
All-Pairs Shortest PathsAll-Pairs Shortest Paths

Input: A directed graph G = (V, E) where each edge

(vi, vj) has a weight w(i, j).

Output: A “shortest” path from u to v, for all u, v ∈ V .

Weight of path: Given a path p =< v1, ..., vk >, its weight is:

w(p) =
k−1
∑

i=1

w(vi, vi+1) (1)

“shortest” path = path of minimum weight. We use σ(u, v)

to denote this minimum weight.

'

&

$

%CS404/504 Computer Science

1Design and Analysis of Algorithms: Lecture 20

Different variants of shortest path problemsDifferent variants of shortest path problems

- Single-pair shortest path (SPSP):

Find a shortest path from u to v.

- Single-source shortest paths (SSSP):

Find a shortest path from source s to all vertices v ∈ V .

– solved with a Greedy algorithm (Dijkstra’s).

- All-pairs shortest paths (APSP):

Find a shortest path from u to v for all u, v ∈ V .

– solved with a Dynamic Programming algorithm

(Floyd-Warshall).

• Both algorithms need the Optimal Substructure property.

'

&

$

%CS404/504 Computer Science

2Design and Analysis of Algorithms: Lecture 20

Properties of shortest paths:
Optimal Substructure

Properties of shortest paths:
Optimal Substructure

Lemma 24.1: Subpaths of shortest paths are shortest paths.

Proof: Cut and paste:

If some subpath were not a shortest path, we could substitute

the shorter subpath and create an even shorter total path.

'

&

$

%CS404/504 Computer Science

3Design and Analysis of Algorithms: Lecture 20

All-Pairs Shortest Paths (APSP)All-Pairs Shortest Paths (APSP)

• All-pairs shortest paths (APSP): Find a shortest path

from u to v for all u, v ∈ V .

– The output has size O(V 2) , so we cannot hope to

design a better than O(V 2)-time algorithm.

– We can solve the problem simply by running Dijkstra’s

algorithm |V | times. It takes O(V ElgV) time, if the

min-priority queue is implemented using a binary heap.

'

&

$

%CS404/504 Computer Science

4Design and Analysis of Algorithms: Lecture 20

The Floyd-Warshall algorithm: Step (i)The Floyd-Warshall algorithm: Step (i)

Step (i): Characterize the structure of the APSP solution.

• Definition: An intermediate vertex of a simple path

p =< v1, v2, ..., vl > is any vertex of p other than v1 and vl,

i.e., any vertex in the set {v2, v3, ..., vl−1}.

• Define d
(k)
ij to be the weight of a shortest path p from i to j

for which all intermediate vertices are in the set {1,2, ..., k}

(similar to second DP approach to the Coin-Changing

problem).

• Depending on whether or not k is an intermediate vertex on

p, we have two cases:

'

&

$

%CS404/504 Computer Science

5Design and Analysis of Algorithms: Lecture 20

The Floyd-Warshall algorithm: Step (i)The Floyd-Warshall algorithm: Step (i)

Two cases:

Case (1): If the shortest path p (from i to j going through

vertices with indeces ≤ k) does not go through the vertex k,

then:

d
(k)
ij = d

(k−1)
ij .

Case (2): If the shortest path p goes through vertex k, then:

d
(k)
ij = d

(k−1)
ik + d

(k−1)
kj .

Therefore, d
(k)
ij = min(d

(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj).

'

&

$

%CS404/504 Computer Science

6Design and Analysis of Algorithms: Lecture 20

The Floyd-Warshall algorithm: Step (i)The Floyd-Warshall algorithm: Step (i)

'

&

$

%CS404/504 Computer Science

7Design and Analysis of Algorithms: Lecture 20

The Floyd-Warshall algorithm: Step (ii)The Floyd-Warshall algorithm: Step (ii)

Step (ii): Recursively define the value of an optimal solution.

• Boundary conditions: for k = 0, a path from vertex i to j

with no intermediate vertex numbered higher than 0 has no

intermediate vertices at all, hance d
(0)
ij = wij.

• Recursive formulation:

d
(k)
ij =















wij if k = 0

min(d
(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj) if k ≥ 1

D(n) = (d
(n)
ij) is the solution for this APSP problem:

d
(n)
ij = σ(i, j).

