P vs. NP vs. NP-Hard vs. NP-complete

- We have been discussing **Complexity Theory**:
 - classification of problems according to their difficulty.
- We introduced the classes P, NP, NP-hard and NP-complete.
 - $-P = \{ \text{Decision problems solvable in polynomial time} \}.$
 - NP = {Decision problems that are "verifiable" in polynomial time}.
- A major open question in theoretical computer science is:

```
P = NP \text{ or } P \subset NP?
```

CS404/504

Polynomial time reductions

We also introduced the notion of **polynomial time reductions**:

- A ≤_p B: A is polynomial-time reducible to B if there exists a "fast", i.e., poly-time, transformation algorithm F, such that ∀ instance α of A:
 - $F(\alpha)$ is an instance of B.
 - the answer of A for α is "yes" \Leftrightarrow the answer of B for $F(\alpha)$ is "yes".

CS404/504

NP-Complete problems

• A decision problem L is in NPC if

```
a) L \in NP
```

- b) L' \leq_p L for all L' \in NP (L is NP-hard).
- If any NPC-problem can be solved in polynomial time, then every NPC-problem has a polynomial-time solution.
- By now, a lot of problems have been proved NP-Complete.
- Many smart-person-years have been spent on trying to solve NPC problems efficiently, to no avail.

```
\Rightarrow We regard L \in NPC as strong evidence for L being hard!
```

CS404/504

NP-Completeness Proofs

To prove a decision problem (language) L is NPC:

- Step 1: prove $L \in NP$.
- Step 2: prove $L \in NP$ -hard.
 - 1. Select a known NPC problem (language) L'.
 - 2. Find a mapping algorithm (reduction) F, such that $X \in L' \Leftrightarrow F(x) \in L$.
 - 3. Prove that the algorithm F runs in poly-time.

Up to this point, the only NPC problems we know are CKT-SAT and SAT.

CS404/504

Design and Analysis of Algorithms: Lecture 24

3CNF

• Definition:

- A <u>literal</u> is x_i or $\neg x_i$.
- A <u>clause</u> is $L_1 \vee L_2 \vee ... \vee L_k$, where L_i = literal.
- A formula is in <u>Conjunctive Normal Form (CNF)</u> if it has the form:

 $C_1 \wedge C_2 \wedge C_3 \wedge \ldots \wedge C_r$, where $C_i =$ clause.

- This boolean formula is in **3-CNF**: $(x_1 \lor \neg x_1 \lor \neg x_2) \land (x_3 \lor x_2 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4)$
 - The first of its three clauses is $(x_1 \lor \neg x_3 \lor \neg x_2)$, which contains the three literals $x_1, \neg x_3$, and $\neg x_2$.

CS404/504 -

3CNF-SAT

- 3CNF-SAT is the problem of deciding if a formula in 3-CNF is satisfiable.
- 3CNF-SAT = { $\langle \phi \rangle$: ϕ is a satisfiable formula in CNF with 3 literals per clause}.

CS404/504

Computer Science

Design and Analysis of Algorithms: Lecture 24

3CNF-SAT is NP-Complete

Recall, to prove a problem is NPC:

- Step 1: prove $L \in NP$.
- Step 2: prove $L \in NP$ -hard.
 - 1. Select a known NPC problem (language) L'.
 - 2. Find a mapping algorithm (reduction) F, such that $X \in L' \Leftrightarrow F(x) \in L$.
 - 3. Prove the algorithm F runs in poly-time.

Up to this point, the only NPC problems we know are CKT-SAT and SAT.

CS404/504

Step 1: 3CNF-SAT is NP

Step 1: 3CNF-SAT is NP.

• Easy – the certificate is the "truth assignment", we replace each variable in the formula with its corresponding value and then evaluate the expression.

CS404/504

Computer Science

Design and Analysis of Algorithms: Lecture 24

Step 2: 3CNF-SAT is NP-hard by proving SAT \leq_p 3CNF-SAT.

