All-Pairs Shortest Paths

Input: A directed graph $\mathbf{G}=\mathbf{(V , E)}$ where each edge $\left(v_{i}, v_{j}\right)$ has a weight $w(i, j)$.

Output: A "shortest" path from u to v, for all $u, v \in V$.
Weight of path: Given a path $\left.p=<v_{1}, \ldots, v_{k}\right\rangle$, its weight is:

$$
\begin{equation*}
w(p)=\sum_{i=1}^{k-1} w\left(v_{i}, v_{i+1}\right) \tag{1}
\end{equation*}
$$

"shortest" path $=$ path of minimum weight. We use $\sigma(u, v)$ to denote this minimum weight.

Different variants of shortest path problems

- Single-pair shortest path (SPSP):

Find a shortest path from u to v.

- Single-source shortest paths (SSSP):

Find a shortest path from source s to all vertices $v \in V$.

- solved with a Greedy algorithm (Dijkstra's).
- All-pairs shortest paths (APSP):

Find a shortest path from u to v for all $u, v \in V$.

- solved with a Dynamic Programming algorithm (Floyd-Warshall).
- Both algorithms need the Optimal Substructure property.

Properties of shortest paths:
 Optimal Substructure

Lemma 24.1: Subpaths of shortest paths are shortest paths.

Proof: Cut and paste:

If some subpath were not a shortest path, we could substitute
the shorter subpath and create an even shorter total path.

All-Pairs Shortest Paths (APSP)

- All-pairs shortest paths (APSP): Find a shortest path from u to v for all $u, v \in V$.
- The output has size $O\left(V^{2}\right)$, so we cannot hope to design a better than $O\left(V^{2}\right)$-time algorithm.
- We can solve the problem simply by running Dijkstra's algorithm $|V|$ times. It takes $O(V E l g V)$ time, if the min-priority queue is implemented using a binary heap.

The Floyd-Warshall algorithm: Step (i)

Step (i): Characterize the structure of the APSP solution.

- Definition: An intermediate vertex of a simple path $p=<v_{1}, v_{2}, \ldots, v_{l}>$ is any vertex of p other than v_{1} and v_{l}, i.e., any vertex in the set $\left\{v_{2}, v_{3}, \ldots, v_{l-1}\right\}$.
- Define $d_{i j}^{(k)}$ to be the weight of a shortest path p from i to j for which all intermediate vertices are in the set $\{1,2, \ldots, k\}$ (similar to second DP approach to the Coin-Changing problem).
- Depending on whether or not k is an intermediate vertex on p, we have two cases:

The Floyd-Warshall algorithm: Step (i)

Two cases:

Case (1): If the shortest path p (from i to j going through vertices with indeces $\leq k$) does not go through the vertex k, then:

$$
d_{i j}^{(k)}=d_{i j}^{(k-1)}
$$

Case (2): If the shortest path p goes through vertex k, then:

$$
d_{i j}^{(k)}=d_{i k}^{(k-1)}+d_{k j}^{(k-1)}
$$

Therefore, $d_{i j}^{(k)}=\min \left(d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right)$.

The Floyd-Warshall algorithm: Step (i)

$$
\text { vertices in }\{1,2, . . \mathrm{k}-1\} \quad \text { vertices in }\{1,2, . . \mathrm{k}-1\}
$$

$$
d_{i k}^{k-1}
$$

all intermediate vertices in $\{1,2, . . \mathrm{k}\}$

$$
d_{k j}^{k-1}
$$

The Floyd-Warshall algorithm: Step (ii)

Step (ii): Recursively define the value of an optimal solution.

- Boundary conditions: for $k=0$, a path from vertex i to j with no intermediate vertex numbered higher than 0 has no intermediate vertices at all, hance $d_{i j}^{(0)}=w_{i j}$.
- Recursive formulation:

$$
d_{i j}^{(k)}= \begin{cases}w_{i j} & \text { if } k=0 \\ \min \left(d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right) & \text { if } k \geq 1\end{cases}
$$

$D^{(n)}=\left(d_{i j}^{(n)}\right)$ is the solution for this APSP problem:
$\overline{d_{i j}^{(n)}}=\sigma(i, j)$.

