P vs. NP vs. NP-Hard vs. NP-complete

- We have been discussing Complexity Theory:
- classification of problems according to their difficulty.
- We introduced the classes P, NP, NP-hard and NP-complete.
$-P=\{$ Decision problems solvable in polynomial time $\}$.
$-N P=\{$ Decision problems that are "verifiable" in polynomial time\}.
- A major open question in theoretical computer science is:

$$
P=N P \text { or } P \subset N P ?
$$

Polynomial time reductions

We also introduced the notion of polynomial time reductions:

- $\mathrm{A} \leq_{p} \mathrm{~B}: \mathrm{A}$ is polynomial-time reducible to B if there exists a "fast", i.e., poly-time, transformation algorithm F, such that \forall instance α of A :
- $F(\alpha)$ is an instance of B.
- the answer of A for α is "yes" \Leftrightarrow the answer of B for $F(\alpha)$ is "yes".

NP-Complete problems

- A decision problem L is in NPC if
a) $L \in N P$
b) $\mathrm{L}^{\prime} \leq_{p} \mathrm{~L}$ for all $\mathrm{L}^{\prime} \in \mathrm{NP}$ (L is NP-hard).
- If any NPC-problem can be solved in polynomial time, then every NPC-problem has a polynomial-time solution.
- By now, a lot of problems have been proved NP-Complete.
- Many smart-person-years have been spent on trying to solve NPC problems efficiently, to no avail.
\Rightarrow We regard $L \in N P C$ as strong evidence for L being hard!

NP-Completeness Proofs

To prove a decision problem (language) L is NPC :

- Step 1: prove L \in NP.
- Step 2: prove L \in NP-hard.

1. Select a known NPC problem (language) L'.
2. Find a mapping algorithm (reduction) F, such that $X \in$ $\mathrm{L}^{\prime} \Leftrightarrow \mathrm{F}(\mathrm{x}) \in \mathrm{L}$.
3. Prove that the algorithm F runs in poly-time.

Up to this point, the only NPC problems we know are CKT-SAT and SAT.

Some NP-Complete problems

3CNF

- Definition:
- A literal is x_{i} or $\neg x_{i}$.
- A clause is $L_{1} \vee L_{2} \vee \ldots \vee L_{k}$, where $L_{i}=$ literal.
- A formula is in Conjunctive Normal Form (CNF) if it has the form:

$$
C_{1} \wedge C_{2} \wedge C_{3} \wedge \ldots \wedge C_{r}, \text { where } C_{i}=\text { clause }
$$

- This boolean formula is in 3-CNF: $\left(x_{1} \vee \neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{3} \vee x_{2} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee \neg x_{4}\right)$
- The first of its three clauses is ($x_{1} \vee \neg x_{3} \vee \neg x_{2}$), which contains the three literals $x_{1}, \neg x_{3}$, and $\neg x_{2}$.

3CNF-SAT

- 3CNF-SAT is the problem of deciding if a formula in 3-CNF is satisfiable.
- 3CNF-SAT $=\{\langle\phi\rangle: \phi$ is a satisfiable formula in CNF with 3 literals per clause\}.

3CNF-SAT is NP-Complete

Recall, to prove a problem is NPC:

- Step 1: prove L \in NP.
- Step 2: prove L \in NP-hard.

1. Select a known NPC problem (language) L'.
2. Find a mapping algorithm (reduction) F, such that $X \in$ $L^{\prime} \Leftrightarrow F(x) \in L$.
3. Prove the algorithm F runs in poly-time.

Up to this point, the only NPC problems we know are CKT-SAT and SAT.

Step 1: 3CNF-SAT is NP

Step 1: 3CNF-SAT is NP.

- Easy - the certificate is the "truth assignment", we replace each variable in the formula with its corresponding value and then evaluate the expression.

Step 2: 3CNF-SAT is NP-hard

Step 2: 3CNF-SAT is NP-hard by proving SAT \leq_{p} 3CNF-SAT.

- Starting with an instance ϕ of SAT, we need to find a poly-time reduction algorithm F, such that:

$$
\phi \in S A T \Leftrightarrow F(\phi) \in 3 C N F-S A T .
$$

In other words:

$$
\phi \text { is satisfiable } \Leftrightarrow F(\phi) \text { is } 3-\text { CNF and satisfiable. }
$$

Step 2: Outline

We will show how to transform any formula ϕ into an equivalent formula in 3CNF in three steps:

- step 2.1, transform ϕ into ϕ^{\prime}, which is a conjunction (\wedge) of clauses with at most three literals. ϕ is equivalent to ϕ^{\prime}.
- step 2.2, transform ϕ^{\prime} into $\phi^{\prime \prime}$, by rewriting each of the clauses of ϕ^{\prime} in conjunctive normal form (CNF). ϕ^{\prime} is equivalent to $\phi^{\prime \prime}$.
- step 2.3, transform $\phi^{\prime \prime}$ into $\phi^{\prime \prime \prime}$, which is a 3 -CNF. $\phi^{\prime \prime}$ is equivalent to $\phi^{\prime \prime \prime}$.

