
NP-Complete problemsNP-Complete problems

NP-complete problems (NPC):

• A subset of NP.

• If any NP-complete problem can be solved in polynomial

time, then every problem in NP has a polynomial time

solution.

NP-complete languages are the “hardest” languages in NP.

Formal definition of NP-complete languages is based on the

concept of polynomial time reducibility.

'

&

$

%CS404/504 Computer Science

1Design and Analysis of Algorithms: Lecture 26



From P to NPCFrom P to NPC

• Examples of problems that belong to P:

1. Find the shortest path between two vertices in a directed

graph.

2. Does a directed graph have an Euler tour. i.e. a cycle

that visits all edges once?

3. Is a Boolean formula in 2-conjunctive normal form

satisfiable?

'

&

$

%CS404/504 Computer Science

2Design and Analysis of Algorithms: Lecture 26



From P to NPCFrom P to NPC

• However, their slight variants are in NPC:

1. Find the longest path between two vertices in a directed

graph.

2. Does a directed graph have a Hamiltonian cycle: a cycle

that visits all vertices once?

3. Is a Boolean formula in 3-conjunctive normal form

satisfiable?

'

&

$

%CS404/504 Computer Science

3Design and Analysis of Algorithms: Lecture 26



Polynomial Time ReducibilityPolynomial Time Reducibility

Definition: A decision problem A is polynomial-time reducible

to a decision problem B (written A ≤p B) if:

• There exists a polynomial-time algorithm F that transforms

any instance α of A into some instance β = F(α) of B,

• The answer of A for α is “yes” iff the answer of B for β is

“yes”.

'

&

$

%CS404/504 Computer Science

4Design and Analysis of Algorithms: Lecture 26



Polynomial reductionsPolynomial reductions

'

&

$

%CS404/504 Computer Science

5Design and Analysis of Algorithms: Lecture 26



A Formal Language framework: ReducibilityA Formal Language framework: Reducibility

Every decision problem has a corresponding language = the

maximal set of input strings that produce “yes” answers.

Let LA, LB ⊆ {0,1}∗ be the languages corresponding to the two

decision problems A and B, respectively.

Definition: LA is polynomial-time reducible to LB (written

LA ≤p LB) if:

• there exists a poly-time computable function

f: {0,1}∗ → {0,1}∗

• such that for all α ∈ {0,1}∗

α ∈ LA if and only if f(α) ∈ LB.

'

&

$

%CS404/504 Computer Science

6Design and Analysis of Algorithms: Lecture 26



Implication of A ≤p BImplication of A ≤p B

• f is called a reduction function and the poly-time

algorithm F that computes f is called a reduction

algorithm.

• We can use B to solve A:

– Providing an answer to whether f(α) ∈ LB directly

provides the answer to whether α ∈ LA. Hence:

• Solving A is no “harder” than solving B.

'

&

$

%CS404/504 Computer Science

7Design and Analysis of Algorithms: Lecture 26



Implication of A ≤p BImplication of A ≤p B

Lemma 34.3 If L1 ≤p L2 and L2 ∈ P, then L1 ∈ P.

• Proof:

– Let A2 be a poly-time algorithm that decides L2.

– Let F be a poly-time reduction algorithm that does the

reduction.

– We construct a poly-time algorithm A1 that decides L1.

'

&

$

%CS404/504 Computer Science

8Design and Analysis of Algorithms: Lecture 26



NP-hard and NP-CompleteNP-hard and NP-Complete

• Definition: L is NP-hard if ∀ L’ ∈ NP, L’ ≤p L.

• Definition: L is NP-Complete if:

1) L ∈ NP.

2) L ∈ NP-hard.

A very likely possibility:

'

&

$

%CS404/504 Computer Science

9Design and Analysis of Algorithms: Lecture 26



Circuit Satisfiability problemCircuit Satisfiability problem

'

&

$

%CS404/504 Computer Science

10Design and Analysis of Algorithms: Lecture 26



CKT-SAT problemCKT-SAT problem

Decision problem

• Is there an assignment to the input that makes the circuit

evaluate to TRUE?

CKT-SAT = {〈CKT〉: CKT has a satisfying assignment}.

• What is the running time of a brute force algorithm?

'

&

$

%CS404/504 Computer Science

11Design and Analysis of Algorithms: Lecture 26



CKT-SAT is NP-completeCKT-SAT is NP-complete

• Lemma 34.5: CKT-SAT ∈ NP.

