
Algorithms vs. ProblemsAlgorithms vs. Problems

An algorithm is a computational procedure that takes values

as input and produces values as output, in order to solve a well

defined computational problem.

• The statement of the problem specifies a desired

relationship between the input and the output.

• The algorithm specifies how to achieve that relationship.

• A particular value of the input corresponds to an instance

of the problem.

So far, we have analyzed the time complexity of various

algorithms. In this section, we switch focus from algorithms to

problems.

'

&

$

%CS404/504 Computer Science

1Design and Analysis of Algorithms: Lecture 24

P vs. NP vs. NP-completeP vs. NP vs. NP-complete

Modern Complexity Theory

P ≡ Class of problems that are generally considered to have

feasible (tractable) solutions.

P ≡ Class of problems that are solvable in polynomial time

– Polynomial Time: there are two positive constants c and k,

and an algorithm A that solves the problem, and whose

worst case running time is at most cnk (n is the input size).

– These are the problems that have (somewhat) efficient

solutions.

– Most of the problems that we’ve examined so far fall into

this class.

'

&

$

%CS404/504 Computer Science

2Design and Analysis of Algorithms: Lecture 24

P vs. NP vs. NP-completeP vs. NP vs. NP-complete

Modern Complexity Theory

NP ≡ Class of problems that are verifiable in polynomial time.

– If an oracle gives us a certificate corresponding to a

solution, then there is an algorithm that can verify it in

polynomial time.

NP-Complete ≡ A subset of problems from NP such that:

• No tractable algorithm has been found to solve them.

• For any two problems A ∈ NPC and B ∈ NP, B can be

reduced in polynomial time to A.

'

&

$

%CS404/504 Computer Science

3Design and Analysis of Algorithms: Lecture 24

Class P: ExamplesClass P: Examples

• Matrix Multiplication

• Sorting

• Selection

• MST

• APSP

• Bipartite Matching

All these problems have efficient solutions. If we let n be the

size of the input to the problem, then there is an algorithm

that runs in time O(nk), where k is some small number.

'

&

$

%CS404/504 Computer Science

4Design and Analysis of Algorithms: Lecture 24

Class P: ExamplesClass P: Examples

Matrix multiplication O(nlg 7)

Sorting O(n lgn) = O(n1+ǫ)

Selection O(n)

MST O(E lgV)

APSP O(V 3)

Bipartite Matching O(V E)

'

&

$

%CS404/504 Computer Science

5Design and Analysis of Algorithms: Lecture 24

Input Size and EncodingsInput Size and Encodings

Q: What do we mean by input size n?

A: Any problem instance can be encoded as a sequence of 0’s

and 1’s (i.e. represented as a binary string):

• For example, an input instance for the sorting problem can

be {1,5,7,2}, which can be encoded into 1, 101, 111, 10,

hence the input size is 9.

Q: Does the encoding scheme matter?

A: Only unary encoding will make a difference. For example,

compare log2 n vs. log3 n, with log2 n vs. n.

'

&

$

%CS404/504 Computer Science

6Design and Analysis of Algorithms: Lecture 24

Tractable vs. Intractable problemsTractable vs. Intractable problems

• Tractable: a problem which can be solved using an

algorithm whose (worst-case) running time is a polynomial

function of its input size.

• Intractable: a problem which is impossible to be solved

using a polynomial time algorithm (i.e., its worst case

cannot be bounded by a polynomial function of its input

size).

• Comments:

– Note that intractability is a property of the problem.

– An algorithm whose worse case is not a polynomial does

not make a problem intractable.

– We have to show that no polynomial algorithm exists!

'

&

$

%CS404/504 Computer Science

7Design and Analysis of Algorithms: Lecture 24

Advantages of this Definition of TractableAdvantages of this Definition of Tractable

Q: Why is this definition advantageous?

A: The polynomials are closed under addition, multiplication

and composition:

– So if the output of one polynomial-time algorithm is fed

into the input of another, the composite algorithm is

polynomial.

– A constant number of calls to polynomial-time

subroutines will still result in a polynomial-time

algorithm.

Note: Most problems of practical importance that are solvable

in polynomial-time have algorithms that run in time O(nk)

where k is a small integer (k ≤ 5).

'

&

$

%CS404/504 Computer Science

8Design and Analysis of Algorithms: Lecture 24

Polynomial vs. ExponentialPolynomial vs. Exponential

Suppose one basic operation needs CPU time 0.000001 second.

