
HW Assignment 2 (Due by 1:30pm on Feb 20)

1 Theory (250 points)

1. [Vizualization of Hidden Units, 30 points]
Prove that the input vector x (||x||2 ≤ 1) that maximally activates the hidden layer

unit a
(2)
i has the form shown below:

xj =
W

(1)
ij√∑s1

j=1(W
(1)
ij)2

(1)

2. [Activations Functions, 10 points]
Compute the derivative of the logistic sigmoid σ(x), hyperbolic tangent tanh(x), and
ReLU’s ramp(x) activation functions. For logistic sigmoid and hyperbolic tangent,
express the derivative in terms of the original function.

3. [Universal Approximation, 90 points]
Let NN be a neural network with 2 input units, 1 hidden layer with h units using
sigmoid as activation function, and 1 output unit using sigmoid as output function.
Furthermore, consider a training set that contains the following 4 examples i.e., the
truth table of the logical XOR function:

x1 x2 t

0 0 0
0 1 1
1 0 1
1 1 0

(a) Is there a neural network NN that perfectly classifies this training set? Prove your
answer. If the answer is yes, what is the minimum h for which there is a network
with h hidden neurons that fits the training data? Prove it.

(b) Consider the same neural network NN, but without activation functions in the
hidden layer. Answer the same questions as at item (a) above.

(c) Consider the same neural network NN, but this time using ReLU neurons in the
hidden layer. Answer the same questions as at item (a) above.

4. [Backpropagation, 60 + 30 points]
Consider the vectorized backpropagation algorithm shown on slide 27 in lecture 2.

(a) Specify the shape for each matrix and vector appearing in the algorithm, using
the notation introduced in class and assuming the gradient is computed for the
loss on just one training example, i.e. J(W, b,x, y).

(b) Specify the shape for each matrix and vector appearing in the algorithm, this time
assuming the gradient is computed for the total loss over all training examples,
i.e. J(W, b,X,y).

(c) Change the backpropagation algorithm on slide 27 to work with the negative
log-likelihood loss used for logistic regression. Try to change as little as possible.

(d) Bonus: Compute the time complexity of running vectorized backpropagation for
the total loss J(W, b,X,y). Compare this with the time complexity of computing
the same gradient numerically. For simplicity, you can assume that there is only
one unit in the output layers, and all the other layers have the same size, i.e.
s1 = s2 = ... = snl−1 = S.

5. [Gradients & Computation Graphs, 60 points]
Consider a 3D vector x = [x1, x2, x3]

T and let x ◦ x = [x21, x
2
2, x

2
3]

T be the element-wise
square of x. Let h(x) be a function computed as follows:

h(x) = σ(v1a1(x) + v2a2(x))

a1(x) = z21(x)

z1(x) = wTx

a2(x) = tanh(z2(x))

z2(x) = uT (x ◦ x)

where w = [w1, w2, w3]
T , u = [u1, u2, u3]

T .

(a) Show the computation graph of h(x), similar to how we depicted the computation
performed in feed-forward neural networks.

(b) Use the chain rule to compute the gradient of h with respect to x2. Show all your
derivation steps and the final formula for the gradient as a product of various
factors resulting from the application of the chain rule.

2 Implementation (250 points)

Implement 3 versions of a neural network with one hidden layer and a softmax output layer,
using (1) NumPy, (2) PyTorch with autograd, and (3) PyTorch with the torch.nn and
torch.optim modules. Evaluate the 3 implementations on the same two 2D non-linear clas-
sification tasks: flower and spiral. Starter code and functions for generating the datasets
are available at http://ace.cs.ohio.edu/~razvan/courses/dl6890/hw/hw02.zip. The
provided code also displays and saves images of the datasets and the trained model’s deci-
sion boundaries. Make sure that you organize your code in folders as shown in the table
below. Write code only in the Python files indicated in bold.

2.1 NumPy Implementation (100 points)

Coding effort: my implementation has 24 lines of code in nn1Layer.py and 9x4 lines of code
in computeNumericalGradient.py.

1. Forward Propagation: You will need to write code for the forward() function,
which computes and returns the softmax outputs in A3. Use ReLU on the hidden
layer, and also use a separate bias vector for the softmax layer. The function also
returns a cache with the A and Z values for the hidden and output layers.

http://ace.cs.ohio.edu/~razvan/courses/dl6890/hw/hw02.zip

dl6890/
hw02/
code/

numpy/
nn1Layer.py
computeNumericalGradient.py
output.txt
nn1LayerExercise.py
utils.py
flower-boundary.jpg

spiral-boundary.jpg

pytorch/
nn1Layer.py
nn1LayerExercise.py
output.txt
utils.py
flower-boundary.jpg

spiral-boundary.jpg

pytorch.nn/
nn1LayerExercise.py
output.txt
utils.py
flower-boundary.jpg

spiral-boundary.jpg

p3/
p3.py
output.txt

p5/
p5.py
computeNumericalGradient.py
output.txt

2. Backpropagation: You will implement this in the backward() function, by minimiz-
ing the average loss on all the training examples in X, plus an L2 regularization term
weighted by the decay hyper-parameter.

