4 N

The Coin Changing problem |

e Suppose we need to make change for 67¢. We want to do
this using the fewest number of coins possible. Pennies,
nickels, dimes and quarters are available.

e Optimal solution for 67¢ has six coins: two quarters, one
dime, a nickel, and two pennies.

e \We can use a greedy algorithm to solve this problem:
repeatedly choose the largest coin less than or equal to the
remaining sum, until the desired sum is obtained.

e This is how millions of people make change every day (*).

CS404/504 Computer Science
Design and Analysis of Algorithms: Lecture 19 1

4 N
The Coin-Changing problem: formal
description

o Let D ={dq,do,....,d;.} be a finite set of distinct coin
denominations. Example: di = 25¢, do = 10¢, d3 = 5¢, and
d4 = 1¢.

e We can assume each d; is an integer and di > do > ... > d..
e Each denomination is available in unlimited quantity.

e The Coin-Changing problem:

— Make change for n cents, using a minimum total number
of coins.

— Assume that d;. = 1 so that there is always a solution.

CS404/504 Computer Science

Design and Analysis of Algorithms: Lecture 19 2

-

~

The Greedy Method (works in the US) |

e For the coin set { 25¢, 10¢, 5¢, 1¢}, the greedy method
always finds the optimal solution.

e EXercise: prove it.

e It may not work for other coin sets. For example it stops
working if we knock out the nickel.

e Example: D ={ 25¢, 10¢, 1l¢} and n = 30¢. The Greedy
method would produce a solution:
25¢ + 5 x 1¢, which is not as good as 3x 10¢.

CS404/504 Computer Science

Design and Analysis of Algorithms: Lecture 19

3

-

~

A Dynamic Programming Solution: Step (i) |

Step (i): Characterize the structure of a coin-change solution.

e Define C[j] to be the minimum number of coins we need to
make change for 5 cents.

e If we knew that an optimal solution for the problem of
making change for j5 cents used a coin of denomination d;,

we would have:
Clil =14 C[j — d;].

CS404/504 Computer Science

Design and Analysis of Algorithms: Lecture 19 4

-

Step (ii): Recursively define the value of an optimal solution.

~

A Dynamic Programming Solution: Step (ii) |

CS404 /504

Clj] =«

(

\

00 if 4 <O,
0 if 4 =0,
1 min {C|7 — d; if 1 >1
+1§7JI§/€{ [J z]} Ty =

Design and Analysis of Algorithms: Lecture 19

Computer Science

5

4 ™
An example: coin set { 50¢, 25¢, 10¢, 1¢}

C[0] = O;

(14 C[1-50] =

. 14+ C[1—-25] =0

CAl=mine 1 L o1 -10] = oo
1+4C[1-1] =1

(14 C[2-50] = o

. 1+ C[2—-25] =

ClRI=mine 1 1L cl2-10] = oo

L 14+C2-1 =2

Similarly, C[3] = 3; C[4] = 4; ...; C[9] = 9; C[10] = 1;

CS404/504 Computer Science
Design and Analysis of Algorithms: Lecture 19 6

-

An example |

C[11]

= Mmin |

C[20] = 2; ..., C[29] = 5:

C[30] = min

(14 C
1+4C
1+4+C

L 1+4C

30 — 50]
30 — 25]
30 — 10]
30 — 1]

(14 C[11 — 50]
1+ C[11 — 25]
1+ C[11 — 10]
14+ C[11 — 1]

0
0

= 00
—14+C[5] =6

— 1+ C[20] = 3;
= 1+ C[29] = 6;

2 { 1¢, 10c¢ }
2 { 10¢, 1l¢ }

CS404 /504

Design and Analysis of Algorithms: Lecture 19

~

{ 10¢, 10¢, 1C

¢ }

Computer Science
-

-

A Dynamic Programming Solution: Step (iii) |
Step (iii): Compute values in a bottom-up fashion.

Avoid examining C[j] for 7 < O by ensuring that j > d; before
looking up C[j — d;].

CoMPUTE-CHANGE(n, d, k)

C[0] .= 0

for j := 1 to n do
Clj] '= oo
fori := 1 to k do

if 1 >d; and 1+ C[j — d;] < C[j] then
Clj] :== 1+ C[j — d;]
return c

Complexity: ©(nk).

~

CS404 /504

Computer Science
Design and Analysis of Algorithms: Lecture 19 38

/
A Dynamic Programming Solution: Step (iv) |

Step (iv): Construct an optimal solution.

We use an additional array denom[1l..n], where denom/[j] is the
denomination of a coin used in an optimal solution to the
problem of making change for 5 cents.

