
Introduction/Overview Calculus I, II, and III AD Basics Adjoint equations

Seminar
Lecture #1:Introduction to Automatic

Differentiation

David Juedes

Ohio University Russ College of Engineering and Technology

Feb. 25th, 2020

Juedes (Russ College) CS 6040 Feb. 25th, 2020 1 / 34

Introduction/Overview Calculus I, II, and III AD Basics Adjoint equations

Differentiation? Is it interesting?

Like many things in computer science, relatively simple concepts sometimes
have interesting computational properties, e.g., determining whether a boolean
formula is satisfied on a given setting of the inputs is easy, but finding such a
setting is NP-complete.
Differentiation is also one of those concepts that has that permeates science
and engineering, but is not as easy to compute efficiently as you might expect.

Juedes (Russ College) CS 6040 Feb. 25th, 2020 2 / 34

Introduction/Overview Calculus I, II, and III AD Basics Adjoint equations

Why this is interesting?

We use derivatives to help solve all sorts of optimization problems.

Neural Networks

Robotics

Protein Folding

Etc.

Some of these computations can be expensive, and the derivative calculations
themselves can be a significant component of the optimization calculation.
Hence, if we can calculate derivatives more quickly, we win.
(These notes are partially based on a set of notes compiled by one of my
graduate students, Patrick Hartmann, in 1997.)

Juedes (Russ College) CS 6040 Feb. 25th, 2020 3 / 34

Introduction/Overview Calculus I, II, and III AD Basics Adjoint equations

Review from Calculus I, II, and III

Before I talk about automatic differentiation, let me give a quick overview of the
relevant material from Calculus I (derivative), Calculus II (integrals), and
Calculus III (vector calculus).
Give a function f on a single variable x , the derivative of f at x is defined to be

f ′(x) = lim
δ−→0

f (x + δ)− f (x)

δ
.

We can think of the derivative as the instantaeous slope of the function at x .
Now, it’s possible that this derivative does not exist.

Juedes (Russ College) CS 6040 Feb. 25th, 2020 4 / 34

Introduction/Overview Calculus I, II, and III AD Basics Adjoint equations

Example #1

f (x) = x2

lim
δ−→0

f (x + δ)− f (x)

δ
= lim

δ−→0

x2 + 2δx + δ 2− x2

δ

= lim
δ−→0

2x + δ

= 2x

We can use the definition of differentiation to build the differentiation rules for a
variety of standard functions. These are well-known.

Juedes (Russ College) CS 6040 Feb. 25th, 2020 5 / 34

Introduction/Overview Calculus I, II, and III AD Basics Adjoint equations

Example #2

f (x) = cx

lim
δ−→0

f (x + δ)− f (x)

δ
= lim

δ−→0

cx + cδ − cx
δ

= lim
δ−→0

c

= c

Juedes (Russ College) CS 6040 Feb. 25th, 2020 6 / 34

Introduction/Overview Calculus I, II, and III AD Basics Adjoint equations

Vector Calculus

If f is a multivariate function (e.g., f is a function of two variables x , and y),
then f doesn’t have a single derivative — it has a derivative in each direction
given by its inputs. These are partial derivatives, e.g., if z = f (x ,y), then

∂z
∂x

= lim
δ−→0

f (x + δ ,y)− f (x ,y)

δ

and
∂z
∂y

= lim
δ−→0

f (x ,y + δ)− f (x ,y)

δ

Juedes (Russ College) CS 6040 Feb. 25th, 2020 7 / 34

Introduction/Overview Calculus I, II, and III AD Basics Adjoint equations

Examples

Assume x = y ∗ z.

∂x
∂y

= 1∗ z

∂x
∂z

= y ∗1

(Both are special cases of example #2. We can think of y or z as a constant in
both cases.)

Juedes (Russ College) CS 6040 Feb. 25th, 2020 8 / 34

Introduction/Overview Calculus I, II, and III AD Basics Adjoint equations

Basic Notation

Let f : Rm→ Rn be a composite differentiable function. (Composed of a
sequence of elementary functions whose derivative properties are
well-known, e.g., addition, multiplication, integrals.)
We generally assume that f is represented by a program (algorithm).
If f (〈x1, . . . ,xm〉) = 〈y1, . . . ,yn〉 then the Jacobian of f is the m×n matrix
of first-order partial derivatives of f ,

Jf =

 ∂yj

∂xi

m×n

If f : Rn→ R and f (〈x1, . . . ,xn〉) = y then the gradient of f is the m
element vector

4f =

 ∂y
∂xi

 .

