
Razvan C. Bunescu

School of Electrical Engineering and Computer Science

bunescu@ohio.edu

Linear Regression

Logistic Regression

CS 6890: Deep Learning

1

Supervised Learning

• Task = learn an (unkown) function t : X ® T that maps input
instances x Î X to output targets t(x) Î T:
– Classification:

• The output t(x) Î T is one of a finite set of discrete categories.
– Regression:

• The output t(x) Î T is continuous, or has a continuous component.

• Target function t(x) is known (only) through (noisy) set of
training examples:

(x1,t1), (x2,t2), … (xn,tn)

2

Supervised Learning

Training Examples
(xk, tk)

Test Examples
(x, t)

Learning
Algorithm Model h

Model h

Training

Testing

Generalization
Performance

3

Parametric Approaches to Supervised
Learning

• Task = build a function h(x) such that:
– h matches t well on the training data:

=> h is able to fit data that it has seen.
– h also matches t well on test data:

=> h is able to generalize to unseen data.

• Task = choose h from a “nice” class of functions that
depend on a vector of parameters w:
– h(x) º hw(x) º h(w,x)
– what classes of functions are “nice”?

4

Neurons

Soma is the central part of the neuron:
• where the input signals are combined.

Dendrites are cellular extensions:
• where majority of the input occurs.

Axon is a fine, long projection:
• carries nerve signals to other neurons.

Synapses are molecular structures between
axon terminals and other neurons:
• where the communication takes place.

5

Neuron Models
https://www.research.ibm.com/software/IBMResearch/multimedia/IJCNN2013.neuron-
model.pdf

6

Spiking/LIF Neuron Function
http://ee.princeton.edu/research/prucnal/sites/default/files/06497478.pdf

7

Neuron Models
https://www.research.ibm.com/software/IBMResearch/multimedia/IJCNN2013.neuron-
model.pdf

8

McCulloch-Pitts Neuron Function

Σ f

1x0

x1

x2

x3

wixi∑ hw(x)

activation / output
function

w0

w1

w2

w3

• Algebraic interpretation:
– The output of the neuron is a linear combination of inputs from other neurons,

rescaled by the synaptic weights.
• weights wi correspond to the synaptic weights (activating or inhibiting).
• summation corresponds to combination of signals in the soma.

– It is often transformed through an activation / output function.

9

Activation Functions

1

0

f (z) = 1
1+ e−z

logistic

f (z) = 0 if z < 0
1 if z ≥ 0

"
#
$

%$
unit step

f (z) = zidentity

Perceptron

Logistic Regression
Linear Regression

ramp f 𝑧 = max(0, 𝑧)

ReLU

10

Linear Regression

• Polynomial curve fitting is Linear Regression:
x = φ(x) = [1, x, x2, ..., xM]T h(x) = wTx

• What error/cost function to minimize?

Σ f

1x0

x1

x2

x3

wixi∑ hw(x) =

activation
function

w0

w1

w2

w3 f (z) = z wixi∑

11

E(w) = 1
2

{h(xn,w)− tn}
2

n=1

N

∑ Use gradient descent

Logistic Regression for Binary Classification

• Used for binary classification:
• Labels T = {C1, C2} = {1, 0}
• Output C1 iff h(x) = σ(wTx) > 0.5

• Training set is (x1,t1), (x2,t2), … (xn,tn).
x = [1, x1, x2, ..., xk]T

Σ

1x0

x1

x2

x3

wixi∑ hw(x)

activation
function f

w0

w1

w2

w3
=

1
1+ exp(−wTx)f (z) = 1

1+ exp(−z)

z﹦

12

Logistic Regression for Binary Classification

• Model output can be interpreted as posterior class
probabilities:

• What error/cost function to minimize?
– The negative log-likelihood.

p(C1 | x) =σ (w
Tx) = 1

1+ exp(−wTx))

p(C2 | x) =1−σ (w
Tx) = exp(−wTx)

1+ exp(−wTx)

13

Use gradient descent

Maximum Likelihood

Training set is D = {áxn, tnñ | tn Î {0,1}, n Î 1…N}

Let

Maximum Likelihood (ML) principle: find parameters that
maximize the likelihood of the labels.

• The likelihood function is

• The negative log-likelihood (cross entropy) error function:

p(t |w) = hn
tn (1− hn)

(1−tn)

n=1

N

∏

hn = p(C1 | xn)⇔ hn = p(tn =1| xn) =σ (w
Txn)

E(w) = − ln p(t | x) = − tn lnhn + (1− tn)ln(1− hn){ }
n=1

N

∑
14

Maximum Likelihood Learning
for Logistic Regression

• The ML solution is:

• ML solution is given by ÑE(w) = 0.
– Cannot solve analytically => solve numerically with gradient

based methods: (stochastic) gradient descent, conjugate gradient,
L-BFGS, etc.

– Gradient is (prove it):

∇E(w) = (hn − tn)xn
T

n=1

N

∑

wML = argmaxw p(t |w) = argmin
w
E(w)

convex in w

15

Implementation: Vectorization of LR

• Version 1: Compute gradient component-wise.