10 20 30 40 50 60
n 0.00001 s 0.00002 s 0.00003 s 0.00004 s 0.00005 s 0.00006 s
n2 0.0001 s 0.0004 s 0.0009 s 0.016 s 0.025 s 0.036 s
n3 0.001 s 0.008 s 0.027 s 0.064 s 0.125 s 0.216 s
n5 0.1 s 3.2 s 24.3 s 1.7 min 5.2 min 13.0 min
2n 0.001 s 1.0 s 17.9 min 12.7 days 35.7 years 366 cent
3n 0.59 s 58 min 6.5 years 3855 cent 2 × 108 cent 1.3 × 1013 cent

'

&

$

%CS404/504 Computer Science

9Design and Analysis of Algorithms: Lecture 24

Limitations of this Definition of TractableLimitations of this Definition of Tractable

There are some disadvantages to this definition of “tractable”:

• An algorithm that runs in time Θ(n1000) is by no means

feasible (though in practice, it is likely that an algorithm

with a much better running time will be discovered soon for

the same problem).

• An algorithm that runs in cn lgn steps, for some very large c

is not going to be a practical algorithm.

'

&

$

%CS404/504 Computer Science

10Design and Analysis of Algorithms: Lecture 24

Is everything in the set P?Is everything in the set P?

There are problems that are known to be unsolvable (e.g. the

Halting Problem).

There are also problems that are solvable, but for which no

efficient solution is known:

• The best known algorithms for some of these problems

have running times of O(2n).

• For some of these problems, there is strong evidence that

they do not have efficient solutions.

'

&

$

%CS404/504 Computer Science

11Design and Analysis of Algorithms: Lecture 24

The Clique Problem: Optimization vs.
Decision

The Clique Problem: Optimization vs.
Decision

• Definition: Let G = (V, E) be an undirected graph. A

clique of G is a set V ′ ⊆ V such that ∀u, v ∈ V ′, we have

(u, v) ∈ E, i.e., clique is a complete subgraph of G.

• Optimization Problem: Given G, find the size of the

largest clique.

• Decision Problem: Given G and k, is there a clique of size

k in the graph G?

CLIQUE = {< G, k >: G is a graph with a clique of size k}

'

&

$

%CS404/504 Computer Science

12Design and Analysis of Algorithms: Lecture 24

A Brute Force AlgorithmA Brute Force Algorithm

Largest-Clique(G)
{

for j := |V | to 1 do

check if any subset of j vertices is a clique.

if a clique was found then

return j

}

Time complexity = Ω(2|V |) ⇒ very slow!

Q: Is the Clique problem tractable?

A: We do not know. But it is very likely that it does not have

a polynomial time solution.

'

&

$

%CS404/504 Computer Science

13Design and Analysis of Algorithms: Lecture 24

Three general categories of problemsThree general categories of problems

1) Problems for which polynomial-time algorithms have been

found:

– Sorting in O(nlgn).

– APSP in O(n3).

– ...

2) Problems that have been proven to be intractable:

– Non-polynomial: generating all permutations of n

elements is Ω(2n).

– Undecidable: the Halting Problem (Turing, 1936).

'

&

$

%CS404/504 Computer Science

14Design and Analysis of Algorithms: Lecture 24

Three general categories of problemsThree general categories of problems

3) Problems that have not been proven to be intractable, but

for which a polynomial-time algorithm has never been

found:

– Traveling Salesperson Problem

– Subset Sum Problem

– Graph Coloring

– Hamiltonian Cycle

– ...

Primality Test used to be in this category until 2002, when

Agrawal-Kayal-Saxena from IIT Kanpur proved that

PRIMES is in P.

'

&

$

%CS404/504 Computer Science

15Design and Analysis of Algorithms: Lecture 24

Why should we care about category 3?Why should we care about category 3?

These hard problems really come up all the time. Recognizing

a problem is hard makes you stop hitting your head again a wall

trying to solve it, and do something more feasible:

• Solve the problem approximately instead of exactly; instead

of finding the optimal solution, finding a near-optimal

solution is often good enough in practice.

• Use an exponential time solution anyway; if you really have

to solve the problem exactly, you can settle down to writing

an exponential time algorithm and stop worrying about

finding a better solution, especially if the size if the input is

small.

