
P vs. NP vs. NP-Hard vs. NP-completeP vs. NP vs. NP-Hard vs. NP-complete

• We have been discussing Complexity Theory:

– classification of problems according to their difficulty.

• We introduced the classes P, NP, NP-hard and

NP-complete.

– P = {Decision problems solvable in polynomial time}.

– NP = {Decision problems that are “verifiable” in

polynomial time}.

• A major open question in theoretical computer science is:

P = NP or P ⊂ NP?

'

&

$

%CS404/504 Computer Science

1Design and Analysis of Algorithms: Lecture 24

Polynomial time reductionsPolynomial time reductions

We also introduced the notion of polynomial time reductions:

• A ≤p B: A is polynomial-time reducible to B if there exists

a “fast”, i.e., poly-time, transformation algorithm F, such

that ∀ instance α of A:

– F(α) is an instance of B.

– the answer of A for α is “yes” ⇔ the answer of B for

F(α) is “yes”.

'

&

$

%CS404/504 Computer Science

2Design and Analysis of Algorithms: Lecture 24

NP-Complete problemsNP-Complete problems

• A decision problem L is in NPC if

a) L ∈ NP

b) L’ ≤p L for all L’ ∈ NP (L is NP-hard).

• If any NPC-problem can be solved in polynomial time, then

every NPC-problem has a polynomial-time solution.

• By now, a lot of problems have been proved NP-Complete.

• Many smart-person-years have been spent on trying to

solve NPC problems efficiently, to no avail.

⇒ We regard L ∈ NPC as strong evidence for L being hard!

'

&

$

%CS404/504 Computer Science

3Design and Analysis of Algorithms: Lecture 24

NP-Completeness ProofsNP-Completeness Proofs

To prove a decision problem (language) L is NPC:

• Step 1: prove L ∈ NP.

• Step 2: prove L ∈ NP-hard.

1. Select a known NPC problem (language) L’.

2. Find a mapping algorithm (reduction) F, such that X ∈

L’ ⇔ F(x) ∈ L.

3. Prove that the algorithm F runs in poly-time.

Up to this point, the only NPC problems we know are

CKT-SAT and SAT.

'

&

$

%CS404/504 Computer Science

4Design and Analysis of Algorithms: Lecture 24

Some NP-Complete problemsSome NP-Complete problems

'

&

$

%CS404/504 Computer Science

5Design and Analysis of Algorithms: Lecture 24

3CNF3CNF

• Definition:

– A literal is xi or ¬xi.

– A clause is L1 ∨ L2 ∨ ... ∨ Lk, where Li = literal.

– A formula is in Conjunctive Normal Form (CNF) if it has

the form:

C1 ∧ C2 ∧ C3 ∧ ... ∧ Cr, where Ci = clause.

• This boolean formula is in 3-CNF:

(x1 ∨ ¬x1 ∨ ¬x2) ∧ (x3 ∨ x2 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4)

– The first of its three clauses is (x1 ∨ ¬x3 ∨ ¬x2), which

contains the three literals x1,¬x3, and ¬x2.

'

&

$

%CS404/504 Computer Science

6Design and Analysis of Algorithms: Lecture 24

3CNF-SAT3CNF-SAT

• 3CNF-SAT is the problem of deciding if a formula in 3-CNF

is satisfiable.

• 3CNF-SAT = {〈φ〉: φ is a satisfiable formula in CNF with 3

literals per clause}.

'

&

$

%CS404/504 Computer Science

7Design and Analysis of Algorithms: Lecture 24

3CNF-SAT is NP-Complete3CNF-SAT is NP-Complete

Recall, to prove a problem is NPC:

• Step 1: prove L ∈ NP.

• Step 2: prove L ∈ NP-hard.

1. Select a known NPC problem (language) L’.

2. Find a mapping algorithm (reduction) F, such that X ∈

L’ ⇔ F(x) ∈ L.

3. Prove the algorithm F runs in poly-time.

Up to this point, the only NPC problems we know are

CKT-SAT and SAT.

'

&

$

%CS404/504 Computer Science

8Design and Analysis of Algorithms: Lecture 24

Step 1: 3CNF-SAT is NPStep 1: 3CNF-SAT is NP

Step 1: 3CNF-SAT is NP.

• Easy – the certificate is the “truth assignment”, we replace

each variable in the formula with its corresponding value

and then evaluate the expression.

'

&

$

%CS404/504 Computer Science

9Design and Analysis of Algorithms: Lecture 24

Step 2: 3CNF-SAT is NP-hardStep 2: 3CNF-SAT is NP-hard

Step 2: 3CNF-SAT is NP-hard by proving SAT ≤p 3CNF-SAT.

• Starting with an instance φ of SAT, we need to find a

poly-time reduction algorithm F, such that:

φ ∈ SAT ⇔ F(φ) ∈ 3CNF-SAT.

In other words:

φ is satisfiable ⇔ F(φ) is 3-CNF and satisfiable.

