
HW Assignment 1 (Due by 1:30pm on Feb 6)

1 Implementation (100 points)

Implement two versions of the softmax regression model in Python, using (1) NumPy and
(2) PyTorch, and evaluate them on two 2D non-linear classification tasks: flower and
spiral. Starter code and functions for generating the datasets are available at http://

ace.cs.ohio.edu/~razvan/courses/dl6890/hw01.zip. The provided code also displays
and saves images of the datasets and the trained model’s decision boundaries. Make sure
that you organize your code in folders as shown in the table below. Write code only in the
Python files indicated in bold.

dl6890/
hw01/
code/

numpy/
softmax.py
computeNumericalGradient.py
output.txt
softmaxExercise.py
utils.py
flower-data.jpg

flower-boundary.jpg

spiral-data.jpg

spiral-boundary.jpg

pytorch/
softmaxExercise.py
output.txt
utils.py
flower-data.jpg

flower-boundary.jpg

spiral-data.jpg

spiral-boundary.jpg

1.1 NumPy Implementation (50 points)

Coding effort: my implementation has 11 lines of code in softmax.py and 8 lines of code in
computeNumericalGradient.py.

1. Cost & Gradient: You will need to write code for two functions in sofmax.py:

(a) The softmaxCost() function, which computes the cost and the gradient.

(b) The softmaxPredict() function, which computes the softmax predictions on the
input data.

http://ace.cs.ohio.edu/~razvan/courses/dl6890/hw01.zip
http://ace.cs.ohio.edu/~razvan/courses/dl6890/hw01.zip


The cost and gradient should be computed according to the formulas shown on the
slides in Lecture 2, modified however to represent explicitly the bias and its gradient.
Thus, if there are D features and K classes, the softmax model will be comprised of
two types of parameters: W will be a K x D matrix of the feature weights, whereas b
will be a K x 1 vector of bias terms.

2. Vectorization: It is important to vectorize your code so that it runs quickly.

3. Ground truth: The groundTruth is a matrix M such that M[c, n] = 1 if sample n
has label c, and 0 otherwise. This can be done quickly, without a loop, using the SciPy
function sparse.coo matrix(). Specifically, coo matrix((data, (i, j))) constructs a
matrix A such that A[i[k], j[k]] = data[k], where the shape is inferred from the index
arrays. Sample code for computing the ground truth matrix has been provided in
Lecture 2.

4. Overflow: Make sure that you prevent overflow when computing the softmax proba-
bilities, as shown on the slides in Lecture 2.

5. Numerical gradient: Once you implemented the cost and the gradient in softmaxCost,
implement code for computing the gradient numerically in computeNumericalGradi-
ent.py, as shown on the slides in Lecture 3.

6. Gradient checking: Use computeNumericalGradient.py to make sure that your soft-
maxCost.py is computing gradients correctly. This is done by running the main pro-
gram in Debug mode, i.e. python3 softmaxExercise.py --debug.

In general, whenever implementing a learning algorithm, you should always check your
gradients numerically before proceeding to train the model. The norm of the difference
between the numerical gradient and your analytical gradient should be small, on the
order of 10−9.

7. Training: Training your softmax regression is done using gradient descent for 200
epochs.

8. Testing: Now that you’ve trained your model, you will test it against the training set
to determine how well the softmax can fit this dataset. To do so, you will first need
to complete the function softmaxPredict() in softmax.py, a function which generates
predictions for input data under a trained softmax model. Once that is done, you will
be able to compute the accuracy of your model using the code provided.

1.2 PyTorch Implementation (50 points)

Coding effort: my implementation has 14 lines of code in softmaxExercise.py.

You will need to write code for the following:

1. Tensors: Create pytorch tensors for the input data and the model parameters. Specify
that gradients are to be computed w.r.t. parameters. Initialize the bias vector with
zeros, and the weight matrix with a standard Gaussian multiplied with 0.01.

http://ace.cs.ohio.edu/~razvan/courses/dl6890/lecture01.pdf
https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.sparse.coo_matrix.html
http://ace.cs.ohio.edu/~razvan/courses/dl6890/lecture01.pdf
http://ace.cs.ohio.edu/~razvan/courses/dl6890/lecture01.pdf
http://ace.cs.ohio.edu/~razvan/courses/dl6890/lecture01a.pdf


2. Loss: Write code that computes the loss variable, based on the current values of the
parameters. Once the loss is computed, the gradient w.r.t. the parameters will be
automatically computed by calling loss.backward(). You are supposed to write the
code for computing the loss yourself. In particular, do not use functions from PyTorch
(e.g. from the torch.nn module) that compute the cross entropy loss.

3. Predictions: Use the trained softmax model to compute labels for the training ex-
amples.

2 Bonus (50 points)

Modify the data generation functions to create examples that have only two labels and write a
second version of the assignment that implements logistic regression for binary classification.

3 Submission

Electronically submit on Blackboard a hw01.zip file that contains the hw01 folder in which
you write code only in the required files. The screen output produced when running the
softmaxExercise.py code should be redirected to (saved into) the output.txt files.

On a Linux system, creating the archive can be done using the command:
> zip -r hw01.zip hw01.

Please observe the following when handing in homework:

1. Structure, indent, and format your code well.

2. Use adequate comments, both block and in-line to document your code.

3. Make sure your code runs correctly when used in the directory structure shown above.


	Implementation (100 points)
	NumPy Implementation (50 points)
	PyTorch Implementation (50 points)

	Bonus (50 points)
	Submission

