Select(A, 1, n, i)
$\mathrm{q}=\operatorname{Partition(A,1,~n)}$
$/ / \mathrm{q}=\mathrm{n} / 2$
if ($\mathrm{i}=\mathrm{q}$)
return $\mathrm{A}[\mathrm{i}]$
if ($\mathrm{i}<\mathrm{q}$)
Select(A, 1, n/2-1, i)
else
Select(A, n/2 + 1, ...)
Select: T(n) = T(n/2) + Theta(n) ("best" case) => T(n) = Theta(n)
Select: $T(n)=T(n-1)+T h e t a(n)($ worst case $)=>T(n)=T h e t a(n \wedge 2)$
$T(n)=a T(n / b)+f(n)$
Master Theorem: $n^{\wedge}\left(\log _{\mathrm{L}} \mathrm{b}(\mathrm{a})\right)$ vs. $\mathrm{f}(\mathrm{n})$
$n \wedge \log _{\mathrm{b}} \mathrm{a}=\mathrm{n}^{\wedge} \lg _{2} 1=\mathrm{n}^{0}=1$ vs. Theta(n$)$

QuickSort: $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+$ Theta(n) ("best" case)
QuickSort: $T(n)=T(n-1)+$ Theta(n) (worst case) $=>$ Theta $\left(\mathrm{n}^{\wedge} 2\right.$)
Imagine we have a way to find a pivot such that we recursively call Select on a fixed percentage of the input array. We "eliminate" a percentage a, we look only at $b=1-a$ percentage of elements in the input array.

Example, $b=70 \%$ of the elements in the recursive call.
$\mathrm{T}(\mathrm{n})=\mathrm{T}(7 / 10 * \mathrm{n})+$ Theta(n) $=>$ by MT $\mathrm{T}(\mathrm{n})=$ Theta(n$)$
$\mathrm{n}^{0}=1$ vs. $\mathrm{f}(\mathrm{n})=\operatorname{Theta}(\mathrm{n})=>$ MT says $\mathrm{T}(\mathrm{n})=$ linear.

Matrix Multiplication:
A, B are n x n matrices of integers. Compute $\mathrm{C}=\mathrm{A} * \mathrm{~B}$, what is $\mathrm{T}(\mathrm{n})=$?
$\mathrm{A}=12 \quad \mathrm{~B}=11 \quad \mathrm{C}=33$
$\mathrm{C}[1,1]=1 * 1+2 * 1=3$
$\mathrm{C}[1,2]=1 * 1+2 * 1=3$

Traditional algorithm:

$$
\begin{aligned}
& \text { for } \mathrm{i}=1 \text { to } \mathrm{n} \\
& \text { for } \mathrm{j}=1 \text { to } n \\
& \mathrm{C}[\mathrm{i}, \mathrm{j}]=0 \\
& \text { for } k=1 \text { to } n \\
& \quad C[i, j]+=A[i, k] * B[k, j]
\end{aligned}
$$

$\mathrm{T}(\mathrm{n})=\mathrm{n} * \mathrm{n}$ (elements in C to compute) $*$ Theta(n$)=$ Theta $\left(\mathrm{n}^{3}\right)$
Strassen showed how to do it in $T\left(n^{2.8 .}\right)=T\left(n^{\lg 7}\right)$
Can it ever be done in Theta(n lgn)? No, it will be Omega(n^{2}).
$T(n)=8 T(n / 2)+\operatorname{Theta}\left(n^{2}\right)=>$ MT Case $1 T(n)=n \wedge \log _{2} 8=n^{3}$
7 matrix multiplications (n/2 x n/2) => 7 T(n/2)
18 matrix additions ($n / 2 \times n / 2$) $=>18 * n^{2} / 4=\operatorname{Theta}\left(n^{2}\right)$
$T(n)=7 T(n / 2)+\operatorname{Theta}\left(n^{2}\right)=>$ by MT Case $1=>T(n)=T h e t a\left(n \wedge \log _{2} 7\right)!$