'

&

$

%CS404/504 Computer Science

16Design and Analysis of Algorithms: Lecture 24

Decision problemsDecision problems

Decision problems are those problems whose output is either

yes or no. We will carry out discussions based only on decision

problems:

• A unified way to treat all problems.

• The optimization and decision versions of the same problem

are usually in the same complexity class.

'

&

$

%CS404/504 Computer Science

17Design and Analysis of Algorithms: Lecture 24

Decision problems vs. Optimization problemsDecision problems vs. Optimization problems

• Clique Problem:

– Optimization Problem: Given G, find the size of the

largest clique.

– Decision problem: Given < G, k >, G is an undirected

graph and k is an integer, does G have a clique of size k?

• Shortest-Path Problem:

– Optimization Problem: Given graph G and nodes u, v,

find the shortest path from u to v.

– Decision problem: Given < G, u, v, k >, is there a path

from u to v of length ≤ k?

'

&

$

%CS404/504 Computer Science

18Design and Analysis of Algorithms: Lecture 24

Optimization problems vs. Decision problemsOptimization problems vs. Decision problems

Theorem: optimization problem solvable in polynomial time

⇔ decision problem solvable in polynomial time.

• Proof: (Optimization ⇒ Decision):

– The optimization problem can be solved in O(nc) time,

where c is a constant.

– Let M be the answer to the optimization problem (e.g.

M is the size of the maximum clique existing in G).

– To solve the decision problem, simply compare M with

k; if M ≥ k, then the answer is “YES”; otherwise “NO”.

– Comparison takes constant time, so the decision problem

can be solved also in polynomial time: O(nc) + Θ(1).

'

&

$

%CS404/504 Computer Science

19Design and Analysis of Algorithms: Lecture 24

Optimization problems vs. Decision problemsOptimization problems vs. Decision problems

• Proof: (Decision ⇒ Optimization):

– The decision problem can be solved in O(nc) time,

namely, for a given k, it takes O(nc) time to output YES

or NO.

– To solve the optimization problem, try all different ks,

starting from n all the way down to 1. The first k that

produces “YES” to the decision problem tells the answer

to the optimization problem (e.g. the size of the

maximum clique in the graph).

– The complexity is n × O(nc) = O(n1+c), still polynomial.

'

&

$

%CS404/504 Computer Science

20Design and Analysis of Algorithms: Lecture 24

A More Natural Decision ProblemA More Natural Decision Problem

SAT: The satisfiability problem.

Input: A boolean formula α consisting of variables, x1, . . . , xn,

(,),
∨
,

∧
, ¬.

Ex.:

α = (x1 ∨ x2) ∧ (¬x1 ∨ x2) ∧ (x1 ∨ ¬x2).

Problem: Does α have a satisfying assignment , i.e. is there a

setting of the variables in α so that α evaluates to TRUE?

In the example above, the answer is YES. To see this, let

x1 = TRUE and let x2 = TRUE.

'

&

$

%CS404/504 Computer Science

21Design and Analysis of Algorithms: Lecture 24

The class NPThe class NP

Definition: NP is the set of all decision problems that are

verifiable in polynomial time.

• A problem is in NP if we can test, in polynomial time,

whether a solution is correct (without worrying about how

hard it might be to find the solution).

• To prove that a problem belongs to NP, all we need to do

is to demonstrate that:

– If an oracle gives us a certificate for a solution to the

problem,

– Then we can verify the certificate in polynomial time

(i.e. we can show that it indeed corresponds to a

solution to the problem).

'

&

$

%CS404/504 Computer Science

22Design and Analysis of Algorithms: Lecture 24

NP exampleNP example

• CLIQUE ∈ NP.

• Proof:

For a given graph G = (V, E) and a number k, an oracle

gives us a set V ′ ⊆ V saying it makes a clique. Checking

whether V ′ is a clique can be accomplished in O(|V ′|2) time

by checking whether, for each pair u, v ∈ V ′, the edge (u, v)

belongs to E.

'

&

$

%CS404/504 Computer Science

23Design and Analysis of Algorithms: Lecture 24

Is everything in NP?Is everything in NP?

The Halting Problem:

– Given a description of a program and a finite input,

– Decide whether the program finishes running, or will run

forever, given that input.

Turing proved in 1936 that there is no algorithm that can solve

the halting problem for all possible pairs 〈program, input〉.