Juedes (Russ College) CS 6040 Feb. 25th, 2020 9 / 34

Introduction/Overview Calculus I, II, and III AD Basics Adjoint equations

Example

Consider the following function f (~x) = ∏
n
i=1 xi computed by the following

function.

double f(vector<double> &x) {
prod = 1.0;
for (int i=0;i<x.size();i++) {

prod*=x[i];
}
return prod;

}

Computing this takes O(n) steps.

Juedes (Russ College) CS 6040 Feb. 25th, 2020 10 / 34

Introduction/Overview Calculus I, II, and III AD Basics Adjoint equations

Symbolic Differentiation

If we look gradient of f symbolically, we get

∆f =

∏
n
i=2 xi

x1 ∗∏
n
i=3

...

∏
j−1
i=1 xi ∗∏

n
i=j+1 xi

...

∏
n−1
i=1 xi

Computing this directly takes O(n2) steps.

Juedes (Russ College) CS 6040 Feb. 25th, 2020 11 / 34

Introduction/Overview Calculus I, II, and III AD Basics Adjoint equations

Divided Differencing

Another approach to calculating gradients is to approximate the partial
derivations by applying the definitions for sufficiently small values of δ

z = f(x);
xp=x;
for (int i=0;i<x.size();i++) {

xp[i] = x[i] + delta;
grad[i] = (f(xp) - z)/delta;
xp[i] = x[i]; //restore

}

For divided differencing, picking the right δ may be hard.
In this case, divided differencing takes O(n2) steps to calculate the gradient.
We’ll show you how to calculate the gradient exactly (no approximation like
above) in O(n) steps using automatic differentiation.

Juedes (Russ College) CS 6040 Feb. 25th, 2020 12 / 34

Introduction/Overview Calculus I, II, and III AD Basics Adjoint equations

Basics of AD

Recall the chain rule....

Lemma (Chain Rule)

If y = f (u), u = g(x), and ∂y
∂u and ∂u

∂x are known, then

∂y
∂x

=
∂y
∂u
· ∂u

∂x
.

Automatic Differentiation relies on a simple extension of the chain rule.

Juedes (Russ College) CS 6040 Feb. 25th, 2020 13 / 34

Introduction/Overview Calculus I, II, and III AD Basics Adjoint equations

Extension of Chain Rule

Lemma (Extension of Chain Rule)

Let f1 : Rn1 → Rn2 , f2 : Rn2 → Rn3 , and f3 = f2 ◦ f1.
If Jf1 and Jf2 are known, then

Jf3 = Jf1× Jf2 .

AD relies on the fact that the Jacobians for the elementary functions are simple
and very sparse.

Juedes (Russ College) CS 6040 Feb. 25th, 2020 14 / 34

Introduction/Overview Calculus I, II, and III AD Basics Adjoint equations

AD

To start, consider an expression such as

x = ab + b2.

Using a parser, a tree structure can be created from this expression.

Traversing this parse tree (in a post-order manner), a code list can be
made of binary operations that compute the result, x .

y = a×b (1)

z = b×b (2)

x = y + z (3)

Each operation can be differentiated locally.

We can apply the chain rule to compute ∂x
∂a and ∂x

∂b .

Juedes (Russ College) CS 6040 Feb. 25th, 2020 15 / 34

Introduction/Overview Calculus I, II, and III AD Basics Adjoint equations

AD

For simplicity, we consider each elementary operation as function that
transforms the programs variables to the new values of those variables. In our
example, the three elementary operations is viewed as functions that map R5

to R5.
In our example, we get the following Jacobians for our elementary functions.

J1 =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 b 0 1 0
0 a 0 0 1

← ∂x
← ∂y
← ∂z
← ∂a
← ∂b

J2 =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 2b 0 1

← ∂z

∂b = 2b

J3 =

1 0 0 0 0
1 1 0 0 0
1 0 1 0 0
0 0 0 1 0
0 0 0 0 1

← ∂x

∂y = 1

← ∂x
∂z = 1

Juedes (Russ College) CS 6040 Feb. 25th, 2020 16 / 34

Introduction/Overview Calculus I, II, and III AD Basics Adjoint equations

AD

Multiplying these matrices together results in the following.

