
CS 6890: Deep Learning

Razvan C. Bunescu

School of Electrical Engineering and Computer Science

bunescu@ohio.edu

Gradient Descent Algorithms

Machine Learning is Optimization

• Parametric ML involves minimizing an objective function
J(w):
– Also called cost function, loss function, or error function.
– Want to find !𝐰 = argmin

𝐰
𝐽(𝐰)

• Numerical optimization procedure:
1. Start with some guess for w0, set 𝜏 = 0.
2. Update w𝜏 to w𝜏+1 such that J(w𝜏+1) ≤ J(w𝜏).
3. Increment 𝜏 = 𝜏 + 1.
4. Repeat from 2 until J cannot be improved anymore.

2

Gradient-based Optimization

• How to update w𝜏 to w𝜏+1 such that J(w𝜏+1) ≤ J(w𝜏)?

• Move w in the direction of steepest descent:
𝐰./0 =𝐰. + 𝜂𝐠

– g is the direction of steepest descent, i.e. direction along which J
decreases the most.

– 𝜂 is the learning rate and controls the magnitude of the change.

3

Gradient-based Optimization

• Move w in the direction of steepest descent:
𝐰./0 =𝐰. + 𝜂𝐠

• What is the direction of steepest descent of J(w) at w𝜏?
– The gradient ∇J(w) is in the direction of steepest ascent.
– Set g = −∇J(w) => the gradient descent update:

𝐰./0 =𝐰. − 𝜂𝛻𝐽(𝐰.)

4

Gradient Descent Algorithm

• Want to minimize a function J : Rn ® R.
– J is differentiable and convex.
– compute gradient of J i.e. direction of steepest increase:

1. Set learning rate 𝜂 = 0.001 (or other small value).
2. Start with some guess for w0, set 𝜏 = 0.
3. Repeat for epochs E or until J does not improve:
4. 𝜏 = 𝜏 + 1.
5. 𝐰./0 =𝐰. − 𝜂𝛻𝐽 𝐰.

5

𝛻𝐽 𝐰 =
𝜕𝐽
𝜕𝑤0

,
𝜕𝐽
𝜕𝑤;

, … ,
𝜕𝐽
𝜕𝑤=

Gradient Descent: Large Updates

6

Gradient Descent: Small Updates

7https://www.safaribooksonline.com/library/view/hands-on-machine-learning

The Learning Rate

1. Set learning rate 𝜂 = 0.001 (or other small value).
2. Start with some guess for w0, set 𝜏 = 0.
3. Repeat for epochs E or until J does not improve:
4. 𝜏 = 𝜏 + 1.
5. 𝐰./0 =𝐰. − 𝜂𝛻𝐽 𝐰.

§ How big should the learning rate be?
o If learning rate too small => slow convergence.
o If learning rate too big => oscillating behavior => may not even

converge.

8

Learning Rate too Small

9

Learning Rate too Large

10

Learning Rates vs. GD Behavior

11

http://scs.ryerson.ca/~aharley/neural-networks/

The Learning Rate

• How big should the learning rate be?
– If learning rate too big => oscillating behavior.
– If learning rate too small => hinders convergence.

o Use line search (backtracking line search, conjugate gradient, …).
o Use second order methods (Newton’s method, L-BFGS, ...).

• Requires computing or estimating the Hessian.
o Use a simple learning rate annealing schedule:

– Start with a relatively large value for the learning rate.
– Decrease the learning rate as a function of the number of epochs or

as a function of the improvement in the objective.
o Use adaptive learning rates:

• Adagrad, Adadelta, RMSProp, Adam.
12

Gradient Descent: Nonconvex Objective

13

Saddle point

Convex Multivariate Objective

14

w0

w1

Gradient Step and Contour Lines

15

w0

w1

Gradient Descent: Nonconvex Objectives

16

Gradient Descent & Plateaus

17

Gradient Descent & Saddle Points

18

Gradient Descent & Ravines

19

Gradient Descent & Ravines

• Ravines are areas where the surface curves much more
steeply in one dimension than another.
– Common around local optima.
– GD oscillates across the slopes of the ravines, making slow progress

towards the local optimum along the bottom.

• Use momentum to help accelerate GD in the relevant
directions and dampen oscillations:
– Add a fraction of the past update vector to the current update vector.

• The momentum term increases for dimensions whose previous
gradients point in the same direction.