'

&

$

%CS404/504 Computer Science

24Design and Analysis of Algorithms: Lecture 24

A Formal Language frameworkA Formal Language framework

Definition: An alphabet Σ is a finite set of symbols.

Example: Σ = {0,1}.

Definition: A language L over Σ is a set of strings made up of

symbols from Σ.

Example: L = {10,11,101,111, ...} is the language of binary

representations of prime numbers.

• ǫ denotes the empty string.

• ∅ denotes the empty language.

• Σ∗ denotes the language of all strings over Σ. For example,

if Σ = {0,1}, then Σ∗ = {ǫ,0,1,00,01, ...}

'

&

$

%CS404/504 Computer Science

25Design and Analysis of Algorithms: Lecture 24

A Formal Language framework: AlgorithmsA Formal Language framework: Algorithms

An algorithm for a decision problem can be viewed in terms of

the language that it decides:

• The language accepted by an algorithm A is

L = {x ∈ {0,1}∗|A(x) = 1}

• The language rejected by an algorithm A is

L = {x ∈ {0,1}∗|A(x) = 0}

• A language L is decided by an algorithm A if every binary

string in L is accepted by A, and every binary string not in

L is rejected by A.

'

&

$

%CS404/504 Computer Science

26Design and Analysis of Algorithms: Lecture 24

A Formal Language Framework: ProblemsA Formal Language Framework: Problems

A decision problem can be viewed as a language-recognition

problem:

• Let U be the set of all possible inputs to the decision

problem and L ⊆ U be the set of all inputs (i.e. the

language) for which the answer to the problem is YES (i.e.

the symbol 1).

• The decision problem is to recognize whether a given input

belongs to L.

• We call L the language corresponding to the decision

problem.

'

&

$

%CS404/504 Computer Science

27Design and Analysis of Algorithms: Lecture 24

Decision problems and corresponding
languages

Decision problems and corresponding
languages

The decision problem PRIME: given a number z, is z a prime

number?

• Let U be the all possible inputs, i.e., {1,2,3,4,5,6,}, or

{1,10,11,100,101,110, ...} under binary encoding.

• L is {2,3,5, ...} or {1,10,11,101, ...}.

• The decision problem PRIME can be fully characterized by

the set L.

• PRIME is to recognize whether a given input z belongs to

L.

• PRIME = {z ∈ {0,1}∗|z is prime }.

'

&

$

%CS404/504 Computer Science

28Design and Analysis of Algorithms: Lecture 24

Decision problems and corresponding
languages

Decision problems and corresponding
languages

The decision problem CLIQUE: Given G and an integer k, is

there a clique size of k in G?

• The corresponding language L is the set of binary

encodings of all the graphs G that have a clique of size k

• CLIQUE = {〈G, k〉 : G has a clique of size of k}.

'

&

$

%CS404/504 Computer Science

29Design and Analysis of Algorithms: Lecture 24

A Formal Language Framework: Class PA Formal Language Framework: Class P

An alternative definition of the complexity class P:

P = {L ⊆ {0,1}∗| there exists an algorithm A that decides L in

polynomial time}

Theorem 34.2:

P = {L ⊆ {0,1}∗| there exists an algorithm A that accepts L in

polynomial time}

'

&

$

%CS404/504 Computer Science

30Design and Analysis of Algorithms: Lecture 24

A Formal Language Framework: Class NPA Formal Language Framework: Class NP

An alternative definition of the complexity class NP:

A language L belongs to NP iff there exist a two-input

polynomial-time algorithm A and constant c such that:

• L = {x ∈ {0,1}∗| there exists a certificate y with

|y| = O(|x|c) such that A(x, y) = 1}

• We say that A verifies language L in polynomial time.

'

&

$

%CS404/504 Computer Science

31Design and Analysis of Algorithms: Lecture 24

P versus NPP versus NP

• P ⊆ NP.

– We can ignore the certificate and solve a P-problem in

polynomial time. In other words, for a given input

instance, we can check whether it belongs to the

language corresponding to the decision problem in

poly-time, without looking at the proposed solution

certificate.

• P = NP?

– The most famous open question in CS.

– US$1,000,000 prize for the first person to provide an

answer.

'

&

$

%CS404/504 Computer Science

32Design and Analysis of Algorithms: Lecture 24

Two possible worldsTwo possible worlds

'

&

$

%CS404/504 Computer Science

33Design and Analysis of Algorithms: Lecture 24