J1× J2 =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 b 0 1 0
0 a 2b 0 1

J1× J2× J3 =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 b 0 1 0
0 a 2b 0 1

1 0 0 0 0
1 1 0 0 0
1 0 1 0 0
0 0 0 1 0
0 0 0 0 1

=

1 0 0 0 0
1 1 0 0 0
1 0 1 0 0
b b 0 1 0

a+2b a 2b 0 1

 ← ∂x
∂a

← ∂x
∂b

Juedes (Russ College) CS 6040 Feb. 25th, 2020 17 / 34

Introduction/Overview Calculus I, II, and III AD Basics Adjoint equations

AD

Often, calculating the gradient of a function is of interest to us. In our
approach, this is one column of the final Jacobian.
Assume that our computation is formed from n elementary operations, let m be
the number of variables in the computation, and let J be the final m×m
Jacobian.
The Forward Mode:
If~x is an m-element vector,then we can compute~xT J in the following
straightforward manner using only O(n) operations.

(~x)T × J = ((((~x)T × Jf1)T × Jf2)T . . .)T × Jfn)

To compute the gradient with this approach takes O(m×n) steps. We can do
better!

Juedes (Russ College) CS 6040 Feb. 25th, 2020 18 / 34

Introduction/Overview Calculus I, II, and III AD Basics Adjoint equations

The Reverse Mode

Let~x be an m-element vector. We can compute J×~x in O(n) steps. To see
this, notice that

J = Jf1× Jf2× ...× Jfn ,

and hence that
J×~x = (Jf1× (Jf2× (...× (Jfn ×~x))))

Since each Jfi is simple, we can perform each matrix-vector multiplication with
only O(1) steps.
To compute the gradient, simply let~x be a unit vector.

Juedes (Russ College) CS 6040 Feb. 25th, 2020 19 / 34

Introduction/Overview Calculus I, II, and III AD Basics Adjoint equations

Example

In our previous example, let

~x =

1
0
0
0
0

 .

Juedes (Russ College) CS 6040 Feb. 25th, 2020 20 / 34

Introduction/Overview Calculus I, II, and III AD Basics Adjoint equations

Cont’d

Then, J×~x =

J×~x = J1× J2×

1 0 0 0 0
1 1 0 0 0
1 0 1 0 0
0 0 0 1 0
0 0 0 0 1

×

1
0
0
0
0

= J1×

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 2b 0 1

×

1
1
1
0
0

Juedes (Russ College) CS 6040 Feb. 25th, 2020 21 / 34

Introduction/Overview Calculus I, II, and III AD Basics Adjoint equations

Cont’d

=

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 b 0 1 0
0 a 0 0 1

×

1
1
1
0

2b

=

1
1
1
b

a + 2b

Juedes (Russ College) CS 6040 Feb. 25th, 2020 22 / 34

Introduction/Overview Calculus I, II, and III AD Basics Adjoint equations

When multiplying an elementary Jacobian and a vector~x , the only values of~x
that change are those that correspond to the arguments of the function.
Consider the following examples.

Juedes (Russ College) CS 6040 Feb. 25th, 2020 23 / 34

Introduction/Overview Calculus I, II, and III AD Basics Adjoint equations

Example

Example: f = xi = xj + xk

In this case,

Jf ×~x =

 1 0 0
1 1 0
1 0 1

 x̄i

x̄j

x̄k

=

 x̄i

x̄i + x̄j

x̄i + x̄k

Juedes (Russ College) CS 6040 Feb. 25th, 2020 24 / 34

Introduction/Overview Calculus I, II, and III AD Basics Adjoint equations

Example

Example: f = xi = xj ∗ xk

In this case,

Jf ×~x =

 1 0 0
xk 1 0
xj 0 1

 x̄i

x̄j

x̄k

=

 x̄i

x̄i ∗ xk + x̄j

x̄i ∗ xj + x̄k

Juedes (Russ College) CS 6040 Feb. 25th, 2020 25 / 34

Introduction/Overview Calculus I, II, and III AD Basics Adjoint equations

Cont’d

This gives the following simple rules.
For Addition:

x̄j += x̄i

x̄k += x̄i

For Multiplication:

x̄j += x̄i ∗ xk

x̄k += x̄i ∗ xj

Juedes (Russ College) CS 6040 Feb. 25th, 2020 26 / 34

Introduction/Overview Calculus I, II, and III AD Basics Adjoint equations

Adjoint Equations

The previous slide gives the adjoint equations for addition and multiplication.
To implement that adjoint equations, we can keep a separate variable for each
variable in the program. Applying the adjoint equations in reverse order from
the original computation computes all the partial derivatives (if you set the
adjoint values appropriately to begin with).
Notice, if a value gets overwritten during the computation, we replace the
adjoint value instead of adding to its current value.

