CS 6890: Deep Learning

Linear Regression Logistic Regression

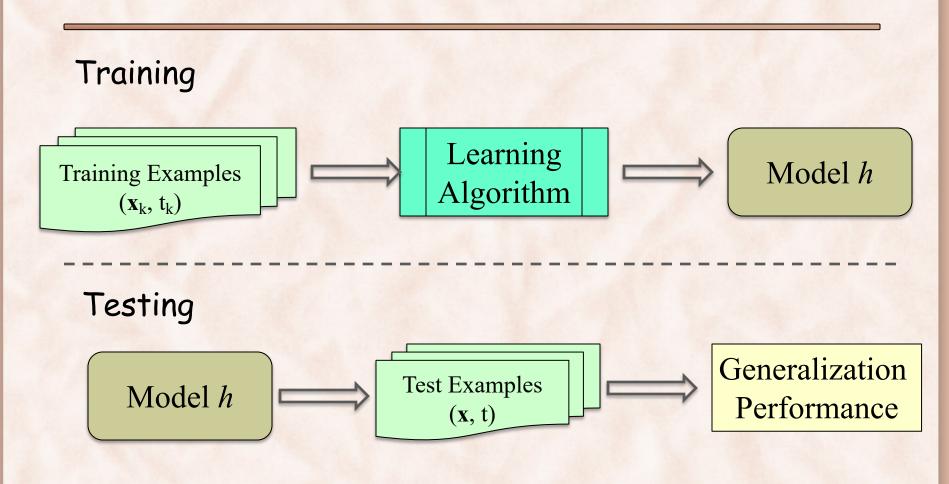
Razvan C. Bunescu School of Electrical Engineering and Computer Science *bunescu@ohio.edu*

Supervised Learning

- **Task** = learn an (unkown) function $t : X \rightarrow T$ that maps input instances $\mathbf{x} \in X$ to output targets $t(\mathbf{x}) \in T$:
 - Classification:
 - The output $t(\mathbf{x}) \in T$ is one of a finite set of discrete categories.
 - Regression:
 - The output $t(\mathbf{x}) \in T$ is continuous, or has a continuous component.
- Target function t(x) is known (only) through (noisy) set of training examples:

 $(\mathbf{x}_1, t_1), (\mathbf{x}_2, t_2), \dots (\mathbf{x}_n, t_n)$

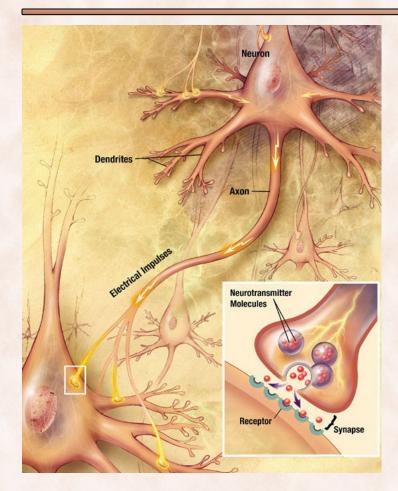
Supervised Learning



Parametric Approaches to Supervised Learning

- **Task** = build a function $h(\mathbf{x})$ such that:
 - -h matches t well on the training data:
 - =>h is able to fit data that it has seen.
 - *h* also matches *t* well on test data:
 h is able to generalize to unseen data.
- **Task** = choose *h* from a "nice" *class of functions* that depend on a vector of parameters w:
 - $-h(\mathbf{x}) \equiv h_{\mathbf{w}}(\mathbf{x}) \equiv h(\mathbf{w},\mathbf{x})$
 - what classes of functions are "nice"?

Neurons



Soma is the central part of the neuron:

• where the input signals are combined.

Dendrites are cellular extensions:

• where majority of the input occurs.

Axon is a fine, long projection:

• carries nerve signals to other neurons.

Synapses are molecular structures between axon terminals and other neurons:

• where the communication takes place.