3. Cost: Compute the cost (average loss + L2 term) by first running forward propagation
to compute to softmax outputs.

4. Predictions: Compute model predictions in the cost() function.

5. Vectorization: It is important to vectorize your code so that it runs quickly.

6. Overflow: Make sure that you prevent overflow when computing the softmax proba-
bilities, as shown on the slides in Lecture 1.

7. Numerical gradient: Once you implemented the cost and the gradient in nn1Layer.py,
implement code for computing the gradient numerically in computeNumericalGradient.py,

http://ace.cs.ohio.edu/~razvan/courses/ml4900/lecture04.pdf

as shown on the slides in Lecture 1.

8. Gradient checking: Use computeNumericalGradient.py to make sure that your
backward() function is computing gradients correctly. This is done by running the
main program in Debug mode, i.e. python3 nn1LayerExercise.py --debug.

(a) When doing gradient checking on a network that uses ReLU, the numerical gra-
dient is likely to be very different from the analytical gradient. Explain why.

(b) Only when doing gradient checking, replace ReLU with an arbitrary activation
(e.g. sigmoid) that is differentiable.

The norm of the difference between the numerical gradient and your analytical gradient
should be small, on the order of 10−9.

2.2 PyTorch Implementation (50 points)

Coding effort: my implementation has 13 lines of code in nn1Layer.py and 12 lines in
nn1LayerExercise.py.

You will need to write code for the following:

1. Cost: Compute the cost = average negative log-likelihood + L2 regularization term.
Compute the cost yourself, i.e. do not use specialized PyTorch functions. In particular,
do not use functions from PyTorch (e.g. from the torch.nn module) that compute the
cross entropy loss.

2. Predictions: Use the trained model to compute labels for the training examples.
Use the NumPy array representation of the parameters, as created for you before the
nn1Layer.predict() call.

2.3 PyTorch.NN Implementation (50 points)

Coding effort: my implementation has 15 lines of code in nn1LayerExercise.py.

You will need to write code for the following:

1. Model, Loss, Optimizer: Define the model to be a NN with one hidden ReLU
layer and linear outputs. You may want to use the torch.nn.Sequential container.
Define the loss function to compute the cross-entropy – see loss functions defined in
the pytorch.nn module. Define the optimizer to run SGD with the specified learning
rate and weight decay.

2. Gradient descent loop: Write code for running gradient descent for num epochs.
At each epoch, you will compute the model predictions using the model above, com-
pute the loss between predictions and true labels using the loss function above, print
the loss every 1000 epochs, zero de gradients through the optimizer object, then run
backpropagation on the loss object.

3. Predictions: Use the trained model to compute labels for the training examples.

http://ace.cs.ohio.edu/~razvan/courses/ml4900/lecture04.pdf

2.4 Theory Verification (50 points)

1. Verify experimentally only the positive conclusions that you reached for theory problem
3. Write your code in NumPy, PyTorch with autograd, or PyTorch with torch.nn

and torch.optim.

2. Implement in NumPy the gradient formula that you derived for problem 5. Set all
the variables to random values. Check the value of the analytical gradient against the
numerical gradient and the gradient computed through autograd in PyTorch.

3 Bonus (50 points)

Modify the data generation functions to create examples that have only two labels and write a
second version of the assignment that implements logistic regression for binary classification.

4 Submission

Turn in a hard copy of your homework report at the beginning of class on the due date.
Electronically submit on Blackboard a hw02.zip file that contains the hw02 folder in which
you change code only in the required files. The screen output produced when running
the code should be redirected to (saved into) the output.txt files.

On a Linux system, creating the archive can be done using the command:
> zip -r hw02.zip hw02.

Please observe the following when handing in homework:

1. Structure, indent, and format your code well.

2. Use adequate comments, both block and in-line to document your code.

3. On the theory assignment, clear and complete explanations and proofs of your results
are as important as getting the right answer.

4. Make sure your code runs correctly when used in the directory structure shown above.

	Theory (250 points)
	Implementation (250 points)
	NumPy Implementation (100 points)
	PyTorch Implementation (50 points)
	PyTorch.NN Implementation (50 points)
	Theory Verification (50 points)

	Bonus (50 points)
	Submission

