
The Coin Changing problemThe Coin Changing problem

• Suppose we need to make change for 67¢. We want to do

this using the fewest number of coins possible. Pennies,

nickels, dimes and quarters are available.

• Optimal solution for 67¢ has six coins: two quarters, one

dime, a nickel, and two pennies.

• We can use a greedy algorithm to solve this problem:

repeatedly choose the largest coin less than or equal to the

remaining sum, until the desired sum is obtained.

• This is how millions of people make change every day (*).

'

&

$

%CS404/504 Computer Science

1Design and Analysis of Algorithms: Lecture 19

The Coin-Changing problem: formal
description

The Coin-Changing problem: formal
description

• Let D = {d1, d2, ..., dk} be a finite set of distinct coin

denominations. Example: d1 = 25¢, d2 = 10¢, d3 = 5¢, and

d4 = 1¢.
• We can assume each di is an integer and d1 > d2 > ... > dk.

• Each denomination is available in unlimited quantity.

• The Coin-Changing problem:

– Make change for n cents, using a minimum total number

of coins.

– Assume that dk = 1 so that there is always a solution.

'

&

$

%CS404/504 Computer Science

2Design and Analysis of Algorithms: Lecture 19

The Greedy Method (works in the US)The Greedy Method (works in the US)

• For the coin set { 25¢, 10¢, 5¢, 1¢}, the greedy method

always finds the optimal solution.

• Exercise: prove it.

• It may not work for other coin sets. For example it stops

working if we knock out the nickel.

• Example: D = { 25¢, 10¢, 1¢} and n = 30¢. The Greedy

method would produce a solution:

25¢ + 5 × 1¢, which is not as good as 3× 10¢.

'

&

$

%CS404/504 Computer Science

3Design and Analysis of Algorithms: Lecture 19

A Dynamic Programming Solution: Step (i)A Dynamic Programming Solution: Step (i)

Step (i): Characterize the structure of a coin-change solution.

• Define C[j] to be the minimum number of coins we need to

make change for j cents.

• If we knew that an optimal solution for the problem of

making change for j cents used a coin of denomination di,

we would have:

C[j] = 1 + C[j − di].

'

&

$

%CS404/504 Computer Science

4Design and Analysis of Algorithms: Lecture 19

A Dynamic Programming Solution: Step (ii)A Dynamic Programming Solution: Step (ii)

Step (ii): Recursively define the value of an optimal solution.

C[j] =















∞ if j < 0,

0 if j = 0,

1 + min
1≤i≤k

{C[j − di]} if j ≥ 1

'

&

$

%CS404/504 Computer Science

5Design and Analysis of Algorithms: Lecture 19

An example: coin set { 50¢, 25¢, 10¢, 1¢}An example: coin set { 50¢, 25¢, 10¢, 1¢}
C[0] = 0;

C[1] = min



















1 + C[1− 50] =∞
1 + C[1− 25] =∞
1 + C[1− 10] =∞
1 + C[1− 1] = 1

C[2] = min



















1 + C[2− 50] =∞
1 + C[2− 25] =∞
1 + C[2− 10] =∞
1 + C[2− 1] = 2

Similarly, C[3] = 3; C[4] = 4; ...; C[9] = 9; C[10] = 1;

'

&

$

%CS404/504 Computer Science

6Design and Analysis of Algorithms: Lecture 19

An exampleAn example

C[11] = min



















1 + C[11− 50] =∞
1 + C[11− 25] =∞
1 + C[11− 10] = 2 { 1¢, 10¢ }
1 + C[11− 1] = 2 { 10¢, 1¢ }

C[20] = 2; ..., C[29] = 5;

C[30] = min



















1 + C[30− 50] =∞
1 + C[30− 25] = 1 + C[5] = 6
1 + C[30− 10] = 1 + C[20] = 3; { 10¢, 10¢, 10¢ }
1 + C[30− 1] = 1 + C[29] = 6;

'

&

$

%CS404/504 Computer Science

7Design and Analysis of Algorithms: Lecture 19

A Dynamic Programming Solution: Step (iii)A Dynamic Programming Solution: Step (iii)

Step (iii): Compute values in a bottom-up fashion.

Avoid examining C[j] for j < 0 by ensuring that j ≥ di before

looking up C[j − di].

COMPUTE-CHANGE(n, d, k)

C[0] := 0

for j := 1 to n do

C[j] := ∞

for i := 1 to k do

if j ≥ di and 1 + C[j − di] < C[j] then

C[j] := 1 + C[j − di]

return c

Complexity: Θ(nk).

'

&

$

%CS404/504 Computer Science

8Design and Analysis of Algorithms: Lecture 19

A Dynamic Programming Solution: Step (iv)A Dynamic Programming Solution: Step (iv)

Step (iv): Construct an optimal solution.

We use an additional array denom[1..n], where denom[j] is the

denomination of a coin used in an optimal solution to the

problem of making change for j cents.