• It reduces updates for dimensions whose gradients change sign.
• Also reduces the risk of getting stuck in local minima.

20

Gradient Descent & Momentum

21

Vanilla Gradient Descent:

𝐯./0 = 𝜂𝛻𝐽(𝐰.)

𝐰./0 =𝐰. − 𝐯./0

Gradient Descent w/ Momentum:

𝐯./0 = 𝛾𝐯. + 𝜂𝛻𝐽(𝐰.)

𝐰./0 =𝐰. − 𝐯./0

𝛾 is usually set to 0.9 or similar.

Momentum & Nesterov Accelerated Gradient

22

GD with Momentum:

𝐯./0 = 𝛾𝐯. + 𝜂𝛻𝐽(𝐰.)

𝐰./0 =𝐰. − 𝐯./0

Nesterov Accelerated Gradient:

𝐯./0 = 𝛾𝐯. + 𝜂𝛻𝐽(𝐰.− 𝛾𝐯.)

𝐰./0 =𝐰. − 𝐯./0

By making an anticipatory update, NAGs prevents GD from going too fast
=> significant improvements when training RNNs.

Gradient Descent Optimization Algorithms

• Momentum.
• Nesterov Accelerated Gradient (NAG).
• Adaptive learning rates methods:

– Idea is to perform larger updates for infrequent params and smaller
updates for frequent params, by accumulating previous gradient
values for each parameter.

• Adagrad:
– Divide update by sqrt of sum of squares of past gradients.

• Adadelta.
• RMSProp.
• Adaptive Moment Estimation (Adam)

23

AdaGrad

• Optimized for problems with sparse features.

• Per-parameter learning rate: make smaller updates for
params that are updated more frequently:

• Require less tuning of the learning rate compared with
SGD.

24

𝑤@ = 𝑤@ − 𝜂
AB,C
D/EB,C

where 𝐺G,@ = ∑.I0G 𝑔.,@;

𝑔G,@ =
𝜕𝐽(𝐰(G))
𝜕𝑤@

RMSProp

• Element-wise gradient: 𝑔@G= 𝛻KC𝐽(𝐰G)
• Gradient is 𝐠G = [𝑔0G, 𝑔;G , …, 𝑔MG]
• Element-wise square gradient: 𝐠G; = 𝐠G ∘ 𝐠G

RMSProp:

EG 𝐠; = 𝛾EGP0 𝐠; + (1 − 𝛾) 𝐠G;

𝐰G/0 =𝐰G −
R

SB 𝐠T /D
𝐠G

𝛾 is usually set to 0.9, 𝜂 is set to 0.001

25

Adam: Adaptive Moment Estimation

• Maintain an exponentially decaying average of past
gradients (1st m.) and past squared gradients (2nd m.):
1) 𝐦G = 𝛽0 𝐦GP0 + (1 − 𝛽0) 𝐠G
2) 𝐯G = 𝛽; 𝐯GP0 + (1 − 𝛽;) 𝐠G;

• Biased towards 0 during initial steps, use bias-corrected
first and second order estimates:

1) !𝐦G =
𝐦B
0PWXB

2) Y𝐯G =
𝐯B

0PWTB

26

Adam: Adaptive Moment Estimation

• First and second moment:
𝐦G = 𝛽0 𝐦GP0 + (1 − 𝛽0) 𝐠G
𝐯G = 𝛽; 𝐯GP0 + (1 − 𝛽;) 𝐠G;

• Bias-correction:

!𝐦G =
𝐦B
0PWXB

and Y𝐯G =
𝐯B

0PWTB

Adam:

𝐰G/0 =𝐰G −
R
Y𝐯B/D

!𝐦G

27

Adam : Adaptive Moment Estimation

• Authors (Kingma & Ba) proposed default values:
– 𝛽0 = 0.9
– 𝛽; = 0.999
– 𝜂 = 10-8

• However, Dozat & Manning in “Deep Biaffine Attention for Neural
Dependency Parsing” (ICLR 2017):

– We find that the value for 𝛽; recommended by Kingma & Ba – which controls the
decay rate for this moving average – is too high for this task (and we suspect more
generally). When this value is very large, the magnitude of the current update is
heavily influenced by the larger magnitude of gradients very far in the past, with
the effect that the optimizer can’t adapt quickly to recent changes in the model.
Thus we find that setting 𝛽; to .9 instead of .999 makes a large positive impact on
final performance."