'

&

$

%CS404/504 Computer Science

10Design and Analysis of Algorithms: Lecture 24

Step 2: OutlineStep 2: Outline

We will show how to transform any formula φ into an

equivalent formula in 3CNF in three steps:

• step 2.1, transform φ into φ′, which is a conjunction (∧) of

clauses with at most three literals. φ is equivalent to φ′.

• step 2.2, transform φ′ into φ′′, by rewriting each of the

clauses of φ′ in conjunctive normal form (CNF). φ′ is

equivalent to φ′′.

• step 2.3, transform φ′′ into φ′′′, which is a 3-CNF. φ′′ is

equivalent to φ′′′.

'

&

$

%CS404/504 Computer Science

11Design and Analysis of Algorithms: Lecture 24

Step 2.1: φ to φ′Step 2.1: φ to φ′

• step 2.1, We transform φ into φ′, which is a conjunction

(∧) of clauses with at most three literals.

To do so we first construct a “parse tree” from φ with

literals as leaves and connectives as internal nodes.

'

&

$

%CS404/504 Computer Science

12Design and Analysis of Algorithms: Lecture 24

Step 2.1: φ to φ′Step 2.1: φ to φ′

Example: φ = ((x1 → x2) ∨ ¬((¬x1 ↔ x3) ∨ x4)) ∧ ¬x2.

'

&

$

%CS404/504 Computer Science

13Design and Analysis of Algorithms: Lecture 24

Step 2.1: φ to φ′Step 2.1: φ to φ′

We then introduce variables for the output of each node and

rewrite formula as the AND of root edge and the formulas

corresponding to internal edges.

'

&

$

%CS404/504 Computer Science

14Design and Analysis of Algorithms: Lecture 24

Cont’dCont’d

φ′ = y1 ∧(y1 ↔ (y2 ∧ ¬x2))

∧(y2 ↔ (y3 ∨ y4))

∧(y3 ↔ (x1 → x2))

∧(y4 ↔ ¬y5)

∧(y5 ↔ (y6 ∨ x4))

∧(y6 ↔ (¬x1 ↔ x3))

'

&

$

%CS404/504 Computer Science

15Design and Analysis of Algorithms: Lecture 24

Step 2.1: φ = φ′Step 2.1: φ = φ′

1) φ′ satisfied ⇒ each tree edge clause corresponds to node

value and y1 = 1 ⇒ conjunctions in φ′ satisfied ⇒ φ

satisfied.

2) φ satisfied ⇒ parse tree satisfied ⇒ φ′ satisfied.

Put 1) and 2) together, φ′ is equivalent to φ and formula (φ′) is

now a Conjunction (AND) of clauses of at most three literals.

'

&

$

%CS404/504 Computer Science

16Design and Analysis of Algorithms: Lecture 24

Step 2.2: φ′ to φ′′Step 2.2: φ′ to φ′′

Step 2.2: We transform each clause of φ′ into conjunctive

normal form (CNF)

• To do so for clause φ′
i, we first construct truth table for φ′

i.

Using only entries that evaluate to 0, we then construct a

formula equivalent to ¬φ′
i.

• Example: Clause φ′
i = y1 ↔ (y2 ∧ ¬x2)

y1 y2 x2 y1 ⇔ (y2 ∧ ¬x2)
1 1 1 0
1 1 0 1
1 0 1 0
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 1
0 0 0 1

'

&

$

%CS404/504 Computer Science

17Design and Analysis of Algorithms: Lecture 24

Step 2.2: φ′ to φ′′Step 2.2: φ′ to φ′′

New formula:

¬φ′
i = (y1∧y2∧x2)∨(y1∧¬y2∧x2)∨(y1∧¬y2∧¬x2)∨(¬y1∧y2∧¬x2)

Convert this formula into CNF using DeMorgan’s laws:

¬(A ∨ B) ≡ ¬A ∧ ¬B

¬(A ∧ B) ≡ ¬A ∨ ¬B

For example, formula φ′′
i is defined as ¬(¬φ′

i), which is:

(¬y1∨¬y2∨¬x2)∧(¬y1∨y2∨¬x2)∧(¬y1∨y2∨x2)∧(y1∨¬y2∨x2)

Formula φ′′, equivalent to φ′, is obtained from the φ′′
i s.

'

&

$

%CS404/504 Computer Science

18Design and Analysis of Algorithms: Lecture 24

Step 2.3: φ′′ to φ′′′Step 2.3: φ′′ to φ′′′

Step 2.3: Make each clause with less than 3 literals have

exactly three literals.

• If a clause contains two literals l1 ∨ l2, we replace it with

the equivalent three literal clause:

(l1 ∨ l2 ∨ p) ∧ (l1 ∨ l2 ∨ ¬p).

