NP-Complete problems

NP-complete problems (NPC):

- A subset of NP.
- If any NP-complete problem can be solved in polynomial time, then *every* problem in NP has a polynomial time solution.

NP-complete languages are the "hardest" languages in NP.

Formal definition of NP-complete languages is based on the concept of **polynomial time reducibility**.

CS404/504

From P to NPC

- Examples of problems that belong to P:
 - 1. Find the *shortest* path between two vertices in a directed graph.
 - 2. Does a directed graph have an Euler tour. i.e. a cycle that visits all edges once?
 - 3. Is a Boolean formula in 2-conjunctive normal form satisfiable?

CS404/504

From P to NPC

- However, their slight variants are in NPC:
 - 1. Find the *longest* path between two vertices in a directed graph.
 - 2. Does a directed graph have a Hamiltonian cycle: a cycle that visits all vertices once?
 - 3. Is a Boolean formula in 3-conjunctive normal form satisfiable?

CS404/504

Definition: A decision problem A is polynomial-time reducible to a decision problem B (written $A \leq_p B$) if:

- There exists a polynomial-time algorithm F that transforms any instance α of A into some instance $\beta = F(\alpha)$ of B,
- The answer of A for α is "yes" iff the answer of B for β is "yes".

CS404/504

A Formal Language framework: Reducibility

Every decision problem has a corresponding language = the maximal set of input strings that produce "yes" answers.

Let $L_A, L_B \subseteq \{0, 1\}^*$ be the languages corresponding to the two decision problems A and B, respectively.

Definition: L_A is **polynomial-time reducible** to L_B (written $L_A \leq_p L_B$) if:

• there exists a poly-time computable function

f: $\{0,1\}^* \to \{0,1\}^*$

• such that for all $\alpha \in \{0,1\}^*$

$$\alpha \in L_A$$
 if and only if $f(\alpha) \in L_B$.

CS404/504

Implication of $A \leq_p B$

- f is called a reduction function and the poly-time algorithm F that computes f is called a reduction algorithm.
- We can use B to solve A:
 - Providing an answer to whether $f(\alpha) \in L_B$ directly provides the answer to whether $\alpha \in L_A$. Hence:
 - Solving A is no "harder" than solving B.

CS404/504

Implication of $A \leq_p B$

Lemma 34.3 If $L_1 \leq_p L_2$ and $L_2 \in P$, then $L_1 \in P$.

- Proof:
 - Let A_2 be a poly-time algorithm that decides L_2 .
 - Let F be a poly-time reduction algorithm that does the reduction.
 - We construct a poly-time algorithm A_1 that decides L_1 .

NP-hard and NP-Complete

- **Definition**: L is NP-hard if $\forall L' \in NP$, L' $\leq_p L$.
- **Definition**: L is NP-Complete if:
 - 1) L \in NP.
 - 2) $L \in NP$ -hard.

Design and Analysis of Algorithms: Lecture 26

CKT-SAT problem

Decision problem

• Is there an assignment to the input that makes the circuit evaluate to TRUE?

 $\mathsf{CKT}\mathsf{-}\mathsf{SAT} = \{ \langle \mathsf{CKT} \rangle : \mathsf{CKT} \text{ has a satisfying assignment} \}.$

• What is the running time of a brute force algorithm?

CS404/504

CKT-SAT is NP-complete

- Lemma 34.5: $CKT-SAT \in NP$.
 - We can take the number of gates + wires as the size k of the circuit.
 - We can create a binary encoding $\langle CKT \rangle$ that is polynomial in k.
 - Certificate = an assignment of boolean values to the wires.
 - Checking whether the certificate corresponds to a satisfying assignment takes O(k) time.
- Lemma 34.6: CKT-SAT \in NP-hard (pages 1074–1077).

CS404/504

Alternative definition of NP-completeness

Lemma 34.8: If L is a language such that $L' \leq_p L$ for some L' \in NPC, then L is NP-hard. Moreover, if $L \in$ NP, then $L \in$ NPC.

Proof: Since L' is NP-complete, for all L'' \in NP, we have L'' \leq_p L'. By supposition, L' \leq_p L, and thus by <u>transitivity</u>, we have L'' \leq_p L, which shows that L is NP-hard. If L \in NP, then we also have L \in NPC.

Transitivity: If $L_1 \leq_p L_2$ and $L_3 \leq_p L_3$, then $L_1 \leq_p L_3$ (*Exercise* 34.3-2).

CS404/504

$\textbf{L} \in \textbf{NPC: Generic Proof}$

- Step 1: prove $L \in NP$.
- Step 2: prove $L \in NP$ -hard:
 - 1. Select a known NP-complete language L'.
 - 2. Find a reduction algorithm F, s.t. $x \in L' \Leftrightarrow F(x) \in L$.
 - 3. Prove that the algorithm F runs in poly-time.

Up to this point, the only NPC problem we know is CKT-SAT.

CS404/504

Another NPC problem: SAT

Formula satisfiability problem (SAT)

- \bullet A instance of SAT is a Boolean formula ϕ composed of
 - 1) *n* Boolean variables: $x_1, x_2, ..., x_n$.
 - 2) *m* Boolean connectors: \land (AND), \lor (OR), \neg (NOT), \rightarrow (implication), \leftrightarrow (if and only if).
 - 3) parentheses.
- For example: $\phi = ((x_1 \rightarrow x_2) \land (\neg x_1 \lor x_2 \lor x_3)) \rightarrow (x_1 \land \neg x_2).$
- SAT = { $\langle \phi \rangle$: ϕ has a satisfying assignment (an assignment causes ϕ to evaluate to 1)}.
- For example, $x_1 \lor x_2 \in SAT$, while $x_1 \land \neg x_1 \notin SAT$.

CS404/504

SAT is NP-Complete

Proof:

• Step 1: SAT \in NP.

Certificate is the "truth assignment". Algorithm merely has to verify, in polynomial time, that the truth assignment produces TRUE.

• Step 2: SAT \in NP-hard.

by proving CKT-SAT \leq_p SAT.

CS404/504

SAT: Poly-time reduction

The reduction is as follows:

- For each wire x_i in the circuit C, the formula ϕ has a variable x_i .
- For each gate in *C*, make a formula involving the variables of its incident wires that fully describes the behaviour of the gate.
 - For example, the operation of the output OR gate (figure on the next page) is $x_5 \leftrightarrow (x_1 \lor x_2)$.
- The formula φ produced by the reduction is the AND of the circuit-output variable with the conjunction of clauses describing the operation of each gate.

CS404/504

CS404/504

