All-Pairs Shortest Paths

Input: A directed graph G = (V, E) where each edge (v_i, v_j) has a weight w(i, j).

Output: A "shortest" path from u to v, for all $u, v \in V$.

Weight of path: Given a path $p = \langle v_1, ..., v_k \rangle$, its weight is:

$$w(p) = \sum_{i=1}^{k-1} w(v_i, v_{i+1})$$
(1)

"shortest" path = path of minimum weight. We use $\sigma(u, v)$ to denote this minimum weight.

Computer Science

CS404/504

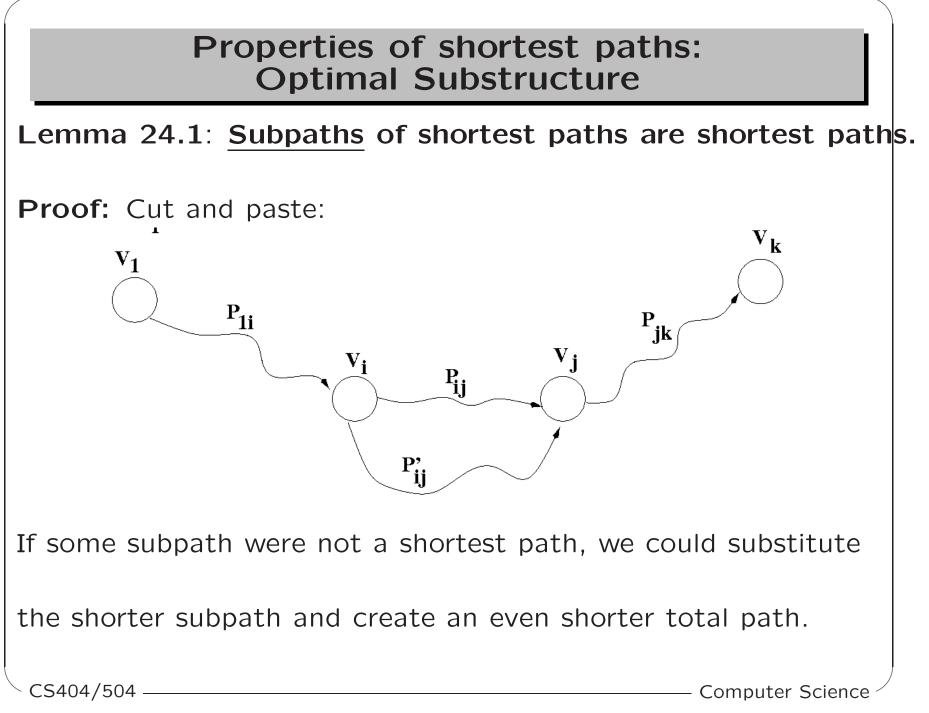
Different variants of shortest path problems

- **Single-pair shortest path (SPSP):** Find a shortest path from *u* to *v*.
- Single-source shortest paths (SSSP): Find a shortest path from source s to all vertices $v \in V$.
 - solved with a Greedy algorithm (Dijkstra's).
- All-pairs shortest paths (APSP):

Find a shortest path from u to v for all $u, v \in V$.

- solved with a Dynamic Programming algorithm (Floyd-Warshall).
- Both algorithms need the Optimal Substructure property.

CS404/504



All-Pairs Shortest Paths (APSP)

- All-pairs shortest paths (APSP): Find a shortest path from u to v for all u, v ∈ V.
 - The output has size $O(V^2)$, so we cannot hope to design a better than $O(V^2)$ -time algorithm.
 - We can solve the problem simply by running Dijkstra's algorithm |V| times. It takes O(VElgV) time, if the min-priority queue is implemented using a binary heap.

CS404/504

Step (i): Characterize the structure of the APSP solution.