– Assume example xn is stored in column X[:,n] in data matrix X.

grad = np.zeros(K)
for n in range(N):

h = sigmoid(w.dot(X[:,n])
temp = h − t[n]
for k in range(K):
grad[k] = grad[k] + temp * X[k,n]

∇E(w) = (hn − tn)xn
T

n=1

N

∑

def sigmoid(x):
return 1 / (1 + np.exp(−x))

16

Implementation: Vectorization of LR

• Version 2: Compute gradient, partially vectorized.

grad = np.zeros(K)
for n in range(N):

grad = grad + (sigmoid(w.dot(X[n])) − t[n]) * X[n]

∇E(w) = (hn − tn)xn
T

n=1

N

∑

def sigmoid(x):
return 1 / (1 + np.exp(−x))

17

Implementation: Vectorization of LR

• Version 3: Compute gradient, vectorized.

grad = X.dot(sigmoid(w.dot(X)) − t)

∇E(w) = (hn − tn)xn
T

n=1

N

∑

def sigmoid(x):
return 1 / (1 + np.exp(−x))

18

Softmax Regression = Logistic Regression
for Multiclass Classification

• Multiclass classification:
T = {C1, C2, ..., CK} = {1, 2, ..., K}.

• Training set is (x1,t1), (x2,t2), … (xn,tn).
x = [1, x1, x2, ..., xM]
t1, t2, … tn Î {1, 2, ..., K}

• One weight vector per class [PRML 4.3.4]:

p(Ck | x) =
exp(wk

Tx))
exp(w j

Tx)
j∑

19

Softmax Regression (K ³ 2)

• Inference:

• Training by minimizing the negative log-likelihood.

)|(maxarg* xkC
CpC

k

=

= argmax
Ck

exp(wk
Tx)

exp(w j
Tx)

j∑
Z(x) a normalization
constant

= argmax
Ck
exp(wk

Tx)

= argmax
Ck
wk

Tx

20

Use gradient descent

Softmax Regression

• The negative log-likelihood error function is:

ED (w) = −
1
N
ln p(tn | xn)

n=1

N

∏
convex in w

= −
1
N

ln
exp(wtn

T xn)
Z(xn)n=1

N

∑

= −
1
N

δk (tn)ln
exp(wk

Txn)
Z(xn)k=1

K

∑
n=1

N

∑

î
í
ì

¹
=

=
tx
tx

xt 0
1

)(dwhere is the Kronecker delta function.

21

Softmax Regression

• The ML solution is:

• The gradient is (prove it):

∇ED (w) = ∇
w1

T ED (w),∇ w2

T ED (w),…,∇ wK

T ED (w)"
#

$
%
T

)(minarg ww
w DML E=

∇wk
ED (w) = −

1
N

δk (tn)− p(Ck | xn)()
n=1

N

∑ xn

= −
1
N

δk (tn)−
exp(wk

Txn)
Z(xn)

⎛

⎝
⎜

⎞

⎠
⎟

n=1

N

∑ xn

22

Implementation

• Need to compute [cost, gradient]:

§ cost

§ gradientk

=> need to compute, for k = 1, ..., K:

§ output

= −
1
N

δk (tn)ln p(Ck | xn)
k=1

K

∑
n=1

N

∑ +
α
2

wk
T

k=1

K

∑ wk

= −
1
N

δk (tn)− p(Ck | xn)()xnT
n=1

N

∑ +αwk
T

p(Ck | xn) =
exp(wk

Txn))
exp(w j

Txn)j∑ Overflow when wk
Txn

are too large.

23

Implementation: Preventing Overflows

• Subtract from each product wk
Txn the maximum product:

c =max
1≤k≤K

wk
Txn

p(Ck | xn) =
exp(wk

Txn − c))
exp(w j

Txn − c)j∑

24

Vectorization of Softmax

• Need to compute [cost, gradient]:

§ cost

§ gradientk

=> compute ground truth matrix G such that G[k,n] = 𝛿k(tn)

from scipy.sparse import coo_matrix
groundTruth = coo_matrix((np.ones(N, dtype = np.uint8),

(labels, np.arange(N)))).toarray()

= −
1
N

δk (tn)ln p(Ck | xn)
k=1

K

∑
n=1

N

∑ +
α
2

wk
T

k=1

K

∑ wk

= −
1
N

δk (tn)− p(Ck | xn)()xnT
n=1

N

∑ +αwk
T

25

Vectorization of Softmax

• Compute cost

– Compute matrix of 𝐰,-𝐱/.

– Compute matrix of 𝐰,-𝐱/ − 𝑐/.

– Compute matrix of exp(𝐰,-𝐱/ − 𝑐/).

– Compute matrix of ln 𝑝(𝐶,|𝐱/).

– Compute log-likelihood.

= −
1
N

δk (tn)ln p(Ck | xn)
k=1

K

∑
n=1

N

∑ +
α
2

wk
T

k=1

K

∑ wk

26

Vectorization of Softmax

• Compute gradk

§ Gradient = [grad1 | grad2 | … | gradK]

– Compute matrix of 𝑝(𝐶,|𝐱/).

– Compute matrix of gradient of data term.

– Compute matrix of gradient of regularization term.

= −
1
N

δk (tn)− p(Ck | xn)()xnT
n=1

N

∑ +αwk
T

27

Vectorization of Softmax

• Useful Numpy functions:
– np.dot()
– np.amax()
– np.argmax()
– np.exp()
– np.sum()
– np.log()
– np.mean()

28