Step 2.1: ϕ to ϕ^{\prime}

- step 2.1, We transform ϕ into ϕ^{\prime}, which is a conjunction (\wedge) of clauses with at most three literals.

To do so we first construct a "parse tree" from ϕ with literals as leaves and connectives as internal nodes.

Step 2.1: ϕ to ϕ^{\prime}

Example: $\phi=\left(\left(x_{1} \rightarrow x_{2}\right) \vee \neg\left(\left(\neg x_{1} \leftrightarrow x_{3}\right) \vee x_{4}\right)\right) \wedge \neg x_{2}$.

Step 2.1: ϕ to ϕ^{\prime}

We then introduce variables for the output of each node and rewrite formula as the AND of root edge and the formulas corresponding to internal edges.

Cont'd

$$
\begin{aligned}
\phi^{\prime}=y_{1} & \wedge\left(y_{1} \leftrightarrow\left(y_{2} \wedge \neg x_{2}\right)\right) \\
& \wedge\left(y_{2} \leftrightarrow\left(y_{3} \vee y_{4}\right)\right) \\
& \wedge\left(y_{3} \leftrightarrow\left(x_{1} \rightarrow x_{2}\right)\right) \\
& \wedge\left(y_{4} \leftrightarrow \neg y_{5}\right) \\
& \wedge\left(y_{5} \leftrightarrow\left(y_{6} \vee x_{4}\right)\right) \\
& \wedge\left(y_{6} \leftrightarrow\left(\neg x_{1} \leftrightarrow x_{3}\right)\right)
\end{aligned}
$$

Step 2.1: $\phi=\phi^{\prime}$

1) ϕ^{\prime} satisfied \Rightarrow each tree edge clause corresponds to node value and $y_{1}=1 \Rightarrow$ conjunctions in ϕ^{\prime} satisfied $\Rightarrow \phi$ satisfied.
2) ϕ satisfied \Rightarrow parse tree satisfied $\Rightarrow \phi^{\prime}$ satisfied.

Put 1) and 2) together, ϕ^{\prime} is equivalent to ϕ and formula (ϕ^{\prime}) is now a Conjunction (AND) of clauses of at most three literals.

Step 2.2: ϕ^{\prime} to $\phi^{\prime \prime}$

Step 2.2: We transform each clause of ϕ^{\prime} into conjunctive normal form (CNF)

- To do so for clause ϕ_{i}^{\prime}, we first construct truth table for ϕ_{i}^{\prime}. Using only entries that evaluate to 0 , we then construct a formula equivalent to $\neg \phi_{i}^{\prime}$.
- Example: Clause $\phi_{i}^{\prime}=y_{1} \leftrightarrow\left(y_{2} \wedge \neg x_{2}\right)$

y_{1}	y_{2}	x_{2}	$y_{1} \Leftrightarrow\left(y_{2} \wedge \neg x_{2}\right)$
1	1	1	0
1	1	0	1
1	0	1	0
1	0	0	0
0	1	1	1
0	1	0	0
0	0	1	1
0	0	0	1

Step 2.2: ϕ^{\prime} to $\phi^{\prime \prime}$

New formula:
$\neg \phi_{i}^{\prime}=\left(y_{1} \wedge y_{2} \wedge x_{2}\right) \vee\left(y_{1} \wedge \neg y_{2} \wedge x_{2}\right) \vee\left(y_{1} \wedge \neg y_{2} \wedge \neg x_{2}\right) \vee\left(\neg y_{1} \wedge y_{2} \wedge \neg x_{2}\right)$
Convert this formula into CNF using DeMorgan's Iaws:

$$
\begin{array}{ll}
\neg(A \vee B) & \equiv \neg A \wedge \neg B \\
\neg(A \wedge B) & \equiv \neg A \vee \neg B
\end{array}
$$

For example, formula $\phi_{i}^{\prime \prime}$ is defined as $\neg\left(\neg \phi_{i}^{\prime}\right)$, which is:
$\left(\neg y_{1} \vee \neg y_{2} \vee \neg x_{2}\right) \wedge\left(\neg y_{1} \vee y_{2} \vee \neg x_{2}\right) \wedge\left(\neg y_{1} \vee y_{2} \vee x_{2}\right) \wedge\left(y_{1} \vee \neg y_{2} \vee x_{2}\right)$

Formula $\phi^{\prime \prime}$, equivalent to ϕ^{\prime}, is obtained from the $\phi_{i}^{\prime \prime} \mathrm{s}$.

Step 2.3: $\phi^{\prime \prime}$ to $\phi^{\prime \prime \prime}$

Step 2.3: Make each clause with less than 3 literals have exactly three literals.

