4 N

NP-Complete problems |

NP-complete problems (NPC):

e A subset of NP.

e If any NP-complete problem can be solved in polynomial
time, then every problem in NP has a polynomial time

solution.

NP-complete languages are the "hardest” languages in NP.

Formal definition of NP-complete languages is based on the
concept of polynomial time reducibility.

Computer Science
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From P to NPC |

e Examples of problems that belong to P:

1. Find the shortest path between two vertices in a directed
graph.

2. Does a directed graph have an Euler tour. i.e. a cycle
that visits all edges once?

3. Is a Boolean formula in 2-conjunctive normal form
satisfiable?
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From P to NPC |

e However, their slight variants are in NPC:

1. Find the longest path between two vertices in a directed

graph.

2. Does a directed graph have a Hamiltonian cycle: a cycle
that visits all vertices once?

3. Is a Boolean formula in 3-conjunctive normal form
satisfiable?
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Polynomial Time Reducibility

Definition: A decision problem A is polynomial-time reducible
to a decision problem B (written A <, B) if:

e [ here exists a polynomial-time algorithm F that transforms
any instance a of A into some instance 8 = F'(«) of B,

e [he answer of A for o is “yes” iff the answer of B for 3 is

yes' .

CS404/504 Computer Science
Design and Analysis of Algorithms: Lecture 26 4




-

Polynomial reductions |

Polynomial reductions

inputs for which ¢} vields “no”

universe of inputs  inputs for which P yields “no”

-

s

inputs for which P yields “ves”

B
E
P ‘

Q

inputs for which Q vields “ves”
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A Formal Language framework: Reducibility |

Every decision problem has a corresponding language = the
maximal set of input strings that produce ‘yes’ answers.

Definition: L, is polynomial-time reducible to Lg (written
Ly <pLp) if:

e there exists a poly-time computable function
f: {0,1}* —» {0,1}*
e such that for all a € {0, 1}*

a € L4 if and only if f(a) € Lg.

~

Let Ly4,Lg C {0,1}* be the languages corresponding to the two
decision problems A and B, respectively.
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Implication of A <, B |

e f is called a reduction function and the poly-time
algorithm F' that computes f is called a reduction
algorithm.

e \\We can use B to solve A:

— Providing an answer to whether f(«a) € Lg directly
provides the answer to whether a € L 4. Hence:

e Solving A is no “harder” than solving B.
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Implication of A <, B |

Lemma 34.3 If L1 <, Ly and Lo € P, then L; € P.

e Proof:
— Let A, be a poly-time algorithm that decides L».

— Let F be a poly-time reduction algorithm that does the
reduction.

— We construct a poly-time algorithm A4 that decides L1.

yes, x € L -

no, x ng
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NP-hard and NP-Complete

e Definition: L is NP-hard if VL' € NP, L™ <, L.

e Definition: L is NP-Complete if:
1) L € NP.
2) L € NP-hard.

A very likely possibility:

@ NP
NP-Complete
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Circuit Satisfiability problem |

A Boolean combinational circuit

o
OR gat s
RN E

AND gate

X2 2/ —_J

N

NOT gate
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CKT-SAT problem |

Decision problem

e Is there an assignment to the input that makes the circuit
evaluate to TRUE?

CKT-SAT = {(CKT): CKT has a satisfying assignment}.

e What is the running time of a brute force algorithm?

CS404 /504
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CKT-SAT is NP-complete |

e Lemma 34.5: CKT-SAT € NP.

— We can take the number of gates 4+ wires as the size k
of the circuit.

— We can create a binary encoding (CKT) that is
polynomial in k.

— Certificate = an assignment of boolean values to the
Wires.

— Checking whether the certificate corresponds to a
satisfying assigment takes O(k) time.

e Lemma 34.6: CKT-SAT &€ NP-hard (pages 1074—-1077).
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Alternative definition of NP-completeness |

CS404 /504

Lemma 34.8: If L is a language such that L' <, L for some L'’
€ NPC, then L is NP-hard. Moreover, if L € NP, then L € NPC.

Proof: Since L' is NP-complete, for all L" &€ NP, we have L"
<p L'. By supposition, L' <, L, and thus by transitivity, we

Design and Analysis of Algorithms: Lecture 26

have L" <, L, which shows that L is NP-hard. If L € NP, then
we also have L € NPC.

Transitivity: If L1 <, Lo and L3 <, L3, then Ly <, L3 (Exercise
34.3-2).

Computer Science
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L € NPC: Generic Proof |

e Step 1: prove L € NP.

e Step 2: prove L € NP-hard:
1. Select a known NP-complete language L.
2. Find a reduction algorithm F, s.t. x € L' & F(x) € L.

3. Prove that the algorithm F runs in poly-time.

Up to this point, the only NPC problem we know is CKT-SAT.
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Another NPC problem: SAT |

Formula satisfiability problem (SAT)

e A instance of SAT is a Boolean formula ¢ composed of

1) n Boolean variables: z1,xo, ..., Tn.

2) m Boolean connectors: A (AND), v (OR), = (NOT), —
(implication), < (if and only if).

3) parentheses.
e For example: ¢ = ((x1 = x2) A (—x1VarVx3)) — (x1 A —xo).

e SAT = {(¢): ¢ has a satisfying assignment (an assignment
causes ¢ to evaluate to 1)}.

e For example, 1 Vap € SAT, while x1 A —x1 ¢ SAT.
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SAT is NP-Complete |

Proof:

e Step 1: SAT &€ NP.

Certificate is the “truth assignment’”. Algorithm merely
has to verify, in polynomial time, that the truth
assignment produces TRUE.

e Step 2: SAT &€ NP-hard.
by proving CKT-SAT <, SAT.
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SAT: Poly-time reduction |

The reduction is as follows:

e For each wire x; in the circuit C', the formula ¢ has a
variable x;.

e For each gate in C, make a formula involving the variables
of its incident wires that fully describes the behaviour of the

gate.

— For example, the operation of the output OR gate
(figure on the next page) is x5 <> (x1 V o).

e [ he formula ¢ produced by the reduction is the AND of the
circuit-output variable with the conjunction of clauses
describing the operation of each gate.
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SAT: Poly-time reduction |

A Boolean combinational circuit

AND gate
OR gate Y

X1 T}\“/ X5 — X_i'

X2 7/ p—

NOT gate

e For the above circuit C, the formula is

¢ = x7 N(—T1 <> T4)
Nz < (71 V 22))
AN(xo < —xg)
ANx7 <> (x4 N x5 AN23 N 2g))
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SAT: Poly-time reduction |

e Easy to see that C is satisfiable < ¢ is satisfiable.

e [ he reduction runs in polynomial time.
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