The Coin Changing problem

- Suppose we need to make change for 67ϕ. We want to do this using the fewest number of coins possible. Pennies, nickels, dimes and quarters are available.
- Optimal solution for 67 ¢ has six coins: two quarters, one dime, a nickel, and two pennies.
- We can use a greedy algorithm to solve this problem: repeatedly choose the largest coin less than or equal to the remaining sum, until the desired sum is obtained.
- This is how millions of people make change every day (*).

The Coin-Changing problem: formal description

- Let $D=\left\{d_{1}, d_{2}, \ldots, d_{k}\right\}$ be a finite set of distinct coin denominations. Example: $d_{1}=25 \phi, d_{2}=10 \phi, d_{3}=5 \phi$, and $d_{4}=1 \mathrm{C}$.
- We can assume each d_{i} is an integer and $d_{1}>d_{2}>\ldots>d_{k}$.
- Each denomination is available in unlimited quantity.
- The Coin-Changing problem:
- Make change for n cents, using a minimum total number of coins.
- Assume that $d_{k}=1$ so that there is always a solution.

The Greedy Method (works in the US)

- For the coin set $\{25 \phi, 10 \phi, 5 \phi, 1 \phi\}$, the greedy method always finds the optimal solution.
- Exercise: prove it.
- It may not work for other coin sets. For example it stops working if we knock out the nickel.
- Example: $D=\{25 \phi, 10 \phi, 1 \phi\}$ and $n=30 \phi$. The Greedy method would produce a solution: $25 \phi+5 \times 1 \phi$, which is not as good as $3 \times 10 \phi$.

A Dynamic Programming Solution: Step (i)

Step (i): Characterize the structure of a coin-change solution.

- Define $C[j]$ to be the minimum number of coins we need to make change for j cents.
- If we knew that an optimal solution for the problem of making change for j cents used a coin of denomination d_{i}, we would have:

$$
C[j]=1+C\left[j-d_{i}\right]
$$

A Dynamic Programming Solution: Step (ii)

Step (ii): Recursively define the value of an optimal solution.

$$
C[j]= \begin{cases}\infty & \text { if } j<0 \\ 0 & \text { if } j=0 \\ 1+\min _{1 \leq i \leq k}\left\{C\left[j-d_{i}\right]\right\} & \text { if } j \geq 1\end{cases}
$$

An example: coin set $\left\{\mathbf{5 0} \phi, \mathbf{2 5} \phi, \mathbf{1 0} \phi, \mathbf{1}_{\phi}\right\}$

$C[0]=0$;

$$
\begin{aligned}
& C[1]=\min \begin{cases}1+C[1-50] & =\infty \\
1+C[1-25] & =\infty \\
1+C[1-10] & =\infty \\
1+C[1-1] & =1\end{cases} \\
& C[2]=\min \begin{cases}1+C[2-50] & =\infty \\
1+C[2-25] & =\infty \\
1+C[2-10] & =\infty \\
1+C[2-1] & =2\end{cases}
\end{aligned}
$$

Similarly, $C[3]=3 ; C[4]=4 ; \ldots ; C[9]=9 ; C[10]=1$;

An example

$$
C[11]=\min \left\{\begin{array}{l}
1+C[11-50]=\infty \\
1+C[11-25]=\infty \\
1+C[11-10]=2 \\
1+C[11-1]=2
\end{array} \quad\{1 \phi, 10 \phi\}\right.
$$

$C[20]=2 ; \ldots, C[29]=5$;
$C[30]=\min \left\{\begin{array}{l}1+C[30-50]=\infty \\ 1+C[30-25]=1+C[5]=6 \\ 1+C[30-10]=1+C[20]=3 ; \\ 1+C[30-1]=1+C[29]=6 ;\end{array} \quad\left\{10 \phi, 10 \phi, 1 \phi_{\phi}\right\}\right.$

A Dynamic Programming Solution: Step (iii)

Step (iii): Compute values in a bottom-up fashion.

Avoid examining $C[j]$ for $j<0$ by ensuring that $j \geq d_{i}$ before looking up $C\left[j-d_{i}\right]$.

Compute-Change (n, d, k)

$$
\begin{aligned}
& C[0]:=0 \\
& \text { for } j:=1 \text { to } \mathrm{n} \text { do } \\
& \qquad \begin{aligned}
& C[j]:=\infty \\
& \text { for } \mathrm{i}:=1 \text { to } \mathrm{k} \text { do } \\
& \text { if } j \geq d_{i} \text { and } 1+C\left[j-d_{i}\right]<C[j] \text { then } \\
& \qquad C[j]:=1+C\left[j-d_{i}\right] \\
& \text { return } c
\end{aligned}
\end{aligned}
$$

Complexity: $\Theta(n k)$.

A Dynamic Programming Solution: Step (iv)

Step (iv): Construct an optimal solution.
We use an additional array denom[1..n], where denom $[j]$ is the denomination of a coin used in an optimal solution to the problem of making change for j cents.