Neuron Models

https://www.research.ibm.com/software/IBMResearch/multimedia/IJCNN2013.neuron-

model.pdf	Year	Model Name	Reference
	1907	Integrate and fire	[13]
	1943	McCulloch and Pitts	[11]
	1952	Hodgkin-Huxley	[12]
	1958	Perceptron	[14]
	1961	Fitzhugh-Nagumo	[15]
	1965	Leaky integrate-and-fire	[16]
	1981	Morris-Lecar	[17]
	1986	Quadratic integrate-and-fire	[18]
	1989	Hindmarsh-Rose	[19]
	1998	Time-varying integrate-and-fire model	[20]
	1999	Wilson Polynomial	[21]
	2000	Integrate-and-fire or burst	[22]
	2001	Resonate-and-fire	[23]
	2003	Izhikevich	[24]
	2003	Exponential integrate-and-fire	[25]
	2004	Generalized integrate-and-fire	[26]
	2005	Adaptive exponential integrate-and-fire	[27]
	2009	Mihalas-Neibur	[28]

Spiking/LIF Neuron Function

http://ee.princeton.edu/research/prucnal/sites/default/files/06497478.pdf

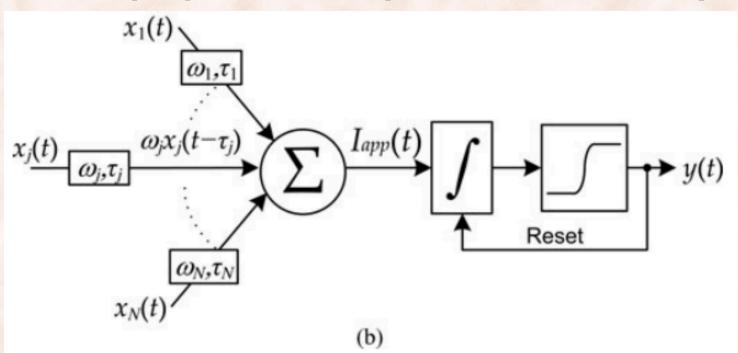


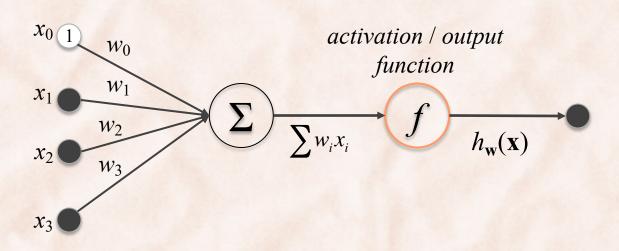
Fig. 2. (a) Illustration and (b) functional description of a leaky integrate-andfire neuron. Weighted and delayed input signals are summed into the input current $I_{app}(t)$, which travel to the soma and perturb the internal state variable, the voltage V. Since V is hysteric, the soma performs integration and then applies a threshold to make a spike or no-spike decision. After a spike is released, the voltage V is reset to a value V_{reset} . The resulting spike is sent to other neurons in the network.

Neuron Models

https://www.research.ibm.com/software/IBMResearch/multimedia/IJCNN2013.neuron-

model.pd	^f Year	Model Name	Reference
	1907	Integrate and fire	[13]
	1943	McCulloch and Pitts	[11]
	1952	Hodgkin-Huxley	[12]
	1958	Perceptron	[14]
	1961	Fitzhugh-Nagumo	[15]
	1965	Leaky integrate-and-fire	[16]
	1981	Morris-Lecar	[17]
	1986	Quadratic integrate-and-fire	[18]
	1989	Hindmarsh-Rose	[19]
	1998	Time-varying integrate-and-fire model	[20]
	1999	Wilson Polynomial	[21]
	2000	Integrate-and-fire or burst	[22]
	2001	Resonate-and-fire	[23]
	2003	Izhikevich	[24]
	2003	Exponential integrate-and-fire	[25]
	2004	Generalized integrate-and-fire	[26]
	2005	Adaptive exponential integrate-and-fire	[27]
	2009	Mihalas-Neibur	[28]

McCulloch-Pitts Neuron Function



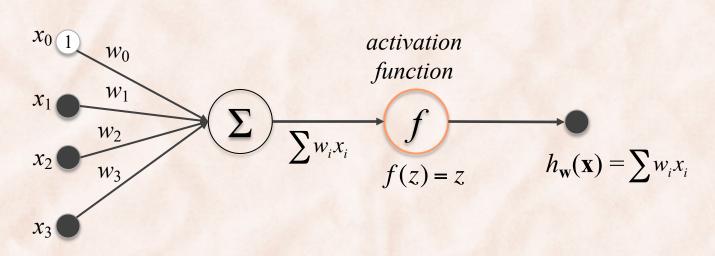
- Algebraic interpretation:
 - The output of the neuron is a linear combination of inputs from other neurons, rescaled by the synaptic weights.
 - weights w_i correspond to the synaptic weights (activating or inhibiting).
 - summation corresponds to combination of signals in the soma.
 - It is often transformed through an **activation** / **output function**.