– We can take the number of gates + wires as the size k

of the circuit.

– We can create a binary encoding 〈CKT〉 that is

polynomial in k.

– Certificate = an assignment of boolean values to the

wires.

– Checking whether the certificate corresponds to a

satisfying assigment takes O(k) time.

• Lemma 34.6: CKT-SAT ∈ NP-hard (pages 1074–1077).

'

&

$

%CS404/504 Computer Science

12Design and Analysis of Algorithms: Lecture 26



Alternative definition of NP-completenessAlternative definition of NP-completeness

Lemma 34.8: If L is a language such that L’ ≤p L for some L’

∈ NPC, then L is NP-hard. Moreover, if L ∈ NP, then L ∈ NPC.

Proof: Since L’ is NP-complete, for all L” ∈ NP, we have L”

≤p L’. By supposition, L’ ≤p L, and thus by transitivity, we

have L” ≤p L, which shows that L is NP-hard. If L ∈ NP, then

we also have L ∈ NPC.

Transitivity: If L1 ≤p L2 and L3 ≤p L3, then L1 ≤p L3 (Exercise

34.3-2).

'

&

$

%CS404/504 Computer Science

13Design and Analysis of Algorithms: Lecture 26



L ∈ NPC: Generic ProofL ∈ NPC: Generic Proof

• Step 1: prove L ∈ NP.

• Step 2: prove L ∈ NP-hard:

1. Select a known NP-complete language L’.

2. Find a reduction algorithm F, s.t. x ∈ L’ ⇔ F(x) ∈ L.

3. Prove that the algorithm F runs in poly-time.

Up to this point, the only NPC problem we know is CKT-SAT.

'

&

$

%CS404/504 Computer Science

14Design and Analysis of Algorithms: Lecture 26



Another NPC problem: SATAnother NPC problem: SAT

Formula satisfiability problem (SAT)

• A instance of SAT is a Boolean formula φ composed of

1) n Boolean variables: x1, x2, ..., xn.

2) m Boolean connectors: ∧ (AND), ∨ (OR), ¬ (NOT), →

(implication), ↔ (if and only if).

3) parentheses.

• For example: φ = ((x1 → x2)∧ (¬x1 ∨ x2 ∨ x3)) → (x1 ∧¬x2).

• SAT = {〈φ〉: φ has a satisfying assignment (an assignment

causes φ to evaluate to 1)}.

• For example, x1 ∨ x2 ∈ SAT, while x1 ∧ ¬x1 /∈ SAT.

'

&

$

%CS404/504 Computer Science

15Design and Analysis of Algorithms: Lecture 26



SAT is NP-CompleteSAT is NP-Complete

Proof:

• Step 1: SAT ∈ NP.

Certificate is the “truth assignment”. Algorithm merely

has to verify, in polynomial time, that the truth

assignment produces TRUE.

• Step 2: SAT ∈ NP-hard.

by proving CKT-SAT ≤p SAT.

'

&

$

%CS404/504 Computer Science

16Design and Analysis of Algorithms: Lecture 26



SAT: Poly-time reductionSAT: Poly-time reduction

The reduction is as follows:

• For each wire xi in the circuit C, the formula φ has a

variable xi.

• For each gate in C, make a formula involving the variables

of its incident wires that fully describes the behaviour of the

gate.

– For example, the operation of the output OR gate

(figure on the next page) is x5 ↔ (x1 ∨ x2).

• The formula φ produced by the reduction is the AND of the

circuit-output variable with the conjunction of clauses

describing the operation of each gate.

'

&

$

%CS404/504 Computer Science

17Design and Analysis of Algorithms: Lecture 26



SAT: Poly-time reductionSAT: Poly-time reduction

• For the above circuit C, the formula is

φ = x7 ∧(¬x1 ↔ x4)

∧(x5 ↔ (x1 ∨ x2))

∧(x2 ↔ ¬x6)

∧(x7 ↔ (x4 ∧ x5 ∧ x3 ∧ x6))

'

&

$

%CS404/504 Computer Science

18Design and Analysis of Algorithms: Lecture 26



SAT: Poly-time reductionSAT: Poly-time reduction

• Easy to see that C is satisfiable ⇔ φ is satisfiable.

• The reduction runs in polynomial time.

'

&

$

%CS404/504 Computer Science

19Design and Analysis of Algorithms: Lecture 26