• If a clause contains one literal l, we replace it with the

equivalent clause:

(l ∨ p ∨ q) ∧ (l ∨ p ∨ ¬q) ∧ (l ∨ ¬p ∨ q) ∧ (l ∨ ¬p ∨ ¬q)

We have obtained formula φ′′′ in 3CNF equivalent to φ.

'

&

$

%CS404/504 Computer Science

19Design and Analysis of Algorithms: Lecture 24

Step 3: Prove Polynomial Time ReductionStep 3: Prove Polynomial Time Reduction

• The only thing left to prove is that we can perform the

three steps in polynomial time. Easy since:

– step 2.1 introduces one new variable and clause per

connective.

– step 2.2 introduces at most 23 = 8 clauses for each old

clause.

– step 2.3 introduces at most 4 clauses per clause

⇒ size of φ′′′ is polynomial in size of φ.

'

&

$

%CS404/504 Computer Science

20Design and Analysis of Algorithms: Lecture 24

CLIQUECLIQUE

• CLIQUE: Given a graph G = (V, E), decide if there is a

subset V ′ ⊆ V of size k such that there is an edge between

every pair of vertices in V ′ (i.e., V ′ makes a complete

subgraph of G).

• The decision problem is to ask whether a clique of a given

size k exists in the graph.

CLIQUE = {< G, k >: G is a graph with a clique of size k}

'

&

$

%CS404/504 Computer Science

21Design and Analysis of Algorithms: Lecture 24

CLIQUE is NPCCLIQUE is NPC

Theorem: CLIQUE is NP-complete.

Proof: It suffices to show that

• Step 1: CLIQUE ∈ NP, and

• Step 2: 3CNF-SAT ≤p CLIQUE.

• Step 1: CLIQUE is NP.

Proof: Given a subset V ′ as a certificate, we can check if V ′

makes a clique, i.e., check if for each pair u, v ∈ V ′,

(u, v) ∈ E. This checking can be done in O(|V ′|2) time. So

CLIQUE is NP.

'

&

$

%CS404/504 Computer Science

22Design and Analysis of Algorithms: Lecture 24

Step 2: CLIQUE is NP-hard by 3CNF-SAT
≤p CLIQUE

Step 2: CLIQUE is NP-hard by 3CNF-SAT
≤p CLIQUE

It’s somewhat surprising since formulas seem to have little to

do with graphs.

• We need to find a transformation algorithm F, such that for

each input instance φ of 3CNF-SAT, F can transform φ into

an input instance for CLIQUE.

• φ is a 3CNF. An example is

φ = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3).

• An input instance for CLIQUE is a < G, k >, where G is a

graph, and k is an integer.

'

&

$

%CS404/504 Computer Science

23Design and Analysis of Algorithms: Lecture 24

ConstructionConstruction

• We construct a graph G = (V, E) from a k clause formula

φ = C1 ∧ C2 ∧ C3... ∧ Ck in 3-CNF.

• For each clause Cr = (lr1 ∨ lr2 ∨ lr3), we place triple of vertices

vr
1, vr

2, vr
3 in V .

• Vertices vr
i and vs

j are connected if:

a) r 6= s.

b) lri and lsj are consistent (not negative of each other).

'

&

$

%CS404/504 Computer Science

24Design and Analysis of Algorithms: Lecture 24

Construction exampleConstruction example

Example: φ = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3).

• Graph can be constructed in polynomial time

'

&

$

%CS404/504 Computer Science

25Design and Analysis of Algorithms: Lecture 24

To prove φ ∈ 3CNF-SAT ⇔ < G, k >∈ CLIQUETo prove φ ∈ 3CNF-SAT ⇔ < G, k >∈ CLIQUE

• We have φ satisfiable ⇔ G has clique of size k:

(Example: φ satisfiable by x2 = 0, x3 = 1, x1 = 0 or 1

and the set of white vertices (¬x2, x3, x3) is a clique of

size 3.)

Proof:

• (⇒)

– Each clause Cr contains at least one literal lri assigned 1.

– Each such literal corresponds to vertex vr
i ; pick such a

vertex in each clause ⇒ k vertices V ′.

'

&

$

%CS404/504 Computer Science

26Design and Analysis of Algorithms: Lecture 24

(⇒), Cont’d(⇒), Cont’d

• For any two vertices vr
i , v

s
j ∈ V ′(r 6= s), both corresponding

literals lri and lsi are mapped to 1

⇒ they are not complements

⇒ edge in G between vr
i and vs

j

⇒ V ′ is a clique

'

&

$

%CS404/504 Computer Science

27Design and Analysis of Algorithms: Lecture 24

(⇐)(⇐)

• Let V ′ be clique of size k ⇒ V ′ contains exactly one vertex

for each triple (no edges between vertices in triple)

• We can assign 1 to each literal lri corresponding to vr
i ∈ V

since G contains no edges between inconsistent literals.

• Each clause is satisfiable ⇒ φ is satisfiable.

'

&

$

%CS404/504 Computer Science

28Design and Analysis of Algorithms: Lecture 24

