CS 6890: Deep Learning

Principal Component Analysis

Razvan C. Bunescu

School of Electrical Engineering and Computer Science

> bunescu@ohio.edu

Principal Component Analysis (PCA)

- A technique widely used for:
- dimensionality reduction.
- data compression.
- feature extraction.
- data visualization.
- Two equivalent definitions of PCA:

1) Project the data onto a lower dimensional space such that the variance of the projected data is maximized.
2) Project the data onto a lower dimensional space such that the mean squared distance between data points and their projections (average projection cost) is minimized.

Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

PCA (Maximum Variance)

- Let $\mathrm{X}=\left\{\mathbf{x}_{n}\right\}_{1 \leq n \leq \mathrm{N}}$ be a set of observations:
- Each $\mathbf{x}_{n} \in \mathrm{R}^{D}$ (D is the dimensionality of \mathbf{x}_{n}).
- Project X onto an M dimensional space $(M<D)$ such that the variance of the projected X is maximized.
- Minimum error formulation leads to the same solution [PRML 12.1.2].
- shows how PCA can be used for compression.
- Work out solution for $M=1$, then generalize to any $M<D$.

PCA (Maximum Variance, $M=1$)

- The lower dimensional space is defined by a vector $\mathbf{u}_{1} \in \mathrm{R}^{D}$.
- Only direction is important \Rightarrow choose $\left\|\mathbf{u}_{1}\right\|=1$.
- Each \mathbf{x}_{n} is projected onto a scalar $\mathbf{u}_{1}^{T} \mathbf{x}_{n}$
- The (sample) mean of the data is:

$$
\overline{\mathbf{x}}=\frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_{n}
$$

- The (sample) mean of the projected data is $\mathbf{u}_{1}^{T} \overline{\mathbf{x}}$

PCA (Maximum Variance, $M=1$)

- The (sample) variance of the projected data:

$$
\frac{1}{N} \sum_{n=1}^{N}\left(\mathbf{u}_{1}^{T} \mathbf{x}_{n}-\mathbf{u}_{1}^{T} \overline{\mathbf{x}}\right)^{2}=\mathbf{u}_{1}^{T} \boldsymbol{\Sigma} \mathbf{u}_{1}
$$

where $\boldsymbol{\Sigma}$ is the data covariance matrix:

$$
\boldsymbol{\Sigma}=\frac{1}{N} \sum_{n=1}^{N}\left(\mathbf{x}_{n}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{n}-\overline{\mathbf{x}}\right)^{T}
$$

- Optimization problem is:

> minimize:

$$
-\mathbf{u}_{1}^{T} \Sigma \mathbf{u}_{1}
$$

subject to:

$$
\mathbf{u}_{1}^{T} \mathbf{u}_{1}=1
$$

PCA (Maximum Variance, $M=1$)

- Lagrangian function:

$$
L_{P}\left(\mathbf{u}_{1}, \lambda_{1}\right)=-\mathbf{u}_{1}^{T} \Sigma \mathbf{u}_{1}+\lambda_{1}\left(\mathbf{u}_{1}^{T} \mathbf{u}_{1}-1\right)
$$

where λ_{1} is the Lagrangian multiplier for constraint $\mathbf{u}_{1}^{T} \mathbf{u}_{1}=1$

- Solve:

$$
\begin{aligned}
\frac{\partial L_{P}}{\partial \mathbf{u}_{1}}=0 & \Rightarrow \Sigma \mathbf{u}_{1}=\lambda_{1} \mathbf{u}_{1} \Rightarrow\left\{\begin{array}{l}
\mathbf{u}_{1} \text { is an eigenvector of } \boldsymbol{\Sigma} \\
\lambda_{1} \text { is an eigenvalue of } \boldsymbol{\Sigma}
\end{array}\right. \\
& \Rightarrow-\mathbf{u}_{1}^{T} \boldsymbol{\Sigma} \mathbf{u}_{1}=-\lambda_{1} \mathbf{u}_{1}^{T} \mathbf{u}_{1}=-\lambda_{1} \\
& \Rightarrow \lambda_{1} \text { is the largest eigenvalue of } \boldsymbol{\Sigma}
\end{aligned}
$$

PCA (Maximum Variance, $M=1$)

- λ_{1} is the largest eigenvalue of $\boldsymbol{\Sigma}$.
- \mathbf{u}_{1} is the eigenvector corresponding to λ_{1} :
- also called the first principal component.
- For $M<D$ dimensions:
- $\mathbf{u}_{1} \mathbf{u}_{2} \ldots \mathbf{u}_{M}$ are the eigenvectors corresponding to the largest eigenvalues $\lambda_{1} \lambda_{2} \ldots \lambda_{M}$ of $\boldsymbol{\Sigma}$.
- proof by induction.