- Definition: An intermediate vertex of a simple path
 p =< v₁, v₂, ..., v_l > is any vertex of p other than v₁ and v_l,
 i.e., any vertex in the set {v₂, v₃, ..., v_{l-1}}.
- Define $d_{ij}^{(k)}$ to be the weight of a shortest path p from i to j for which all intermediate vertices are in the set $\{1, 2, ..., k\}$ (similar to second DP approach to the Coin-Changing problem).
- Depending on whether or not k is an intermediate vertex on p, we have two cases:

CS404/504

Two cases:

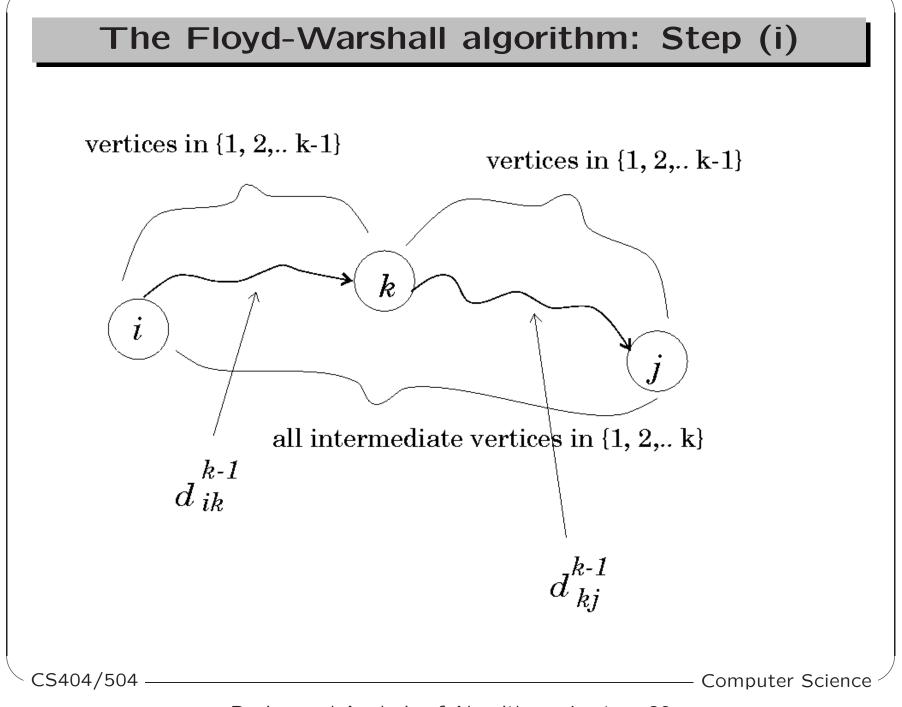
Case (1): If the shortest path p (from i to j going through vertices with indeces $\leq k$) does not go through the vertex k, then:

$$d_{ij}^{(k)} = d_{ij}^{(k-1)}.$$

Case (2): If the shortest path p goes through vertex k, then: $d_{ij}^{(k)} = d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$.

Therefore,
$$d_{ij}^{(k)} = \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}).$$

CS404/504



Step (ii): Recursively define the value of an optimal solution.

- Boundary conditions: for k = 0, a path from vertex i to j with no intermediate vertex numbered higher than 0 has no intermediate vertices at all, hance $d_{ij}^{(0)} = w_{ij}$.
- Recursive formulation:

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0\\ \\ \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}) & \text{if } k \ge 1 \end{cases}$$

$$\frac{D^{(n)} = (d_{ij}^{(n)}) \text{ is the solution for this APSP problem:}}{d_{ij}^{(n)} = \sigma(i, j).}$$

CS404/504

```
Step (iii): Compute the shortest-path weights bottom up.
FLOYD-WARSHALL(W, n)
{
   D^{(0)} = W;
   for k := 1 to n
       for i := 1 to n
          for j := 1 to n
              d_{ii}^{(k)} := \min(d_{ii}^{(k-1)}, d_{ik}^{(k-1)} + d_{ki}^{(k-1)})
   return D^{(n)}:
Complexity: \Theta(n^3).
 CS404/504
                                                            Computer Science
```

Step (iv): Constructing the shortest paths.

Need to compute the **predecessor matrix** Π , in which π_{ij} is the predecessor of vertex j on a shortest path from vertex i.

- Compute predecessor matrix Π from the weights matrix D (Exercise 25.1-6).
- Compute Π online, at the same time with D:
 - Compute a sequence Π⁽⁰⁾, Π⁽¹⁾, ..., Π⁽ⁿ⁾, where π^(k)_{ij} is defined as the predecessor of vertex j on a shortest path from vertex i with all intermediate vertices in {1, 2, ..., k}.
 Π = Π⁽ⁿ⁾.

