Longest Common Subsequence

Let's look at another dynamic programming example:
Longest Common Subsequence (LCS):
Let $X=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle$ be a sequence. Then, another sequence $Z=\left\langle z_{1}, \ldots, z_{k}\right\rangle$ is a subsequence of X if there exists a strictly increasing sequence of indices i_{1}, \ldots, i_{k} such that

$$
z_{j}=x_{i_{j}} \text { for all } 1 \leq j \leq k
$$

Given two sequences X and Y, a third sequence Z is a common subsequence of both X and Y if it is a subsequence of X and a subsequence of Y.

Examples

Consider the sequence $X=\langle A, B, C, B, D, A, B\rangle$. Then, the sequence $Z=\langle B, B, A, B\rangle$ is a subsequence of X.

Similarly, let

$$
X=\langle A, B, C, B, D, A, B, C, D\rangle
$$

and

$$
Y=\langle B, A, C, A, D, B, C, A, A, A\rangle
$$

Then, $Z=\langle A, C, D\rangle$ is a common subsequence of X and Y.
What is the longest common subsequence of X and Y ?

Step (i): Optimal Substructure

Let $X=<x_{1}, x_{2}, \ldots, x_{m}>$ and $Y=<y_{1}, y_{2}, \ldots, y_{n}>$ be two sequences, and let $Z=\left\langle z_{1}, z_{2}, \ldots, z_{k}>\right.$ be a LCS of X and Y.

Then:

- if $x_{m}=y_{n}$, then $z_{k}=x_{m}=y_{n}$ and Z_{k-1} is a LCS of X_{m-1} and $Y_{n-1}\left(z_{k}\right.$ has to be equal to x_{m} / y_{n}, otherwise Z won't be a LCS).
- if $x_{m} \neq y_{n}$, then:
$-z_{k} \neq x_{m} \Rightarrow Z$ is an LCS of X_{m-1} and Y.
$-z_{k} \neq y_{n} \Rightarrow Z$ is an LCS of X and Y_{n-1}.

Step (ii): A recursive solution

Definition: Let $c[i, j]$ be the length of the longest common subsequence between $X_{i}=\left\langle x_{1}, \ldots, x_{i}\right\rangle$ and $Y_{j}=\left\langle y_{1}, \ldots, y_{j}\right\rangle$.

Then $c[n, m]$ contains the length of an LCS of X and Y, and:

$$
c[i, j]= \begin{cases}0 & \text { if } i=0 \text { or } j=0 \\ c[i-1, j-1]+1 & \text { if } i, j>0 \text { and } x_{i}=y_{j} \\ \max (c[i-1, j], c[i, j-1]) & \text { otherwise. }\end{cases}
$$

Step (iii): Bottom-up iterative computation

$\operatorname{LCS}(\mathrm{X}, \mathrm{Y}, \mathrm{m}, \mathrm{n}) \quad / * \mathrm{X}$ has m elements, Y has n elements $* /$

$$
\begin{array}{ll}
\text { for } i=1 \text { to } m & c[i, 0]:=0 ; \\
\text { for } j=1 \text { to } n & c[0, j]:=0 ;
\end{array}
$$

$$
\text { for } \mathrm{i}=1 \text { to } \mathrm{m}
$$

$$
\text { for } \mathrm{j}=1 \text { to } \mathrm{n}
$$

$$
\text { if } X[i]==Y[j]
$$

$$
c[i, j]:=c[i-1, j-1]+1 ;
$$

$$
\mathrm{b}[\mathrm{i}, \mathrm{j}]:={ }^{\prime \prime} \nwarrow^{\prime \prime} ;
$$

else

$$
\begin{aligned}
& \text { if } c[i-1, j] \geq c[i, j-1] \\
& c[i, j]:=c[i-1, j] ; \\
& b[i, j]:={ }^{\prime \prime} \uparrow^{\prime \prime} ; \\
& \text { else } \\
& \quad c[i, j]:=c[i, j-1] ; \\
& b[i, j]:={ }^{\prime \prime} \leftarrow^{\prime \prime} ;
\end{aligned}
$$

Step (iv): Figuring out the LCS

Use a recursive algorithm: $b[i, j]$ points to the table entry corresponding to the optimal subproblem solution chosen when computing $c[i, j]$.

Print-LCS (b, X, i, j)
if $i=0$ return;
if $j=0$ return;
if $b[i, j]="{ }^{\prime}$ "
Print-LCS $(b, X, i-1, j-1)$;
print $X[i]$;
else if $b[i, j]=$ " \uparrow "

$$
\text { Print-LCS }(b, X, i-1, j) ;
$$

else

$$
\text { Print-LCS }(b, X, i, j-1) ;
$$

An Example

Consider the following example:

$$
X=\langle A, B, C, B, D, A, B\rangle
$$

and

$$
Y=\langle B, D, C, A, B, A\rangle .
$$

Let's compute c and b on the board. Then, we'll compute the LCS.