COMPUTE-CHANGE (n, d, k)
$C[0]:=0$
for $\mathrm{j}:=1$ to n do
$C[j]:=\infty$
for $\mathrm{i}:=1$ to k do
if $j \geq d_{i}$ and $1+C\left[j-d_{i}\right]<C[j]$ then
$C[j]:=1+C\left[j-d_{i}\right]$ $\operatorname{denom}[j]:=d_{i}$
return c

Step (iv): Print optimal solution

PRINT-COINS(denom, j)

if $j>0$

PRINT-COINS(denom, j - denom[j])
print denom[j]

Initial call is PRINT-COINS(denom, n).

Example:

Time complexity of DP algorithms

Usually the complexity of a DP algorithm is: \# of sub-problems \times choices for each sub-problem

For example: 0/1 Knapsack Problem:
$C[i, \varpi]=\max \left(C[i-1, \varpi], C\left[i-1, \varpi-w_{i}\right]+p_{i}\right)$.
$\mathbf{n} \times \mathrm{M}$ sub-problems, each needs to check 2 choices.
$-\Theta(n M)$

Matrix Chain Multiplication:
$C[i, j]=\min _{i \leq k<j}\left\{C[i, k]+C[k+1, j]+\operatorname{rows}\left[A_{i}\right] * \operatorname{col}\left[A_{k}\right] * \operatorname{col}\left[A_{j}\right]\right\}$
$\mathbf{n} \times \mathbf{n}$ sub-problems, each needs to check $O(n)$ choices
$-O\left(n^{3}\right)$

Coin Changing Problem: size of $C=n, k$ possible coin types for each $C[j]$. - $\Theta(n k)$.
CS404/504

Another Dynamic Programming Solution

- Let $D=\left\{d_{1}, d_{2}, \ldots, d_{k}\right\}$ be the set of coin denominations, arranged such that $d_{1}=1 \phi$. As before, the problem is to make change for n cents using the fewest number of coins.
- Use a table $C[1 . . k, 0 . . n]$:
- $C[i, j]$ is the smallest number of coins used to make change for j cents, using only coins $d_{1}, d_{2}, \ldots, d_{i}$.
- The overal number of coins (the final optimal solution) will be computed in $C[k, n]$.

Another Dynamic Programming Solution

Step (i): Characterize the structure of a coin-change solution.

- Making change for j cents with coins $d_{1}, d_{2}, \ldots, d_{i}$ can be done in two ways:

1) Don't use coin d_{i} (even if it's possible):

$$
C[i, j]=C[i-1, j]
$$

2) Use coin d_{i} and reduce the amount:

$$
C[i, j]=1+C\left[i, j-d_{i}\right]
$$

- We will pick the solution with least number of coins:

$$
C[i, j]=\min \left(C[i-1, j], \quad 1+C\left[i, j-d_{i}\right]\right)
$$

Another Dynamic Programming Solution

Step (ii): Recursively define the value of an optimal solution.

$$
C[i, j]= \begin{cases}\infty & \text { if } j<0 \\ 0 & \text { if } j=0 \\ j & \text { if } i=0 \\ \min \left\{C[i-1, j], 1+C\left[i, j-d_{i}\right]\right\} & \text { if } j \geq 1\end{cases}
$$

Another Dynamic Programming Solution

Step (iii): Compute values in a bottom-up fashion.
COMPUTE-CHANGE (d, k, n)
for $i:=1$ to k
$C[i, 0]:=0$
for $j:=1$ to n
$C[1, j]:=j$
for $i:=1$ to $\mathrm{k} \quad$ Overall time complexity is $\Theta(n k)$ for $j:=1$ to n
if $j<d_{i}$ then
$C[i, j]:=C[i-1, j]$
else

$$
C[i, j]:=\min \left(C[i-1, j], 1+C\left[i, j-d_{i}\right]\right)
$$

Example: Bottom-up computation

- Suppose we have coin set $\left\{d_{1}, d_{2}, d_{3}\right\}=\{1 c, 4 c, 6 c\}$ and $n=8 c$.

$$
\begin{aligned}
& \mathrm{C}[\mathrm{i}, \mathrm{j}]
\end{aligned} \left\lvert\, \begin{array}{llllllllll}
& 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
------1 & 1 & \mid & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
\end{array}\right.
$$

- $C[3,8]=\min \left(C[2,8], 1+C\left[3,8-d_{3}\right]\right)=\min (2,1+2)$
- Evidently, the optimal solution does NOT use d_{3}.

Another Dynamic Programming Solution

Step (iv): Construct an optimal solution.

Two strategies:

- Online: use an additional matrix $S[1 . . k, 0 . . n]$, where $S[i, j]$ indicates which of the values $C[i-1, j]$ and $C\left[i, j-d_{i}\right]$ was used to compute $C[i, j]$ (use two symbols: \uparrow and \leftarrow). Compute S in parallel with C.
- Batch: recover the denominations of the coins used in the optimal solution by starting backwards from $C[k, n]$, after computing the entire matrix C.

HW exercise: write the pseudocode for each, analyze time \& space complexity.