The Floyd-Warshall algorithm: Step (iii)

Step (iii): Compute the shortest-path weights bottom up.
FLOYD-WARSHALL(W, n)
\{
$D^{(0)}=W$;
for $k:=1$ to n

$$
\text { for } i:=1 \text { to } n
$$

$$
\text { for } j:=1 \text { to } n
$$

$$
d_{i j}^{(k)}:=\min \left(d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right)
$$

return $D^{(n)}$;
\}
Complexity: $\Theta\left(n^{3}\right)$.

The Floyd-Warshall algorithm: Step (iv)

Step (iv): Constructing the shortest paths.
Need to compute the predecessor matrix Π, in which $\pi_{i j}$ is the predecessor of vertex j on a shortest path from vertex i.

- Compute predecessor matrix Π from the weights matrix D (Exercise 25.1-6).
- Compute Π online, at the same time with D :
- Compute a sequence $\Pi^{(0)}, \Pi^{(1)}, \ldots, \Pi^{(n)}$, where $\pi_{i j}^{(k)}$ is defined as the predecessor of vertex j on a shortest path from vertex i with all intermediate vertices in $\{1,2, \ldots, k\}$.
$-\Pi=\Pi^{(n)}$.

The Floyd-Warshall algorithm: Step (iv)

Recursive formulation of $\pi_{i j}^{(k)}$:

- When $k=0$, a shortest path from i to j has no intermediate vertices at all. Hence:

$$
\pi_{i j}^{(k)}= \begin{cases}N I L & \text { if } i=j \text { or } w_{i j}=\infty \\ i & \text { if } i \neq j \text { and } w_{i j}<\infty\end{cases}
$$

- When $k \geq 1$:
- If we take the path $i \rightsquigarrow k \rightsquigarrow j$, then $\pi_{i j}^{(k)}$ is the same as the predecessor of j on the shortest path from k with intermediate vertices in $1,2, \ldots, k-1$.

$$
\pi_{i j}^{(k)}=\pi_{k j}^{(k-1)} \quad \text { if } d_{i j}^{(k-1)}>d_{i k}^{(k-1)}+d_{k j}^{(k-1)}
$$

The Floyd-Warshall algorithm: Step (iv)

- When $k \geq 1$:
- Otherwise, $\pi_{i j}^{(k)}$ is the same as the predecessor of j on the shortest path from i with intermediate vertices in $1,2, \ldots, k-1$.

$$
\pi_{i j}^{(k)}=\pi_{i j}^{(k-1)} \text { if } d_{i j}^{(k-1)} \leq d_{i k}^{(k-1)}+d_{k j}^{(k-1)}
$$

- Putting these two cases together:

$$
\pi_{i j}^{(k)}= \begin{cases}\pi_{i j}^{(k-1)} & \text { if } d_{i j}^{(k-1)} \leq d_{i k}^{(k-1)}+d_{k j}^{(k-1)} \\ \pi_{k j}^{(k-1)} & \text { if } d_{i j}^{(k-1)}>d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\end{cases}
$$

The Floyd-Warshall algorithm: Step (iv)

FLOYD-WARSHALL(W, n)
$D^{(0)}=W$;
INIT-PREDECESSORS($\left.\Pi^{(0)}\right)$
for $k:=1$ to n for $i:=1$ to n for $j:=1$ to n if $d_{i j}^{(k-1)} \leq d_{i k}^{(k-1)}+d_{k j}^{(k-1)}$) then $d_{i j}^{(k)}:=d_{i j}^{(k-1)}$
$\pi_{i j}^{(k)}:=\pi_{i j}^{(k-1)}$
else

$$
d_{i j}^{(k)}:=d_{i k}^{(k-1)}+d_{k j}^{(k-1)}
$$

$$
\pi_{i j}^{(k)}:=\pi_{k j}^{\infty}(k-1)
$$

return $D^{(n)}$;

Printing Shortest Paths with Π

The predecessor matrix is $\Pi=\Pi^{(n)}$. The following recursive procedure prints the shortest path between vertices i and j, using П:

