i) + n

Exercise

Prove that T(n) ≥ 2n−1

We can speed up the recursive version by using the

Memoization trick.

'

&

$

%CS404/504 Computer Science

24Design and Analysis of Algorithms: Lecture 17



Memoization (pages 387–389)Memoization (pages 387–389)

We can make the recursive version more efficient than the

straightforward approach that we gave earlier.

Basic Idea: Since the recursive version recomputes many of

it’s values, we can simply “remember” the values that we’ve

already computed, and not recompute them.

Notice that this requires that we save some extra information

to tell us that we have already computed some value.

We can create a memoized version for the matrix chain

problem.

'

&

$

%CS404/504 Computer Science

25Design and Analysis of Algorithms: Lecture 17



Memoized Matrix ChainMemoized Matrix Chain

Memoized-Matrix-Chain (p) {

Initialization();

Lookup-Chain(p,1, n);

}

First, we set all of the values m[i, j] = ∞ to indicate that they

have not been computed, yet.

Initialization() {

for i = 1 to n do

for j = i to n do

m[i, j] = ∞;

}

'

&

$

%CS404/504 Computer Science

26Design and Analysis of Algorithms: Lecture 17



Memoized Matrix Chain: RecursionMemoized Matrix Chain: Recursion

Lookup-Chain (p, i, j) {

if m[i, j] < ∞

return m[i, j];

if (i = j)

m[i, j] := 0;

else

for k := i to j − 1

q := Lookup-Chain (p, i, k) + Lookup-Chain (p, k + 1, j)

+ pi−1 · pk · pj;

if q < m[i, j]

m[i, j] := q;

return m[i, j]

}

'

&

$

%CS404/504 Computer Science

27Design and Analysis of Algorithms: Lecture 17



Advantages?Advantages?

Memoization gives an algorithm that is roughly as fast as the

iterative version – in practice it is slower by a constant factor,

due to the recursion overhead and table maintenance.

Think of how to analyze this algorithm – notice that the

standard recurrence relation analysis cannot be used.

Advantages of memoization:

– It is easier to code than the iterative version, thus it is less

error prone.

– It solves only those subproblems that are definitely required

(useful when not all subproblems in the subproblem space

need to be solved).

'

&

$

%CS404/504 Computer Science

28Design and Analysis of Algorithms: Lecture 17



Dynamic Programming: Key IngredientsDynamic Programming: Key Ingredients

Two ingredients of optimization problems that lead to a

dynamic programming solution:

• Optimal substructure: an optimal solution to the problem

contains within it optimal solutions to sub-problems.

• Overlapping sub-problems: same subproblem will be

visited again and again (i.e. subproblems share

subsubproblems).

'

&

$

%CS404/504 Computer Science

29Design and Analysis of Algorithms: Lecture 17



An example where optimal sub-structure
doesn’t hold

An example where optimal sub-structure
doesn’t hold

Longest Simple Path problem:

A directed graph showing that the problem of finding a longest

simple path in an unweighted directed graph does not have

optimal substructure.

The path q → r → t is a longest simple path from q to r, but

the subpath r → t is not a longest simple path from r to t.

'

&

$

%CS404/504 Computer Science

30Design and Analysis of Algorithms: Lecture 17



Overlapping sub-problemsOverlapping sub-problems

Recursive-Matrix-Chain(p, 1, 4)

'

&

$

%CS404/504 Computer Science

31Design and Analysis of Algorithms: Lecture 17



Overlapping sub-problemsOverlapping sub-problems

Fibonacci numbers:

F(100) = F(99) + F(98)

= (F(98) + F(97)) + ( F(97) + F(96))

= ...

'

&

$

%CS404/504 Computer Science

32Design and Analysis of Algorithms: Lecture 17



Divide & Conquer vs. Dynamic ProgrammingDivide & Conquer vs. Dynamic Programming

• Divide & Conquer is indicated when the sub-problems are

independent.

• Dynamic Programming is indicated when the sub-problems

share common sub-sub-problems.

'

&

$

%CS404/504 Computer Science

33Design and Analysis of Algorithms: Lecture 17



Greedy Method vs. Dynamic ProgrammingGreedy Method vs. Dynamic Programming

• Both require the solution of the optimization problem to

have optimal substructure.

• In Dynamic Programming, the optimal solution of a problem

depends on the optimal solution of its sub-problems, so the

computation is carried out in a bottom-up manner.

• In the Greedy method, a decision is made at each step

before solving the subproblem, so a greedy algorithm

usually runs in a top-down fashion.

• Greedy method uses only local information to make

decision. We need to prove that locally optimal decisions

lead to a globally optimal solution, and this is where

cleverness may be required.

'

&

$

%CS404/504 Computer Science

34Design and Analysis of Algorithms: Lecture 17


