4 N
All-Pairs Shortest Paths |

Input: A directed graph G = (V, E) where each edge
(v;,vj) has a weight w(i, j).

Output: A ‘“shortest” path from uw to v, for all u,v € V.

Weight of path: Given a path p =< vq,...,v >, its weight is:

k—1

w(p) = ) w(v;,vj41) (1)

i=1
“shortest” path = path of minimum weight. We use o(u,v)
to denote this minimum weight.
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Different variants of shortest path problems |

- Single-pair shortest path (SPSP):
Find a shortest path from u to w.

- Single-source shortest paths (SSSP):
Find a shortest path from source s to all vertices v € V.
— solved with a Greedy algorithm (Dijkstra’s).

- All-pairs shortest paths (APSP):
Find a shortest path from u to v for all u,v € V.

— solved with a Dynamic Programming algorithm
(Floyd-Warshall).

e Both algorithms need the Optimal Substructure property.
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Properties of shortest paths:
Optimal Substructure

Lemma 24.1: Subpaths of shortest paths are shortest paths.

Proof: Cut and paste:

e e

If some subpath were not a shortest path, we could substitute

the shorter subpath and create an even shorter total path.
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All-Pairs Shortest Paths (APSP) |

e All-pairs shortest paths (APSP): Find a shortest path
from u to v for all u,v e V.

— The output has size O(V?2) , so we cannot hope to
design a better than O(V2)-time algorithm.

— We can solve the problem simply by running Dijkstra’s
algorithm |V| times. It takes O(V ElgV') time, if the
min-priority queue is implemented using a binary heap.
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The Floyd-Warshall algorithm: Step (i) |

Step (i): Characterize the structure of the APSP solution.

e Definition: An intermediate vertex of a simple path

p =< v1,v9,...,v; > IS any vertex of p other than v and v,
i.e., any vertex in the set {vo,v3,...,v;_1}.

e Define dg?ﬂ) to be the weight of a shortest path p from 2 to y
for which all intermediate vertices are in the set {1,2,....k}

(similar to second DP approach to the Coin-Changing
problem).

e Depending on whether or not k is an intermediate vertex on
p, we have two cases:
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The Floyd-Warshall algorithm: Step (i) |

TwO cases:

Case (1): If the shortest path p (from ¢ to j going through
vertices with indeces < k) does not go through the vertex k,

then:
k) — 4(k=1)
] 'LJ

Case (2): If the shortest path p goes through vertex Kk, then:
(k) _ ;(k—1) (k 1)
dii’ =dy ) dy

Therefore, dg?) = mln(d(k L) d(k 1) (k 1))

Computer Science
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The Floyd-Warshall algorithm: Step (i) |

vertices in {1, 2,.. k-1} vertices in {1, 2,.. k-1}

all intermediate vertices in {1, 2,.. k}

b-1
d ip
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The Floyd-Warshall algorithm: Step (ii) |

Step (ii): Recursively define the value of an optimal solution.

e Boundary conditions: for Kk = 0, a path from vertex ¢ to j
with no intermediate vertex numbered higher than O has no
intermediate vertices at all, hance dg)) = Wj;-

e Recursive formulation:

( wij if k — O
(k) S

min(dg’ ™ al T +altY) if k> 1

\

D) = ( d(”)) is the solution for this APSP problem:
d( n) =0(4,7).
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The Floyd-Warshall algorithm: Step (iii) |

Step (iii): Compute the shortest-path weights bottom up.

FLOYD-WARSHALL(W, n)

{

for k: =1 ton
fori: =1 ton

for g ;.=1ton
dg?) = mm(d(k L) d(l~C 1) (k 1))

return D(”);

}

Complexity: ©(n3).
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The Floyd-Warshall algorithm: Step (iv) |

Step (iv): Constructing the shortest paths.
Need to compute the predecessor matrix I1, in which m;; is

the predecessor of vertex 37 on a shortest path from vertex «z.

e Compute predecessor matrix 1 from the weights matrix D
(Exercise 25.1-6).

e Compute Il online, at the same time with D:

— Compute a sequence MO ) 1) where wfjl.“) is
defined as the predecessor of vertex 57 on a shortest path
from vertex i with all intermediate vertices in {1,2,...,k}.

— nN=nw,

Computer Science
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The Floyd-Warshall algorithm: Step (iv) |

Recursive formulation of W(Jk).

e When k£ = 0, a shortest path from 2 to 5 has no
intermediate vertices at all. Hence:

NIL ifi=j or w;; =

(k) _ 1= Wy o0

Z] e .
1 if ¢« 7 j and w;; < oo

e When k£ > 1:

— If we take the path ¢z ~» k£ ~~» 5, then wfjk) IS the same as

the predecessor of 3 on the shortest path from k& with
intermediate vertices in 1,2,....k— 1.

7B = (b)) o g1) k)
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The Floyd-Warshall algorithm: Step (iv) |

e When k£ > 1:

— Otherwise, w,é.(f) is the same as the predecessor of 5 on
the shortest path from 7 with intermediate vertices in
1,2,...,k—1.

(k) _ _(k—1) (k—1) (k 1) (k—1)
m) =my Y ifdy Y <dy T 4 dy

— Putting these two cases together:

D e gD < gD g g0
(k) _ "
Tij | lgl; 1) if d(k 1) dg:_l)-l-d(k 1)
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The Floyd-Warshall algorithm: Step (iv) |

FLOYD-WARSHALL(W, n)

INIT-PREDECESSORS(M(9))

fork:=1ton
for::=1ton
for g ;.=1ton
if a1 < aff T+ dt) then
d(k) _ d(k 1)

{’k) - (k 1
= T
else
d®) = gD 4 kD
(k) _ (k 1)
Tij = Tky

return D(”);
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Printing Shortest Paths with 1 |

The predecessor matrix is M = MN{™) . The following recursive

procedure prints the shortest path between vertices : and j,
using I1:

PRINT-ALL-PAIRS-SHORTEST-PATHS(N,4,75)

if + = 7 then
print 1
else

if T = NIL then
print “no path from” ¢ “to " j
else

PRINT-ALL-PAIRS-SHORTEST-PATHS(M, 1, m&-j)
print 3
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APSP: Example |
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APSP: Example |
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