'

&

$

%CS404/504 Computer Science

8Design and Analysis of Algorithms: Lecture 20

The Floyd-Warshall algorithm: Step (iii)The Floyd-Warshall algorithm: Step (iii)

Step (iii): Compute the shortest-path weights bottom up.

FLOYD-WARSHALL(W, n)

{

D(0) = W;

for k := 1 to n

for i := 1 to n

for j := 1 to n

d
(k)
ij := min(d

(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj)

return D(n);

}

Complexity: Θ(n3).

'

&

$

%CS404/504 Computer Science

9Design and Analysis of Algorithms: Lecture 20

The Floyd-Warshall algorithm: Step (iv)The Floyd-Warshall algorithm: Step (iv)

Step (iv): Constructing the shortest paths.

Need to compute the predecessor matrix Π, in which πij is

the predecessor of vertex j on a shortest path from vertex i.

• Compute predecessor matrix Π from the weights matrix D

(Exercise 25.1-6).

• Compute Π online, at the same time with D:

– Compute a sequence Π(0),Π(1), ...,Π(n), where π
(k)
ij is

defined as the predecessor of vertex j on a shortest path

from vertex i with all intermediate vertices in {1,2, ..., k}.

– Π = Π(n).

'

&

$

%CS404/504 Computer Science

10Design and Analysis of Algorithms: Lecture 20

The Floyd-Warshall algorithm: Step (iv)The Floyd-Warshall algorithm: Step (iv)

Recursive formulation of π
(k)
ij :

• When k = 0, a shortest path from i to j has no

intermediate vertices at all. Hence:

π
(k)
ij =











NIL if i = j or wij = ∞

i if i 6= j and wij < ∞

• When k ≥ 1:

– If we take the path i k j, then π
(k)
ij is the same as

the predecessor of j on the shortest path from k with

intermediate vertices in 1,2, ..., k − 1.

π
(k)
ij = π

(k−1)
kj if d

(k−1)
ij > d

(k−1)
ik + d

(k−1)
kj

'

&

$

%CS404/504 Computer Science

11Design and Analysis of Algorithms: Lecture 20

The Floyd-Warshall algorithm: Step (iv)The Floyd-Warshall algorithm: Step (iv)

• When k ≥ 1:

– Otherwise, π
(k)
ij is the same as the predecessor of j on

the shortest path from i with intermediate vertices in

1,2, ..., k − 1.

π
(k)
ij = π

(k−1)
ij if d

(k−1)
ij ≤ d

(k−1)
ik + d

(k−1)
kj

– Putting these two cases together:

π
(k)
ij =



















π
(k−1)
ij if d

(k−1)
ij ≤ d

(k−1)
ik + d

(k−1)
kj

π
(k−1)
kj if d

(k−1)
ij > d

(k−1)
ik + d

(k−1)
kj

'

&

$

%CS404/504 Computer Science

12Design and Analysis of Algorithms: Lecture 20

The Floyd-Warshall algorithm: Step (iv)The Floyd-Warshall algorithm: Step (iv)

FLOYD-WARSHALL(W, n)

D(0) = W;

INIT-PREDECESSORS(Π(0))

for k := 1 to n

for i := 1 to n

for j := 1 to n

if d
(k−1)
ij ≤ d

(k−1)
ik + d

(k−1)
kj) then

d
(k)
ij := d

(k−1)
ij

π
(k)
ij := π

(k−1)
ij

else

d
(k)
ij := d

(k−1)
ik + d

(k−1)
kj

π
(k)
ij := π

(k−1)
kj

return D(n);

'

&

$

%CS404/504 Computer Science

13Design and Analysis of Algorithms: Lecture 20

Printing Shortest Paths with ΠPrinting Shortest Paths with Π

The predecessor matrix is Π = Π(n). The following recursive

procedure prints the shortest path between vertices i and j,

using Π:

PRINT-ALL-PAIRS-SHORTEST-PATHS(Π, i, j)

if i = j then

print i

else

if πij = NIL then

print “no path from” i “ to “ j

else

PRINT-ALL-PAIRS-SHORTEST-PATHS(Π, i, πij)

print j

'

&

$

%CS404/504 Computer Science

14Design and Analysis of Algorithms: Lecture 20

APSP: ExampleAPSP: Example

'

&

$

%CS404/504 Computer Science

15Design and Analysis of Algorithms: Lecture 20

APSP: ExampleAPSP: Example

'

&

$

%CS404/504 Computer Science

16Design and Analysis of Algorithms: Lecture 20