Activation Functions

unit step
$$f(z) = \begin{cases} 0 & \text{if } z < 0 \\ 1 & \text{if } z \ge 0 \end{cases}$$

Perceptron
 $logistic f(z) = \frac{1}{1 + e^{-z}}$
Logistic Regression
0
10

Linear Regression

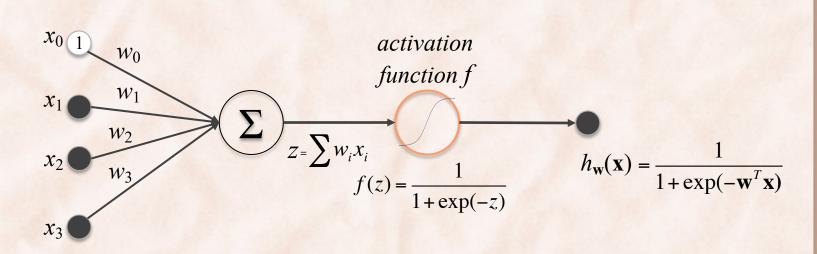


- Polynomial curve fitting is Linear Regression: $\mathbf{x} = \varphi(x) = [1, x, x^2, ..., x^M]^T$ $h(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$
- What error/cost function to minimize?

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{h(\mathbf{x}_n, \mathbf{w}) - t_n\}^2$$

Use gradient descent

Logistic Regression for Binary Classification



- Used for binary classification:
 - Labels $T = \{C_1, C_2\} = \{1, 0\}$
 - Output C_1 iff $h(\mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x}) > 0.5$
- Training set is $(\mathbf{x}_1, \mathbf{t}_1), (\mathbf{x}_2, \mathbf{t}_2), \dots (\mathbf{x}_n, \mathbf{t}_n).$ $\mathbf{x} = [1, x_1, x_2, \dots, x_k]^T$

Logistic Regression for Binary Classification

Model output can be interpreted as posterior class probabilities:

$$p(C_1 | \mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^T \mathbf{x}))}$$

$$p(C_2 | \mathbf{x}) = 1 - \sigma(\mathbf{w}^T \mathbf{x}) = \frac{\exp(-\mathbf{w}^T \mathbf{x})}{1 + \exp(-\mathbf{w}^T \mathbf{x})}$$

- What error/cost function to minimize?
 - The negative log-likelihood.

Use gradient descent

Maximum Likelihood

Training set is $D = \{ \langle \mathbf{x}_n, \mathbf{t}_n \rangle \mid \mathbf{t}_n \in \{0, 1\}, n \in 1...N \}$

Let
$$h_n = p(C_1 | \mathbf{x}_n) \Leftrightarrow h_n = p(t_n = 1 | \mathbf{x}_n) = \sigma(\mathbf{w}^T \mathbf{x}_n)$$

Maximum Likelihood (ML) principle: find parameters that maximize the likelihood of the labels.

- The likelihood function is $p(\mathbf{t} | \mathbf{w}) = \prod_{n=1}^{N} h_n^{t_n} (1 h_n)^{(1 t_n)}$
- The negative log-likelihood (cross entropy) error function: $E(\mathbf{w}) = -\ln p(\mathbf{t} | \mathbf{x}) = -\sum_{n=1}^{N} \left\{ t_n \ln h_n + (1 - t_n) \ln(1 - h_n) \right\}$

Maximum Likelihood Learning for Logistic Regression

• The ML solution is:

convex in **w**

 $\mathbf{w}_{ML} = \arg \max_{\mathbf{w}} p(\mathbf{t} | \mathbf{w}) = \arg \min_{\mathbf{w}} E(\mathbf{w})$