COMPUTE-CHANGE(n, d, k)

C[0] .= 0

for j:= 1 to n do
Clj] := o0
fori ;= 1 to k do

if 1 >d; and 1+ C[j — d;] < C[j] then
Clj] := 1+ C[j — dj]
denomlj] = d;
return c

CS404 /504

Computer Science
Design and Analysis of Algorithms: Lecture 19 9

~

-

Step (iv): Print optimal solution |

PRINT-COINS(denom, j)

ifj>0
PRINT-COINS(denom, j — denom|[j])
print denom|j]

Initial call is PRINT-COINS(denom,n).

Example:

CS404 /504

Computer Science

~

Design and Analysis of Algorithms: Lecture 19 10

4 N

Time complexity of DP algorithms |

Usually the complexity of a DP algorithm is:
of sub-problems x choices for each sub-problem

For example: 0/1 Knapsack Problem:

Cli,w] = max(C[i — 1,=], C[i — 1, - w;] + p;).

n X M sub-problems, each needs to check 2 choices.
— O(nM)

Matrix Chain Multiplication:

Cli, j] = min;<p < {Cli, k] + Clk + 1, 5] 4+ rows[A;] * col[AL] * col[Aj]
n X n sub-problems, each needs to check O(n) choices

— O(n3)

Coin Changing Problem: size of C' = n, k possible coin types

t

for each C[j]. — ©(nk).

CS404/504 Computer Science

Design and Analysis of Algorithms: Lecture 19 11

4 N

Another Dynamic Programming Solution |

e Let D ={dq,dp,...,d;} be the set of coin denominations,
arranged such that di = 1¢. As before, the problem is to
make change for n cents using the fewest number of coins.

e Use a table C[1..k,0..n]:

— C|i, 4] is the smallest number of coins used to make
change for 53 cents, using only coins dq,do, ..., d;.

— The overal number of coins (the final optimal solution)
will be computed in C[k,n].

CS404/504 Computer Science

Design and Analysis of Algorithms: Lecture 19 12

-

~

Another Dynamic Programming Solution |

Step (i): Characterize the structure of a coin-change solution.

e Making change for 5 cents with coins dy,d»,...,d; can be
done in two ways:

1) Don't use coin d; (even if it's possible):
2) Use coin d; and reduce the amount:

Cli,j] =14+ Cli, 5 — d;].
e \We will pick the solution with least number of coins:

Computer Science
13

CS404/504
Design and Analysis of Algorithms: Lecture 19

-

Step (ii): Recursively define the value of an optimal solution.

~

Another Dynamic Programming Solution |

Cli, 7] = |

/

CS404 /504

\

00 if 4 <O,
O if 1 =0,
j if « =0,

Design and Analysis of Algorithms: Lecture 19

Computer Science

14

4 N

Another Dynamic Programming Solution |

Step (iii): Compute values in a bottom-up fashion.

COMPUTE-CHANGE(d, k,n)
for: . =1tok
C[i,0] :=0
forg :==1ton
Cl1,5] =1

for::=1toKk Overall time complexity is ©(nk)
for g ;== 1ton
if 7 <d; then
Cli,] :=Cli — 1, 7]
else
Cli, 5] := min(Cli — 1,5], 1 + Cl4, 5 — di])

CS404/504 Computer Science
Design and Analysis of Algorithms: Lecture 19 15

4 N

Example: Bottom-up computation |

e Suppose we have coin set {dy,dp,d3} = {1lc,4c,6¢} and

n = 8c.

Cli,j] 1 0123456738

di=1]10123456T7S38
d2=41]1012312342
d3=6]1012312122

e (C[3,8] = min(C[2,8],1 4+ C[3,8 —d3]) = min(2,1 + 2)

e Evidently, the optimal solution does NO'T use ds.

CS404/504 Computer Science
Design and Analysis of Algorithms: Lecture 19 16

4 N

Another Dynamic Programming Solution |

Step (iv): Construct an optimal solution.

Two strategies:

e Online: use an additional matrix S[1..k,0..n], where S|, j]
indicates which of the values C[i — 1, 4] and Cli,j — d;] was
used to compute CJi, j] (use two symbols: T and «).
Compute S in parallel with C.

e Batch: recover the denominations of the coins used in the
optimal solution by starting backwards from C|[k, n], after
computing the entire matrix C.

HW exercise: write the pseudocode for each, analyze time &
space complexity.

CS404/504 Computer Science
Design and Analysis of Algorithms: Lecture 19 17

