NP-Complete problems

NP-complete problems (NPC):

- A subset of NP.
- If any NP-complete problem can be solved in polynomial time, then every problem in NP has a polynomial time solution.

NP-complete languages are the "hardest" languages in NP.
Formal definition of NP-complete languages is based on the concept of polynomial time reducibility.

From P to NPC

- Examples of problems that belong to P:

1. Find the shortest path between two vertices in a directed graph.
2. Does a directed graph have an Euler tour. i.e. a cycle that visits all edges once?
3. Is a Boolean formula in 2-conjunctive normal form satisfiable?

From P to NPC

- However, their slight variants are in NPC:

1. Find the longest path between two vertices in a directed graph.
2. Does a directed graph have a Hamiltonian cycle: a cycle that visits all vertices once?
3. Is a Boolean formula in 3-conjunctive normal form satisfiable?

Polynomial Time Reducibility

Definition: A decision problem A is polynomial-time reducible to a decision problem B (written $\mathrm{A} \leq_{p} \mathrm{~B}$) if:

- There exists a polynomial-time algorithm F that transforms any instance α of A into some instance $\beta=F(\alpha)$ of B ,
- The answer of \mathbf{A} for α is "yes" iff the answer of \mathbf{B} for β is "yes".

Polynomial reductions

Polynomial reductions

A Formal Language framework: Reducibility

Every decision problem has a corresponding language $=$ the maximal set of input strings that produce "yes" answers.

Let $L_{A}, L_{B} \subseteq\{0,1\}^{*}$ be the languages corresponding to the two decision problems A and B, respectively.

Definition: L_{A} is polynomial-time reducible to L_{B} (written $L_{A} \leq_{p} L_{B}$) if:

- there exists a poly-time computable function

$$
\mathrm{f}:\{0,1\}^{*} \rightarrow\{0,1\}^{*}
$$

- such that for all $\alpha \in\{0,1\}^{*}$

$$
\alpha \in L_{A} \text { if and only if } f(\alpha) \in L_{B}
$$

Implication of $\mathbf{A} \leq_{p} \mathbf{B}$

- f is called a reduction function and the poly-time algorithm F that computes f is called a reduction algorithm.
- We can use B to solve A:
- Providing an answer to whether $f(\alpha) \in L_{B}$ directly provides the answer to whether $\alpha \in L_{A}$. Hence:
- Solving A is no "harder" than solving B.

Implication of $\mathbf{A} \leq_{p} \mathbf{B}$

Lemma 34.3 If $L_{1} \leq_{p} L_{2}$ and $L_{2} \in \mathrm{P}$, then $L_{1} \in \mathrm{P}$.

- Proof:
- Let A_{2} be a poly-time algorithm that decides L_{2}.
- Let F be a poly-time reduction algorithm that does the reduction.
- We construct a poly-time algorithm A_{1} that decides L_{1}.

NP-hard and NP-Complete

- Definition: L is NP-hard if $\forall L^{\prime} \in N P, L^{\prime} \leq_{p} L$.
- Definition: L is NP-Complete if:

1) $L \in N P$.
2) $L \in$ NP-hard.

A very likely possibility:

Circuit Satisfiability problem

A Boolean combinational circuit

CKT-SAT problem

Decision problem

- Is there an assignment to the input that makes the circuit evaluate to TRUE?

CKT-SAT $=\{\langle C K T\rangle:$ CKT has a satisfying assignment $\}$.

- What is the running time of a brute force algorithm?

CKT-SAT is NP-complete

- Lemma 34.5: CKT-SAT \in NP.
- We can take the number of gates + wires as the size k of the circuit.
- We can create a binary encoding $\langle\mathrm{CK} T\rangle$ that is polynomial in k.
- Certificate $=$ an assignment of boolean values to the wires.
- Checking whether the certificate corresponds to a satisfying assigment takes $O(k)$ time.
- Lemma 34.6: CKT-SAT \in NP-hard (pages 1074-1077).