- ML solution is given by $\nabla E(\mathbf{w}) = 0$.
 - Cannot solve analytically => solve numerically with gradient based methods: (stochastic) gradient descent, conjugate gradient, L-BFGS, etc.
 - Gradient is (prove it):

$$\nabla E(\mathbf{w}) = \sum_{n=1}^{N} (h_n - t_n) \mathbf{x}_n^T$$

Implementation: Vectorization of LR

• Version 1: Compute gradient component-wise.

$$\nabla E(\mathbf{w}) = \sum_{n=1}^{N} (h_n - t_n) \mathbf{x}_n^T$$

- Assume example \mathbf{x}_n is stored in column X[:,n] in data matrix X.

```
grad = np.zeros(K)
for n in range(N):
h = sigmoid(w.dot(X[:,n]))
temp = h - t[n]
for k in range(K):
grad[k] = grad[k] + temp * X[k,n]
```

def sigmoid(x):
 return 1 / (1 + np.exp(-x))

Implementation: Vectorization of LR

• Version 2: Compute gradient, partially vectorized.

$$\nabla E(\mathbf{w}) = \sum_{n=1}^{N} (h_n - t_n) \mathbf{x}_n^T$$

grad = np.zeros(K)
for n in range(N):
 grad = grad + (sigmoid(w.dot(X[n])) - t[n]) * X[n]

def sigmoid(x):
 return 1 / (1 + np.exp(-x))

Implementation: Vectorization of LR

• Version 3: Compute gradient, vectorized.

$$\nabla E(\mathbf{w}) = \sum_{n=1}^{N} (h_n - t_n) \mathbf{x}_n^T$$

grad = X.dot(sigmoid(w.dot(X)) - t)

def sigmoid(x):
 return 1 / (1 + np.exp(-x))

Softmax Regression = Logistic Regression for Multiclass Classification

• Multiclass classification:

 $T = \{C_1, C_2, ..., C_K\} = \{1, 2, ..., K\}.$

- Training set is $(\mathbf{x}_1, t_1), (\mathbf{x}_2, t_2), \dots (\mathbf{x}_n, t_n)$. $\mathbf{x} = [1, x_1, x_2, \dots, x_M]$ $t_1, t_2, \dots, t_n \in \{1, 2, \dots, K\}$
- One weight vector per class [PRML 4.3.4]: $p(C_k | \mathbf{x}) = \frac{\exp(\mathbf{w}_k^T \mathbf{x}))}{\sum_i \exp(\mathbf{w}_j^T \mathbf{x})}$

Softmax Regression ($K \ge 2$)

• Inference:

$$C_* = \arg \max_{C_k} p(C_k | \mathbf{x})$$

$$= \arg \max_{C_k} \sum_{j=1}^{c_k} \exp(\mathbf{w}_k^T \mathbf{x})$$

$$= \arg \max_{C_k} \exp(\mathbf{w}_k^T \mathbf{x})$$

$$= \arg \max_{C_k} \exp(\mathbf{w}_k^T \mathbf{x})$$

$$= \arg \max_{C_k} \mathbf{w}_k^T \mathbf{x}$$

• Training by minimizing the negative log-likelihood.

Use gradient descent

Softmax Regression

• The negative log-likelihood error function is:

$$E_D(\mathbf{w}) = -\frac{1}{N} \ln \prod_{n=1}^N p(t_n | \mathbf{x}_n)$$

= $-\frac{1}{N} \sum_{n=1}^N \ln \frac{\exp(\mathbf{w}_{t_n}^T \mathbf{x}_n)}{Z(\mathbf{x}_n)}$
= $-\frac{1}{N} \sum_{n=1}^N \sum_{k=1}^K \delta_k(t_n) \ln \frac{\exp(\mathbf{w}_k^T \mathbf{x}_n)}{Z(\mathbf{x}_n)}$

convex in w

where $\delta_t(x) = \begin{cases} 1 & x = t \\ 0 & x \neq t \end{cases}$ is the *Kronecker delta* function.