28

Adaptive methods vs. SGD

• However, Wilson et al. in “The Marginal Value of Adaptive
Gradient Methods in Machine Learning” (NIPS 2017) find
that:
– Solutions found by adaptive methods generalize worse (often

significantly worse) than SGD, even when these solutions have
better training performance.

• These results suggest that practitioners should reconsider the use
of adaptive methods to train neural networks.

29

Adaptive methods vs. SGD

• Luo et al. in “Adaptive Gradient Methods with Dynamic
Bound of Learning Rate” (ICLR 2019) propose AdaBound:
– We provide new variants of Adam and AMSGrad, called AdaBound and

AMSBound respectively, which employ dynamic bounds on learning rates
to achieve a gradual and smooth transition from adaptive methods to SGD
and give a theoretical proof of convergence.

– Experimental results show that new variants can eliminate the
generalization gap between adaptive methods and SGD and maintain higher
learning speed early in training at the same time. Moreover, they can bring
significant improvement over their prototypes, especially on complex deep
networks.

30

Visualization

• Adagrad, RMSprop, Adadelta, and Adam are very similar
algorithms that do well in similar circumstances.
– Insofar, Adam might be the best overall choice.

31

Variants of Gradient Descent

𝐰./0 =𝐰. − 𝜂 𝛻𝐽 𝐰.

• Depending on how much data is used to compute the
gradient at each step:
– Batch gradient descent:

• Use all the training examples.
– Stochastic gradient descent (SGD).

• Use one training example, update after each.
– Minibatch gradient descent.

• Use a constant number of training examples (minibatch).

32

Batch Gradient Descent

• Sum-of-squares error:

33

𝐽 𝐰 =
1
2𝑁

\
=I0

]

ℎ𝐰(𝐱(=)) − 𝑡𝑛
;

𝐰./0 =𝐰. − 𝜂 𝛻𝐽 𝐰.

𝐰./0 =𝐰. − 𝜂
1
𝑁
\
=I0

]

ℎ𝐰(𝐱(=)) − 𝑡𝑛 𝐱(=)

Stochastic Gradient Descent

• Sum-of-squares error:

• Update parameters w after each example, sequentially:
=> the least-mean-square (LMS) algorithm.

34

𝐽 𝐰 =
1
2𝑁

\
=I0

]

ℎ𝐰(𝐱(=)) − 𝑡𝑛
;
=

1
2𝑁

\
=I0

]

𝐽 𝐰., 𝐱(=)

𝐰./0 =𝐰. − 𝜂 𝛻𝐽 𝐰., 𝐱(=)

𝐰./0 =𝐰. − 𝜂 ℎ𝐰(𝐱(=)) − 𝑡𝑛 𝐱(=)

Batch GD vs. Stochastic GD

• Accuracy:

• Time complexity:

• Memory complexity:

• Online learning:

35

Batch GD vs. Stochastic GD

36

Pre-processing Features

• Features may have very different scales, e.g. x1 = rooms
vs. x2 = size in sq ft.
– Right (different scales): GD goes first towards the bottom of the

bowl, then slowly along an almost flat valley.
– Left (scaled features): GD goes straight towards the minimum.

37

Feature Scaling

• Scaling between [0, 1] or [−1, +1]:
– For each feature xj, compute minj and maxj over the training

examples.
– Scale x(n)

j as follows:

• Scaling to standard normal distribution:
– For each feature xj, compute sample 𝜇j and sample 𝜎j over the

training examples.
– Scale x(n)

j as follows:

38

Implementation: Gradient Checking

• Want to minimize J(θ), where θ is a scalar.

• Mathematical definition of derivative:

• Numerical approximation of derivative:

d
dθ

J(θ) = lim
ε→∞

J(θ +ε)− J(θ −ε)
2ε

d
dθ

J(θ) ≈ J(θ +ε)− J(θ −ε)
2ε

where ε = 0.0001

39

Implementation: Gradient Checking

• If θ is a vector of parameters θi,
– Compute numerical derivative with respect to each θi.
– Aggregate all derivatives into numerical gradient Gnum(θ).

• Compare numerical gradient Gnum(θ) with implementation
of gradient Gimp(θ):

Gnum (θ)−Gimp(θ)
Gnum (θ)+Gimp(θ)

≤10−6

40