COMPUTE-CHANGE(n, d, k)

C[0] := 0

for j := 1 to n do

C[j] := ∞

for i := 1 to k do

if j ≥ di and 1 + C[j − di] < C[j] then

C[j] := 1 + C[j − di]

denom[j] := di

return c

'

&

$

%CS404/504 Computer Science

9Design and Analysis of Algorithms: Lecture 19

Step (iv): Print optimal solutionStep (iv): Print optimal solution

PRINT-COINS(denom, j)

if j > 0

PRINT-COINS(denom, j − denom[j])

print denom[j]

Initial call is PRINT-COINS(denom, n).

Example:

'

&

$

%CS404/504 Computer Science

10Design and Analysis of Algorithms: Lecture 19

Time complexity of DP algorithmsTime complexity of DP algorithms

Usually the complexity of a DP algorithm is:

of sub-problems × choices for each sub-problem

For example: 0/1 Knapsack Problem:

C[i, ̟] = max(C[i− 1, ̟], C[i− 1, ̟ - wi] + pi).

n×M sub-problems, each needs to check 2 choices.

— Θ(nM)

Matrix Chain Multiplication:

C[i, j] = mini≤k<j{C[i, k] + C[k + 1, j] + rows[Ai] ∗ col[Ak] ∗ col[Aj]}

n× n sub-problems, each needs to check O(n) choices

— O(n3)

Coin Changing Problem: size of C = n, k possible coin types

for each C[j]. — Θ(nk).

'

&

$

%CS404/504 Computer Science

11Design and Analysis of Algorithms: Lecture 19

Another Dynamic Programming SolutionAnother Dynamic Programming Solution

• Let D = {d1, d2, ..., dk} be the set of coin denominations,

arranged such that d1 = 1¢. As before, the problem is to

make change for n cents using the fewest number of coins.

• Use a table C[1..k,0..n]:

– C[i, j] is the smallest number of coins used to make

change for j cents, using only coins d1, d2, ..., di.

– The overal number of coins (the final optimal solution)

will be computed in C[k, n].

'

&

$

%CS404/504 Computer Science

12Design and Analysis of Algorithms: Lecture 19

Another Dynamic Programming SolutionAnother Dynamic Programming Solution

Step (i): Characterize the structure of a coin-change solution.

• Making change for j cents with coins d1, d2, ..., di can be

done in two ways:

1) Don’t use coin di (even if it’s possible):

C[i, j] = C[i− 1, j]

2) Use coin di and reduce the amount:

C[i, j] = 1 + C[i, j − di].

• We will pick the solution with least number of coins:

C[i, j] = min(C[i− 1, j], 1 + C[i, j − di])

'

&

$

%CS404/504 Computer Science

13Design and Analysis of Algorithms: Lecture 19

Another Dynamic Programming SolutionAnother Dynamic Programming Solution

Step (ii): Recursively define the value of an optimal solution.

C[i, j] =



















∞ if j < 0,

0 if j = 0,

j if i = 0,

min{C[i− 1, j],1 + C[i, j − di]} if j ≥ 1

'

&

$

%CS404/504 Computer Science

14Design and Analysis of Algorithms: Lecture 19

Another Dynamic Programming SolutionAnother Dynamic Programming Solution

Step (iii): Compute values in a bottom-up fashion.

COMPUTE-CHANGE(d, k, n)

for i := 1 to k

C[i,0] := 0

for j := 1 to n

C[1, j] := j

for i := 1 to k Overall time complexity is Θ(nk)

for j := 1 to n

if j < di then

C[i, j] := C[i− 1, j]

else

C[i, j] := min(C[i− 1, j],1 + C[i, j − di])

'

&

$

%CS404/504 Computer Science

15Design and Analysis of Algorithms: Lecture 19

Example: Bottom-up computationExample: Bottom-up computation

• Suppose we have coin set {d1, d2, d3} = {1c,4c,6c} and

n = 8c.

C[i,j] | 0 1 2 3 4 5 6 7 8

d1 = 1 | 0 1 2 3 4 5 6 7 8

d2 = 4 | 0 1 2 3 1 2 3 4 2

d3 = 6 | 0 1 2 3 1 2 1 2 2

• C[3,8] = min(C[2,8],1 + C[3,8− d3]) = min(2,1 + 2)

• Evidently, the optimal solution does NOT use d3.

'

&

$

%CS404/504 Computer Science

16Design and Analysis of Algorithms: Lecture 19

Another Dynamic Programming SolutionAnother Dynamic Programming Solution

Step (iv): Construct an optimal solution.

Two strategies:

• Online: use an additional matrix S[1..k,0..n], where S[i, j]

indicates which of the values C[i− 1, j] and C[i, j − di] was

used to compute C[i, j] (use two symbols: ↑ and ←).

Compute S in parallel with C.

• Batch: recover the denominations of the coins used in the

optimal solution by starting backwards from C[k, n], after

computing the entire matrix C.

HW exercise: write the pseudocode for each, analyze time &

space complexity.

'

&

$

%CS404/504 Computer Science

17Design and Analysis of Algorithms: Lecture 19