• Starting with an instance ϕ of SAT, we need to find a poly-time reduction algorithm F, such that:

 $\phi \in \mathsf{SAT} \Leftrightarrow \mathsf{F}(\phi) \in \mathsf{3CNF}\mathsf{-}\mathsf{SAT}.$

In other words:

 ϕ is satisfiable $\Leftrightarrow F(\phi)$ is 3-CNF and satisfiable.

CS404/504

Step 2: Outline

We will show how to transform any formula ϕ into an equivalent formula in 3CNF in three steps:

- **step 2.1**, transform ϕ into ϕ' , which is a conjunction (\wedge) of clauses with at most three literals. ϕ is equivalent to ϕ' .
- step 2.2, transform ϕ' into ϕ'' , by rewriting each of the clauses of ϕ' in conjunctive normal form (CNF). ϕ' is equivalent to ϕ'' .
- step 2.3, transform ϕ'' into ϕ''' , which is a 3-CNF. ϕ'' is equivalent to ϕ''' .

CS404/504

Step 2.1: ϕ to ϕ'

step 2.1, We transform φ into φ', which is a conjunction
 (Λ) of clauses with at most three literals.

To do so we first construct a "parse tree" from ϕ with literals as leaves and connectives as internal nodes.

CS404/504

Computer Science

Design and Analysis of Algorithms: Lecture 24

Design and Analysis of Algorithms: Lecture 24

Step 2.1: ϕ to ϕ'

We then introduce variables for the output of each node and rewrite formula as the AND of root edge and the formulas corresponding to internal edges.

Cont'd

$$\phi' = y_1 \land (y_1 \leftrightarrow (y_2 \land \neg x_2)) \land (y_2 \leftrightarrow (y_3 \lor y_4)) \land (y_3 \leftrightarrow (x_1 \rightarrow x_2)) \land (y_4 \leftrightarrow \neg y_5) \land (y_5 \leftrightarrow (y_6 \lor x_4)) \land (y_6 \leftrightarrow (\neg x_1 \leftrightarrow x_3))$$

CS404/504 -

Step 2.1: $\phi = \phi'$

- 1) ϕ' satisfied \Rightarrow each tree edge clause corresponds to node value and $y_1 = 1 \Rightarrow$ conjunctions in ϕ' satisfied $\Rightarrow \phi$ satisfied.
- 2) ϕ satisfied \Rightarrow parse tree satisfied $\Rightarrow \phi'$ satisfied.

Put 1) and 2) together, ϕ' is equivalent to ϕ and formula (ϕ') is now a Conjunction (AND) of clauses of at most three literals.

CS404/504

Step 2.2: ϕ' to ϕ''

Step 2.2: We transform each clause of ϕ' into conjunctive normal form (CNF)

• To do so for clause ϕ'_i , we first construct truth table for ϕ'_i . Using only entries that evaluate to 0, we then construct a formula equivalent to $\neg \phi'_i$.

• Example: Clause
$$\phi'_i = y_1 \leftrightarrow (y_2 \land \neg x_2)$$

y_1	y_2	x_2	$y_1 \Leftrightarrow (y_2 \land \neg x_2)$
1	1	1	0
1	1	0	1
1	0	1	0
1	0	0	0
0	1	1	1
0	1	0	0
0	0	1	1
0	0	0	1

CS404/504

Step 2.2: ϕ' to ϕ''

New formula:

$$\neg \phi_i' = (y_1 \land y_2 \land x_2) \lor (y_1 \land \neg y_2 \land x_2) \lor (y_1 \land \neg y_2 \land \neg x_2) \lor (\neg y_1 \land y_2 \land \neg x_2)$$

Convert this formula into CNF using DeMorgan's laws:

$$\neg (A \lor B) \equiv \neg A \land \neg B$$

$$\neg (A \land B) \equiv \neg A \lor \neg B$$

For example, formula ϕ_i'' is defined as $\neg(\neg \phi_i')$, which is: $(\neg y_1 \lor \neg y_2 \lor \neg x_2) \land (\neg y_1 \lor y_2 \lor \neg x_2) \land (\neg y_1 \lor y_2 \lor x_2) \land (y_1 \lor \neg y_2 \lor x_2)$

```
Formula \phi'', equivalent to \phi', is obtained from the \phi''_is.
```

CS404/504

Step 2.3: ϕ'' to ϕ'''

Step 2.3: Make each clause with less than 3 literals have exactly three literals.