PCA on Normalized Data

- Preprocess data $X=\left\{\mathbf{x}^{(i)}\right\}_{1 \leq i \leq \mathrm{m}}$ such that:
- features have the same mean (0).
- features have the same variance (1).

1. Let $\mu=\frac{1}{m} \sum_{i=1}^{m} x^{(i)}$.
2. Replace each $x^{(i)}$ with $x^{(i)}-\mu$.
3. Let $\sigma_{j}^{2}=\frac{1}{m} \sum_{i}\left(x_{j}^{(i)}\right)^{2}$
4. Replace each $x_{j}^{(i)}$ with $x_{j}^{(i)} / \sigma_{j}$.

PCA on Natural Images

- Stationarity: the statistics in one part of the image should be the same as any other.
\Rightarrow no need for variance normalization.
\Rightarrow do mean normalization by subtracting from each image its mean intensity.

$$
\begin{aligned}
\mu^{(i)} & :=\frac{1}{n} \sum_{j=1}^{n} x_{j}^{(i)} \\
x_{j}^{(i)} & :=x_{j}^{(i)}-\mu^{(i)}
\end{aligned}
$$

PCA on Normalized Data

- The covariance matrix is:

$$
\Sigma=\frac{1}{m} X X^{T}=\frac{1}{m} \sum_{i=1}^{m} \mathbf{x}^{(i)}\left(\mathbf{x}^{(i)}\right)^{T}
$$

- The eigenvectors are:

$$
\Sigma \mathbf{u}_{j}=\lambda_{j} \mathbf{u}_{j} \text { where } \lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{D} \text { and } u_{j}^{T} u_{j}=1
$$

- Equivalent with:

$$
\begin{aligned}
& \Sigma U=U \Lambda \\
& U=\left[u_{1}, u_{2}, \ldots, u_{D}\right] \quad \lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{D} \text { and } U^{T} U=I \\
& \Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{D}\right)
\end{aligned}
$$

PCA on Normalized Data

- U is an orthogonal (rotation) matrix, i.e. $U^{T} U=I$.
- The full transformation (rotation) of $x^{(i)}$ through PCA is:

$$
\begin{aligned}
y^{(i)} & =U^{T} x^{(i)} \\
& \Rightarrow x^{(i)}=U y^{(i)}
\end{aligned}
$$

- The k-dimensional projection of $x^{(i)}$ through PCA is:

$$
\begin{aligned}
\hat{y}^{(i)} & =U_{1, k}^{T} x^{(i)}=\left[u_{1}, \ldots, u_{k}\right]^{T} x^{(i)} \\
& \Rightarrow \hat{x}^{(i)}=U_{1, k} \hat{y}^{(i)}
\end{aligned}
$$

- How many components k should be used?

How many components k should be used?

- Compute percentage of variance retained by $\mathrm{Y}=\left\{y^{(i)}\right\}$, for each value of k :

$$
\hat{y}^{(i)}=\left[u_{1}, \ldots, u_{k}\right]^{T} x^{(i)}
$$

$$
\operatorname{Var}(k)=\sum_{j=1}^{k} \operatorname{Var}\left[\hat{y}_{j}\right]=\sum_{j=1}^{k} \operatorname{Var}\left[u_{j}^{T} x\right]
$$

$$
=\sum_{j=1}^{k} \frac{1}{m} \sum_{i=1}^{m}\left(u_{j}^{T} x^{(i)}-u_{j}^{T} \bar{x}\right)^{2}=\sum_{j=1}^{k} \frac{1}{m} \sum_{i=1}^{m}\left(u_{j}^{T} x^{(i)}\right)^{2}=\sum_{j=1}^{k} \lambda_{j}
$$

HW: Prove it is λ_{j}

How many components k should be used?

- Compute percentage of variance retained by $\mathrm{Y}=\left\{y^{(i)}\right\}$, for each value of k :
- Variance retained:

$$
\operatorname{Var}(k)=\sum_{j=1}^{k} \lambda_{j}
$$

- Total variance:

$$
\operatorname{Var}(D)=\sum_{j=1}^{D} \lambda_{j}
$$

- Percentage of variance retained: $P(k)=\frac{\sum_{j=1}^{k} \lambda_{j}}{\sum_{j=1}^{D} \lambda_{j}}$

How many components k should be used?