PRINT-ALL-PAIRS-SHORTEST-PATHS (Π, i, j)
if $i=j$ then print i
else
if $\pi_{i j}=N I L$ then
print "no path from" i " to " j
else
PRINT-ALL-PAIRS-SHORTEST-PATHS $\left(\Pi, i, \pi_{i j}\right)$
print j

APSP: Example

$$
\begin{aligned}
& D^{(0)}=\left(\begin{array}{rrrrr}
0 & 3 & 8 & \infty & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
2 & \infty & -5 & 0 & \infty \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) \quad \Pi \Pi^{(0)}=\left(\begin{array}{ccccc}
\text { NIL } & 1 & 1 & \text { NIL } & 1 \\
\text { NIL } & \text { NIL } & \text { NIL } & 2 & 2 \\
\text { NIL } & 3 & \text { NIL } & \text { NIL } & \text { NIL } \\
4 & \text { NIL } & 4 & \text { NIL } & \text { NIL } \\
\text { NIL } & \text { NIL } & \text { NIL } & 5 & \text { NIL }
\end{array}\right) \\
& D^{(1)}=\left(\begin{array}{rrrrr}
0 & 3 & 8 & \infty & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
2 & 5 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) \quad \Pi^{(1)}=\left(\begin{array}{ccccc}
\text { NIL } & 1 & 1 & \text { NIL } & 1 \\
\text { NIL } & \text { NIL } & \text { NIL } & 2 & 2 \\
\text { NIL } & 3 & \text { NIL. } & \text { NIL. } & \text { NIL } \\
4 & 1 & 4 & \text { NIL } & 1 \\
\text { NIL. } & \text { NIL } & \text { NIL. } & 5 & \text { NIL. }
\end{array}\right) \\
& D^{(2)}=\left(\begin{array}{rrrrr}
0 & 3 & 8 & 4 & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & 5 & 11 \\
2 & 5 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) \quad \Pi^{(2)}=\left(\begin{array}{ccccc}
\text { NIL } & 1 & 1 & 2 & 1 \\
\text { NIL } & \text { NIL } & \text { NIL } & 2 & 2 \\
\text { NIL } & 3 & \text { NIL } & 2 & 2 \\
4 & 1 & 4 & \text { NIL } & 1 \\
\text { NIL } & \text { NIL } & \text { NIL } & 5 & \text { NIL }
\end{array}\right)
\end{aligned}
$$

APSP: Example

$$
\begin{aligned}
& D^{(3)}=\left(\begin{array}{rrrrr}
0 & 3 & 8 & 4 & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & 5 & 11 \\
2 & -1 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) \quad \Pi^{(3)}=\left(\begin{array}{ccccc}
\text { NIL } & 1 & 1 & 2 & 1 \\
\text { NIL } & \mathrm{NIL} & \mathrm{NIL} & 2 & 2 \\
\text { NIL } & 3 & \mathrm{NIL} & 2 & 2 \\
4 & 3 & 4 & \mathrm{NIL} & 1 \\
\text { NIL } & \mathrm{NIL} & \mathrm{NIL} & 5 & \mathrm{NIL}
\end{array}\right) \\
& D^{(4)}=\left(\begin{array}{rrrrr}
0 & 3 & -1 & 4 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 3 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0
\end{array}\right) \quad \Pi^{(4)}=\left(\begin{array}{ccccc}
\text { NIL } & 1 & 4 & 2 & 1 \\
4 & \mathrm{NIL} & 4 & 2 & 1 \\
4 & 3 & \mathrm{NIL} & 2 & 1 \\
4 & 3 & 4 & \mathrm{NIL} & 1 \\
4 & 3 & 4 & 5 & \mathrm{NIL}
\end{array}\right) \\
& D^{(5)}=\left(\begin{array}{rrrrr}
0 & 1 & -3 & 2 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 3 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0
\end{array}\right) \\
& \Pi^{(5)}=\left(\begin{array}{ccccc}
\text { NIL } & 3 & 4 & 5 & 1 \\
4 & \mathrm{NIL} & 4 & 2 & 1 \\
4 & 3 & \mathrm{NIL} & 2 & 1 \\
4 & 3 & 4 & \text { NIL } & 1 \\
4 & 3 & 4 & 5 & \text { NIL }
\end{array}\right)
\end{aligned}
$$