- If a clause contains two literals $l_1 \vee l_2$, we replace it with the equivalent three literal clause: $(l_1 \vee l_2 \vee p) \wedge (l_1 \vee l_2 \vee \neg p).$
- If a clause contains one literal *l*, we replace it with the equivalent clause:
 (*l* ∨ *p* ∨ *q*) ∧ (*l* ∨ *p* ∨ ¬*q*) ∧ (*l* ∨ ¬*p* ∨ *q*) ∧ (*l* ∨ ¬*p* ∨ ¬*q*)

We have obtained formula ϕ''' in 3CNF equivalent to ϕ .

CS404/504 -

Step 3: Prove Polynomial Time Reduction

- The only thing left to prove is that we can perform the three steps in polynomial time. Easy since:
 - step 2.1 introduces one new variable and clause per connective.
 - step 2.2 introduces at most $2^3 = 8$ clauses for each old clause.
 - step 2.3 introduces at most 4 clauses per clause

 \Rightarrow size of ϕ''' is polynomial in size of ϕ .

CS404/504

CLIQUE

CLIQUE: Given a graph G = (V, E), decide if there is a subset V' ⊆ V of size k such that there is an edge between every pair of vertices in V' (i.e., V' makes a complete subgraph of G).

• The decision problem is to ask whether a clique of a given size k exists in the graph.

CLIQUE = { $\langle G, k \rangle$: G is a graph with a clique of size k}

CS404/504

CLIQUE is NPC

Theorem: CLIQUE is NP-complete. **Proof:** It suffices to show that

- Step 1: CLIQUE \in NP, and
- Step 2: 3CNF-SAT \leq_p CLIQUE.

• Step 1: CLIQUE is NP.

Proof: Given a subset V' as a certificate, we can check if V'makes a clique, i.e., check if for each pair $u, v \in V'$, $(u, v) \in E$. This checking can be done in $O(|V'|^2)$ time. So CLIQUE is NP.

CS404/504

Step 2: CLIQUE is NP-hard by 3CNF-SAT \leq_p CLIQUE

It's somewhat surprising since formulas seem to have little to do with graphs.

- We need to find a transformation algorithm F, such that for each input instance ϕ of 3CNF-SAT, F can transform ϕ into an input instance for CLIQUE.
- ϕ is a 3CNF. An example is $\phi = (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3).$
- An input instance for CLIQUE is a $\langle G, k \rangle$, where G is a graph, and k is an integer.

CS404/504

Construction

- We construct a graph G = (V, E) from a k clause formula $\phi = C_1 \wedge C_2 \wedge C_3 \dots \wedge C_k$ in 3-CNF.
- For each clause $C_r = (l_1^r \vee l_2^r \vee l_3^r)$, we place triple of vertices v_1^r, v_2^r, v_3^r in V.
- Vertices v_i^r and v_j^s are connected if:
 - a) $r \neq s$.

b) l_i^r and l_j^s are consistent (not negative of each other).

CS404/504

(\Rightarrow), Cont'd

• For any two vertices $v_i^r, v_j^s \in V'(r \neq s)$, both corresponding literals l_i^r and l_i^s are mapped to 1

 \Rightarrow they are not complements

$$\Rightarrow$$
 edge in G between v_i^r and v_j^s

 $\Rightarrow V'$ is a clique

CS404/504

(⇔)

- Let V' be clique of size $k \Rightarrow V'$ contains exactly one vertex for each triple (no edges between vertices in triple)
- We can assign 1 to each literal l_i^r corresponding to $v_i^r \in V$ since G contains no edges between inconsistent literals.
- Each clause is satisfiable $\Rightarrow \phi$ is satisfiable.

CS404/504