- Compute percentage of variance retained by $\mathrm{Y}=\left\{y^{(i)}\right\}$, for each value of k :

$$
P(k)=\frac{\sum_{j=1}^{k} \lambda_{j}}{\sum_{j=1}^{D} \lambda_{j}}
$$

- Choose smallest k as to retain 99% of variance:

$$
\hat{k}=\underset{1 \leq k \leq D}{\operatorname{argmin}}[P(k) \geq 0.99]
$$

PCA on Normalized Data: $\left[x_{1}^{(i)}, x_{2}^{(i)}\right]^{T}$

Rotation through PCA: $\left[u_{1}^{T} x^{(i)}, u_{2}^{T} x^{(i)}\right]^{T}$

1-Dimensional PCA Projection: $\left[u_{1}^{T} x^{(i)}, 0\right]^{T}$

1-Dimensional PCA Approximation: $u_{1} u_{1}^{T} x^{(i)}$

PCA as a Linear Auto-Encoder

- The full transformation (rotation) of $x^{(i)}$ through PCA is:

$$
y=U^{T} x \Rightarrow x=U y
$$

- The k-dimensional projection of $x^{(i)}$ through PCA is:

$$
\hat{y}=U_{1, k}^{T} x=\left[u_{1}, \ldots, u_{k}\right]^{T} x \Rightarrow \hat{x}=U_{1, k} \hat{y}=U_{1, k} U_{1, k}^{T} x
$$

- The minimum error formulation of PCA:

$$
U_{1, k}^{*}=\underset{U_{1, k}}{\arg \min } \sum_{i=1}^{m}\left\|U_{1, k} U_{1, k}^{T} x^{(i)}-x^{(i)}\right\|^{2}
$$

PCA as a Linear Auto-Encoder

PCA and Decorrelation

- The full transformation (rotation) of $x^{(i)}$ through PCA is:

$$
y^{(i)}=U^{T} x^{(i)} \Rightarrow Y=U^{T} X
$$

- What is the covariance matrix of the rotated data Y?

$$
\begin{aligned}
\frac{1}{m} Y Y^{T} & =\frac{1}{m}\left(U^{T} X\right)\left(U^{T} X\right)^{T}=\frac{1}{m} U^{T} X X^{T} U \\
& =U^{T}\left(\frac{1}{m} X X^{T}\right) U=U^{T} \Sigma U=\Lambda \\
& =\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{D}\right) \quad \begin{array}{r}
=>\text { the features in } y \\
\text { are decorrelated! }
\end{array}
\end{aligned}
$$

PCA Whitening (Sphering)

- The goal of whitening is to make the input less redundant, i.e. the learning algorithm sees a training input where:

1. The features are not correlated with each other.
2. The features all have the same variance.
3. PCA already results in uncorrelated features:

$$
y^{(i)}=U^{T} x^{(i)} \Leftrightarrow Y=U^{T} X \quad \frac{1}{m} Y Y^{T}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{D}\right)
$$

2. Transform to identity covariance (PCA Whitening) :

$$
y_{j}^{(i)}=\frac{u_{j}^{T} x^{(i)}}{\sqrt{\lambda_{j}}} \Leftrightarrow y^{(i)}=\Lambda^{-1 / 2} U^{T} x^{(i)} \Leftrightarrow Y=\Lambda^{-1 / 2} U^{T} X
$$

PCA on Normalized Data: $\left[x_{1}^{(i)}, x_{2}^{(i)}\right]^{T}$

Rotation through PCA: $\left[u_{1}^{T} x^{(i)}, u_{2}^{T} x^{(i)}\right]^{T}$

PCA Whitening: $\left[\frac{u_{1}^{T} x^{(i)}}{\sqrt{\lambda_{1}}}, \frac{u_{2}^{T} x^{(i)}}{\sqrt{\lambda_{2}}}\right]^{T}$

ZCA Whitening (Sphering)

- Observation: If Y has identity covariance and R is an orthogonal matrix, then RY has identity covariance.

1. PCA Whitening:

$$
Y_{P C A}=\Lambda^{-1 / 2} U^{T} X
$$

2. ZCA Whitening:

$$
Y_{Z C A}=U Y_{P C A}=U \Lambda^{-1 / 2} U^{T} X
$$

Out of all rotations, U makes $Y_{Z C A}$ closest to original X.

ZCA Whitening: $Y_{Z C A}=U \Lambda^{-1 / 2} U^{T} X$

Smoothing

- When eigenvalues λ_{j} are very close to 0 , dividing by $\lambda_{j}^{-1 / 2}$ is numerically unstable.
- Smoothing: add a small ε to eigenvalues before scaling for PCA/ZCA whitening:

$$
y_{j}^{(i)}=\frac{u_{j}^{T} x^{(i)}}{\sqrt{\lambda_{j}+\varepsilon}} \quad \varepsilon \approx 10^{-5}
$$

- ZCA whitening is a rough model of how the biological eye (the retina) processes images (through retinal neurons).