Juedes (Russ College) CS 6040 Feb. 25th, 2020 27 / 34

Introduction/Overview Calculus I, II, and III AD Basics Adjoint equations

Example – Product

#include <iostream>
#include <vector>
using namespace std;
double prod(vector<double> &x) {

double prod = 1.0;
for (int i=0;i<x.size();i++) {

prod = prod * x[i];
}
return prod;

}
int main() {

vector<double> x;
x.push_back(2.0);
x.push_back(3.0);
x.push_back(4.5);
x.push_back(1.5);
x.push_back(1.3);
cout << prod(x) << endl;

}

Juedes (Russ College) CS 6040 Feb. 25th, 2020 28 / 34

Introduction/Overview Calculus I, II, and III AD Basics Adjoint equations

Adjoint Code

// Produces function and all partial derivatives in O(n) steps.
//
#include <iostream>
#include <vector>
#include <stack>
#include <cassert>
using namespace std;
stack<double> rev_stack;

double adj_prod(vector<double> &x, vector<double> &adj_x) {
double prod = 1.0;
for (int i=0;i<x.size();i++) {

rev_stack.push(prod);
rev_stack.push(x[i]);
prod = prod * x[i];

}

Juedes (Russ College) CS 6040 Feb. 25th, 2020 29 / 34

Introduction/Overview Calculus I, II, and III AD Basics Adjoint equations

Adjoint Code

// Run the code in reverse!
int j = x.size()-1;
double prod_adj = 1.0;
adj_x.resize(x.size(),0.0);
while (!rev_stack.empty()) {

double x_val;
double prod_val;
x_val=rev_stack.top();
rev_stack.pop();
prod_val = rev_stack.top();
rev_stack.pop();
// Apply adjoint equations
adj_x[j]+=prod_adj*prod_val;
prod_adj=prod_adj*x_val;
j--;

}
assert(j==-1);
return prod;

}

Juedes (Russ College) CS 6040 Feb. 25th, 2020 30 / 34

Introduction/Overview Calculus I, II, and III AD Basics Adjoint equations

Adjoint Code

int main() {
vector<double> x;
vector<double> grad_x;
x.push_back(2.0);
x.push_back(3.0);
x.push_back(4.5);
x.push_back(1.5);
x.push_back(1.3);

cout << adj_prod(x,grad_x) << endl;

cout << "Gradient" << endl;
for (int i=0;i<grad_x.size();i++) {

cout << i << " " << grad_x[i] << endl;
}

}

Juedes (Russ College) CS 6040 Feb. 25th, 2020 31 / 34

Introduction/Overview Calculus I, II, and III AD Basics Adjoint equations

Output

Notice that the vector x is [2,3,4.5,1.5,1.3], and that the partial derivative of
the product with respect to each xi is prod/xi .

52.65
Gradient
0 26.325
1 17.55
2 11.7
3 35.1
4 40.5

This code took O(n) steps with O(n) additional memory.
Notice, my code used no division!

Juedes (Russ College) CS 6040 Feb. 25th, 2020 32 / 34

Introduction/Overview Calculus I, II, and III AD Basics Adjoint equations

Complexities

Discussion about complexities of differentiation.
1 Storing the intermediate values for long computations.
2 Computer programs that compute higher order functions

Example: Integrals

3 Libraries — e.g., LINPACK
4 Computing the full Jacobian
5 Higher order derivatives (Hessians, etc.)
6 Computing large/sparse Jacobians efficiently (graph coloring).
7 Compiler techniques
8 ADOL-C.

Juedes (Russ College) CS 6040 Feb. 25th, 2020 33 / 34

Introduction/Overview Calculus I, II, and III AD Basics Adjoint equations

Some References

These techniques have been known for many years. The reverse mode has
been known since at least 1970 (see Linnainmaa below). Here are some
classic papers/books.

1 Linnainmaa, Seppo (1970). The representation of the cumulative
rounding error of an algorithm as a Taylor expansion of the local rounding
errors. Master’s Thesis (in Finnish), Univ. Helsinki, 6-7.

2 Rall, Louis B. (1981). Automatic Differentiation: Techniques and
Applications. Lecture Notes in Computer Science. 120. Springer. ISBN
978-3-540-10861-0.

3 Speelpenning, Bert (1980). Compiling Fast Partial Derivatives of
Functions Given by Algorithms. Ph.D. Dissertation, University of Illinois,
Urbana Champaign

Juedes (Russ College) CS 6040 Feb. 25th, 2020 34 / 34

	Introduction/Overview
	Calculus I, II, and III
	AD Basics
	Adjoint equations