CS404/504

Recursive formulation of $\pi_{ij}^{(k)}$:

• When k = 0, a shortest path from i to j has no intermediate vertices at all. Hence:

$$\pi_{ij}^{(k)} = \begin{cases} NIL & \text{if } i = j \text{ or } w_{ij} = \infty \\ \\ i & \text{if } i \neq j \text{ and } w_{ij} < \infty \end{cases}$$

- When $k \ge 1$:
 - If we take the path $i \rightsquigarrow k \rightsquigarrow j$, then $\pi_{ij}^{(k)}$ is the same as the predecessor of j on the shortest path from k with intermediate vertices in 1, 2, ..., k 1.

$$\pi_{ij}^{(k)} = \pi_{kj}^{(k-1)} \quad \text{if } d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$$

CS404/504

- When $k \ge 1$:
 - Otherwise, $\pi_{ij}^{(k)}$ is the same as the predecessor of j on the shortest path from i with intermediate vertices in 1, 2, ..., k 1.

$$\pi_{ij}^{(k)} = \pi_{ij}^{(k-1)} \text{ if } d_{ij}^{(k-1)} \le d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$$

- Putting these two cases together:

$$\pi_{ij}^{(k)} = \begin{cases} \pi_{ij}^{(k-1)} & \text{if } d_{ij}^{(k-1)} \le d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \\ \\ \pi_{kj}^{(k-1)} & \text{if } d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \end{cases}$$

CS404/504

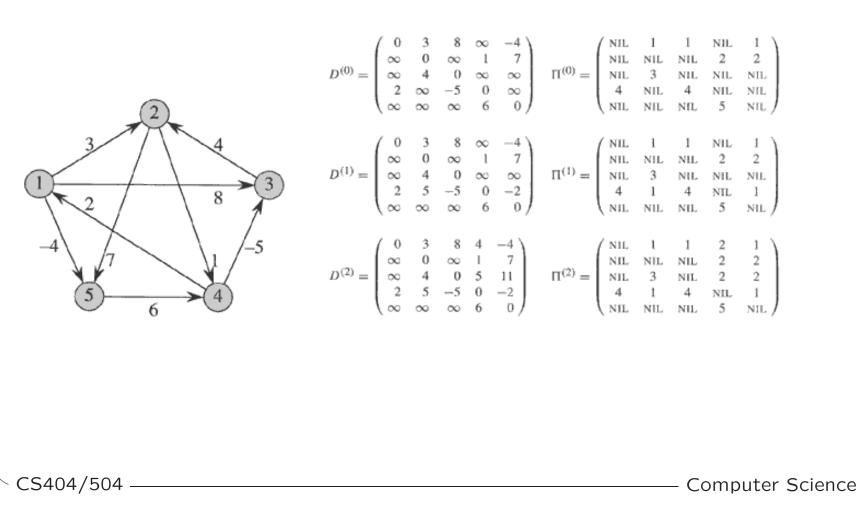
Computer Science

```
FLOYD-WARSHALL(W, n)
    D^{(0)} = W:
    INIT-PREDECESSORS(\Pi^{(0)})
    for k := 1 to n
          for i := 1 to n
              for j := 1 to n
                   if d_{ij}^{(k-1)} \leq d_{ik}^{(k-1)} + d_{kj}^{(k-1)} then
                        d_{ij}^{(k)} := d_{ij}^{(k-1)}
\pi_{ij}^{(k)} := \pi_{ij}^{(k-1)}
                    else
                       d_{ij}^{(k)} := d_{ik}^{(k-1)} + d_{kj}^{(k-1)}
\pi_{ij}^{(k)} := \pi_{kj}^{(k-1)}
    return D^{(n)}:
 CS404/504
                                                                                 Computer Science
                         Design and Analysis of Algorithms: Lecture 20
```

The predecessor matrix is $\Pi = \Pi^{(n)}$. The following recursive procedure prints the shortest path between vertices *i* and *j*, using Π :

```
PRINT-ALL-PAIRS-SHORTEST-PATHS(\Pi, i, j)
   if i = j then
     print i
   else
     if \pi_{ij} = NIL then
        print "no path from" i " to " j
     else
        PRINT-ALL-PAIRS-SHORTEST-PATHS(\Pi, i, \pi_{ij})
        print j
CS404/504
                                                    Computer Science
```

APSP: Example



APSP: Example