Softmax Regression

• The ML solution is:

 $\mathbf{w}_{ML} = \arg\min_{\mathbf{w}} E_D(\mathbf{w})$

• The gradient is (prove it):

$$\nabla_{\mathbf{w}_{k}} E_{D}(\mathbf{w}) = -\frac{1}{N} \sum_{n=1}^{N} \left(\delta_{k}(t_{n}) - p(C_{k} | \mathbf{x}_{n}) \right) \mathbf{x}_{n}$$
$$= -\frac{1}{N} \sum_{n=1}^{N} \left(\delta_{k}(t_{n}) - \frac{\exp(\mathbf{w}_{k}^{T} \mathbf{x}_{n})}{Z(\mathbf{x}_{n})} \right) \mathbf{x}_{n}$$

$$\nabla E_D(\mathbf{w}) = \left[\nabla_{\mathbf{w}_1}^T E_D(\mathbf{w}), \nabla_{\mathbf{w}_2}^T E_D(\mathbf{w}), \dots, \nabla_{\mathbf{w}_K}^T E_D(\mathbf{w})\right]^T$$

Implementation

• Need to compute [cost, gradient]:

•
$$cost = -\frac{1}{N} \sum_{n=1}^{N} \sum_{k=1}^{K} \delta_k(t_n) \ln p(C_k | \mathbf{x}_n) + \frac{\alpha}{2} \sum_{k=1}^{K} \mathbf{w}_k^T \mathbf{w}_k$$

• $gradient_k = -\frac{1}{N} \sum_{n=1}^{N} (\delta_k(t_n) - p(C_k | \mathbf{x}_n)) \mathbf{x}_n^T + \alpha \mathbf{w}_k^T$

=> need to compute, for k = 1, ..., K:

• output
$$p(C_k | \mathbf{x}_n) = \frac{\exp(\mathbf{w}_k^T \mathbf{x}_n))}{\sum_j \exp(\mathbf{w}_j^T \mathbf{x}_n)}$$
 Overflow when $\mathbf{w}_k^T \mathbf{x}_n$
are too large.

Implementation: Preventing Overflows

• Subtract from each product $\mathbf{w}_k^T \mathbf{x}_n$ the maximum product:

 $c = \max_{1 \le k \le K} \mathbf{w}_k^T \mathbf{x}_n$

$$p(C_k | \mathbf{x}_n) = \frac{\exp(\mathbf{w}_k^T \mathbf{x}_n - c))}{\sum_j \exp(\mathbf{w}_j^T \mathbf{x}_n - c)}$$

• Need to compute [cost, gradient]:

•
$$cost = -\frac{1}{N} \sum_{n=1}^{N} \sum_{k=1}^{K} \delta_k(t_n) \ln p(C_k | \mathbf{x}_n) + \frac{\alpha}{2} \sum_{k=1}^{K} \mathbf{w}_k^T \mathbf{w}_k$$

• $gradient_k = -\frac{1}{N} \sum_{n=1}^{N} (\delta_k(t_n) - p(C_k | \mathbf{x}_n)) \mathbf{x}_n^T + \alpha \mathbf{w}_k^T$

=> compute ground truth matrix G such that $G[k,n] = \delta_k(t_n)$

- Compute $cost = -\frac{1}{N} \sum_{n=1}^{N} \sum_{k=1}^{K} \delta_k(t_n) \ln p(C_k | \mathbf{x}_n) + \frac{\alpha}{2} \sum_{k=1}^{K} \mathbf{w}_k^T \mathbf{w}_k$
 - Compute matrix of $\mathbf{w}_k^T \mathbf{x}_n$.
 - Compute matrix of $\mathbf{w}_k^T \mathbf{x}_n c_n$.
 - Compute matrix of $\exp(\mathbf{w}_k^T \mathbf{x}_n c_n)$.
 - Compute matrix of $\ln p(C_k | \mathbf{x}_n)$.
 - Compute log-likelihood.

• Compute
$$\operatorname{grad}_k = -\frac{1}{N} \sum_{n=1}^{N} (\delta_k(t_n) - p(C_k | \mathbf{x}_n)) \mathbf{x}_n^T + \alpha \mathbf{w}_k^T$$

- **Gradient** = $[\mathbf{grad}_1 | \mathbf{grad}_2 | \dots | \mathbf{grad}_K]$
- Compute matrix of $p(C_k | \mathbf{x}_n)$.
- Compute matrix of gradient of data term.
- Compute matrix of gradient of regularization term.

- Useful Numpy functions:
 - np.dot()
 - np.amax()
 - np.argmax()
 - np.exp()
 - np.sum()
 - np.log()
 - np.mean()