- If a clause contains two literals $l_{1} \vee l_{2}$, we replace it with the equivalent three literal clause:
$\left(l_{1} \vee l_{2} \vee p\right) \wedge\left(l_{1} \vee l_{2} \vee \neg p\right)$.
- If a clause contains one literal l, we replace it with the equivalent clause:
$(l \vee p \vee q) \wedge(l \vee p \vee \neg q) \wedge(l \vee \neg p \vee q) \wedge(l \vee \neg p \vee \neg q)$
We have obtained formula $\phi^{\prime \prime \prime}$ in 3CNF equivalent to ϕ.

Step 3: Prove Polynomial Time Reduction

- The only thing left to prove is that we can perform the three steps in polynomial time. Easy since:
- step 2.1 introduces one new variable and clause per connective.
- step 2.2 introduces at most $2^{3}=8$ clauses for each old clause.
- step 2.3 introduces at most 4 clauses per clause
\Rightarrow size of $\phi^{\prime \prime \prime}$ is polynomial in size of ϕ.

CLIQUE

- CLIQUE: Given a graph $G=(V, E)$, decide if there is a subset $V^{\prime} \subseteq V$ of size k such that there is an edge between every pair of vertices in V^{\prime} (i.e., V^{\prime} makes a complete subgraph of G).

- The decision problem is to ask whether a clique of a given size k exists in the graph.

CLIQUE $=\{\langle G, k\rangle: G$ is a graph with a clique of size $k\}$

CLIQUE is NPC

Theorem: CLIQUE is NP-complete.
Proof: It suffices to show that

- Step 1: CLIQUE \in NP, and
- Step 2: 3CNF-SAT \leq_{p} CLIQUE.
- Step 1: CLIQUE is NP.

Proof: Given a subset V^{\prime} as a certificate, we can check if V^{\prime} makes a clique, i.e., check if for each pair $u, v \in V^{\prime}$, $(u, v) \in E$. This checking can be done in $O\left(\left|V^{\prime}\right|^{2}\right)$ time. So CLIQUE is NP.

Step 2: CLIQUE is NP-hard by 3CNF-SAT \leq_{p} CLIQUE

It's somewhat surprising since formulas seem to have little to do with graphs.

- We need to find a transformation algorithm F, such that for each input instance ϕ of 3CNF-SAT, F can transform ϕ into an input instance for CLIQUE.
- ϕ is a 3CNF. An example is

$$
\phi=\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{3}\right) .
$$

- An input instance for CLIQUE is a $\langle G, k\rangle$, where G is a graph, and k is an integer.

Construction

- We construct a graph $G=(V, E)$ from a k clause formula $\phi=C_{1} \wedge C_{2} \wedge C_{3} \ldots \wedge C_{k}$ in 3-CNF.
- For each clause $C_{r}=\left(l_{1}^{r} \vee l_{2}^{r} \vee l_{3}^{r}\right)$, we place triple of vertices $v_{1}^{r}, v_{2}^{r}, v_{3}^{r}$ in V.
- Vertices v_{i}^{r} and v_{j}^{s} are connected if:
a) $r \neq s$.
b) l_{i}^{r} and l_{j}^{s} are consistent (not negative of each other).

Construction example

Example: $\phi=\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{3}\right)$.

- Graph can be constructed in polynomial time

To prove $\phi \in$ 3CNF-SAT $\Leftrightarrow<G, k>\in$ CLIQUE

- We have ϕ satisfiable $\Leftrightarrow G$ has clique of size k :
(Example: ϕ satisfiable by $x_{2}=0, x_{3}=1, x_{1}=0$ or 1 and the set of white vertices $\left(\neg x_{2}, x_{3}, x_{3}\right)$ is a clique of size 3.)

Proof:

- (\Rightarrow)
- Each clause C_{r} contains at least one literal l_{i}^{r} assigned 1.
- Each such literal corresponds to vertex v_{i}^{r}; pick such a vertex in each clause $\Rightarrow k$ vertices V^{\prime}.

(\Rightarrow), Cont'd

- For any two vertices $v_{i}^{r}, v_{j}^{s} \in V^{\prime}(r \neq s)$, both corresponding literals l_{i}^{r} and l_{i}^{s} are mapped to 1
\Rightarrow they are not complements
\Rightarrow edge in G between v_{i}^{r} and v_{j}^{s}
$\Rightarrow V^{\prime}$ is a clique

(\Leftarrow)

- Let V^{\prime} be clique of size $k \Rightarrow V^{\prime}$ contains exactly one vertex for each triple (no edges between vertices in triple)
- We can assign 1 to each literal l_{i}^{r} corresponding to $v_{i}^{r} \in V$ since G contains no edges between inconsistent literals.
- Each clause is satisfiable $\Rightarrow \phi$ is satisfiable.