Alternative definition of NP-completeness

Lemma 34.8: If L is a language such that $\mathrm{L}^{\prime} \leq_{p} \mathrm{~L}$ for some L^{\prime} $\in N P C$, then L is NP-hard. Moreover, if $L \in N P$, then $L \in N P C$.

Proof: Since L' is NP-complete, for all $L^{\prime \prime} \in N P$, we have $L^{\prime \prime}$ $\leq_{p} \mathrm{~L}^{\prime}$. By supposition, $\mathrm{L}^{\prime} \leq_{p} \mathrm{~L}$, and thus by transitivity, we have $L^{\prime \prime} \leq_{p} L$, which shows that L is NP-hard. If $L \in N P$, then we also have $L \in N P C$.

Transitivity: If $L_{1} \leq_{p} L_{2}$ and $L_{3} \leq_{p} L_{3}$, then $L_{1} \leq_{p} L_{3}$ (Exercise 34.3-2).

$L \in$ NPC: Generic Proof

- Step 1: prove $L \in N P$.
- Step 2: prove L \in NP-hard:

1. Select a known NP-complete language L'.
2. Find a reduction algorithm F, s.t. $x \in L^{\prime} \Leftrightarrow F(x) \in L$.
3. Prove that the algorithm F runs in poly-time.

Up to this point, the only NPC problem we know is CKT-SAT.

Another NPC problem: SAT

Formula satisfiability problem (SAT)

- A instance of SAT is a Boolean formula ϕ composed of

1) n Boolean variables: $x_{1}, x_{2}, \ldots, x_{n}$.
2) m Boolean connectors: \wedge (AND), $\vee(\mathrm{OR}), \neg(\mathrm{NOT}), \rightarrow$ (implication), \leftrightarrow (if and only if).
3) parentheses.

- For example: $\phi=\left(\left(x_{1} \rightarrow x_{2}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right)\right) \rightarrow\left(x_{1} \wedge \neg x_{2}\right)$.
- SAT $=\{\langle\phi\rangle: \phi$ has a satisfying assignment (an assignment causes ϕ to evaluate to 1$)\}$.
- For example, $x_{1} \vee x_{2} \in$ SAT, while $x_{1} \wedge \neg x_{1} \notin$ SAT.

SAT is NP-Complete

Proof:

- Step 1: SAT \in NP.

Certificate is the "truth assignment". Algorithm merely has to verify, in polynomial time, that the truth assignment produces TRUE.

- Step 2: SAT \in NP-hard.
by proving CKT-SAT \leq_{p} SAT.

SAT: Poly-time reduction

The reduction is as follows:

- For each wire x_{i} in the circuit C, the formula ϕ has a variable x_{i}.
- For each gate in C, make a formula involving the variables of its incident wires that fully describes the behaviour of the gate.
- For example, the operation of the output OR gate (figure on the next page) is $x_{5} \leftrightarrow\left(x_{1} \vee x_{2}\right)$.
- The formula ϕ produced by the reduction is the AND of the circuit-output variable with the conjunction of clauses describing the operation of each gate.

SAT: Poly-time reduction

A Boolean combinational circuit

- For the above circuit C, the formula is

$$
\begin{aligned}
\phi=x_{7} & \wedge\left(\neg x_{1} \leftrightarrow x_{4}\right) \\
& \wedge\left(x_{5} \leftrightarrow\left(x_{1} \vee x_{2}\right)\right) \\
& \wedge\left(x_{2} \leftrightarrow \neg x_{6}\right) \\
& \wedge\left(x_{7} \leftrightarrow\left(x_{4} \wedge x_{5} \wedge x_{3} \wedge x_{6}\right)\right)
\end{aligned}
$$

SAT: Poly-time reduction

- Easy to see that C is satisfiable $\Leftrightarrow \phi$ is satisfiable.
- The reduction runs in polynomial time.

