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Fully Connected Networks
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 Problematic when the input is large:
— MNIST: 28x28
— CIFAR-10: 32x32
— STL-10: 64x64 and 96x96
— ImageNet: 224x224




Fully Connected Networks

« Consider a network with 3 layers:

1. Inputlayer: 96x96 pixels
2. Hidden layer: 100 filters (features).
3. Outputlayer: 10 classes softmax.

« Total number of parameters:
—  About 10 parameters.
« 10 times more than MNIST 28x28.
= slower feedforward and backpropagation.
= harder to train without overfitting.




Locally Connected Networks

 Restrict the connections between the hidden units and the
Input units:
— For images, each hidden unit will connect to only a small
contiguous (e.g. square) region of pixels in the input.
« Neurons in the visual cortex have localized receptive fields.

— For audio, and time series in general, a hidden unit might be
connectedto only the input units corresponding to a certain time
span (e.g. segment).




Locally Connected Networks: Images

* Neurons In each layer are arranged in 3D:
— width and height and depth.
— CIFAR-10: Input layer has W = H = 32, D = 3 (color channels).
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Locally Connected Networks: Images

 Each neuron is connected only to a local region in the
Input volume spatially, but to the full depth.
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Terminology & Hyperparameters

» Three hyperparams control the size of the output volume:

— Depth is the number of filters (features) that are computed on the
same region in the input.

— Stride (S) is the step with which we slide the receptive field
window over the input.

« When the stride is 1, we move the filters one pixel at a time.
« When the stride is 2, we move the filters two pixels at a time.

— Zero-padding (P) refers to the number of zeros used to pad
around the border of the input volume.

 Allows to control the spatial size of the output volumes.
— Common is to preserve the width and height of the input.




Locally Connected Networks: Audio

* Neurons In each layer are arranged in 2D:
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Locally Connected Networks: Images

* Neurons In each layer are arranged in 3D:
— Example: field F = 3, depth = 1, stride S = 1, and padding P=0
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Locally Connected Networks:
Still too many parameters

« AlexNet architecture (won ImageNet challenge in 2012):

— Images of size 227 x 227 x 3 (W = 227).
— First hidden layer has receptive filed size F = 11, stride S =4, no
paddingis used P = 0.
« (W—F+2P)/S+1=(227-11)/4+1=155=>output
volume has spatial area of 55 x 55.
* Depth, i.e. # of filters, is = 96.
= output volume has size 55 x 55 x 96 = 290,400 neurons.

« Each neuronis connected to a region of size 11 x 11 x 3 in the
Input volume => 363 weights + 1 bias.

=> |f each neuron had separate params, the first layer would need
290,400 * 364 > 100 million parameters!

10




Locally Connected Networks:
Parameter Sharing in Convolutional Layers

 Natural images have the property of being stationary:
— The statistics in one part of the image are the same as of any other part.
— Thus, we can use the same features at all locations.

 Constrain the neuronsin each depth slice to use the same params
=> run the same filter or a kernel over all receptive field windows,
I.e. convolve the filter with the input image.

« AlexNet example:
— Output volume has size 55 x 55 x 96 = 290,400 neurons.
» There are 96 depth slices (96 filters), each with 55 x 55 neurons:
— all 55 x 55 have thesame 11 x 11 x 3 + 1 = 364 params.
= only 96 * 364 = 34,944 params => a dramatical reduction from 108!
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Convolution Demo: 1 Channel, 1 Filter
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http://ufldl.stanford.edu/wiki/index.php/Feature extraction using convolution
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Convolution Demo: 3 Channels, 2 Filters

Input Volume (+pad 1) (7x7x3)
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Mathematical Convolution

« Convolution f * g of two functions f and g is:

— Continuous case:
F@= | fie-g@dr

— Discrete case:

(F*9®) = ) flt-Dg@dr

\

The weight / importance of value of f computed at:
« T steps in the past (z = 0)
« T steps in the future (z < 0)
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Mathematical Convolution

e Discrete case:

(F *D® = ) f(t—Dg(®)dr

« Examples:

1) Moving average of f over the past K values:

1
L -8 <

6 ¥ S~
0 elsewhere

2) Exponential moving average of f :

_Ja1 —-a)° T=0
9() = { 0 elsewhere
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From Mathematical Convolution to CNNs

Discrete convolution:

(F*9® = ) f(t-Dg@dr

e Assume g is non-zeroonly within [-K, K]:

+K
(F+9® = ) f(t-Dg@dr
—K

f*g g
|

0 1 2 (| 1 111-31||0
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Downsampling with Pooling

« Pooling layers can be inserted between Convolution layers
In Deep CNNE.

— The most common form is a max-pooling layer with a max filter of
size 2 x 2 (F = 2) applied with a stride of S = 2:

* It downsamplesevery depthslice in the input by 2 alongboth
width and height, discarding 75% of the activations.

 The depth dimension remains unchanged.
— Another common poolingF = 3, S = 2 (overlapping).

« Pooling reduces the spatial size of each depth slice in the
output => fewer parameters in higher levels in the network.

I8¢



Pooling Demo: 10x10 Filters and Stride 10
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Pooling Demo: 2x2 Filters and Stride 2

Single depth slice

1112 ]| 4
max pool with 2x2 filters
SERGHEl 7 | 8 and stride 2 6 | 8
3 | 2 [N 3| 4
1 | 2 [
y

http://cs231n.github.io/convolutional-networks/

19



http://cs231n.github.io/convolutional-networks/

Pooling Demo
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LeNet (1998)

) C3 1 maps 16E10x10
INEUT E(‘l@ Teature maps S4: 1. maps 16E5x5

2B
dangz 52: 1. maps C5: :
B 4x14 tayer F6:layer  QUTPUT

I
| Full connectian Gaussian connections

Canvolutions Subsampling Convolutions  Subsampling Full connection

* Average pooling* Sigmoid or tanh nonlinearity * Fully connected
layers at the end * Trained on MNIST digit dataset.




Backpropagation Algorithm: FCNSs

1. For softmax layer, compute:

@) — yq i +08
) (a Y‘) -------- one-hotlabel vector

2. Forl=n,n—2,n-3, .., 2 compute:

s — ((W(l))T5(1+1)) J fr(za))
3. Compute the partial derivatives of the cost J(W, b, x, y)

Vo) = G0 (a®)’

V,of = 84D
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CNNs as FCNs
https://arxiv.org/pdf/1603.07285.pdf

Figure 2.1: (No padding, unit strides) Convolving a 3 x 3 kernel over a 4 x 4
input using unit strides (i.e,, i =4,k =3, s=1 and p = 0).

» Flatten the input as a 16-dim vector and produces a flattened 4-dim output vector.
« Correspondingly, 3x3 convolution kernel is represented as a sparse matrix C
where non-zero elements are the elements w; ; of the kernel:

W0 Wo,1 Wo2 0  wio win wie 0wy wyn wep 0 0 0 0 0
0 woo woy woz2 0 wyo wiy wiz 0 wye wyy wzz2 0 0 0 0
0 0 0 0  woo won wo2 0 wio winp wiz 0 wyo w2y w2z 0
0 0 0 0 0 woo wo1 wo2 0 wipo w1 w2z 0 wepo w21 wap

« Error is backpropagated by multiplying with CT.



https://arxiv.org/pdf/1603.07285.pdf

Backpropagation Algorithm: CNNs

« The § terms (2D) are computed similarly, one for each kernel k:
50 = (W©) 80*0)s £20)

\ the shape of the feature map for filter k

« When poolingis used, need to also upsample:

— Propagate the error through the pooling layer by calculating the error w.r.t to each
unit incoming to the pooling layer.

« Mean pooling: uniformly distributes the error for a single pooling unit among
the units which feed into it in the previous layer.

« Max pooling: the unit which was chosen as the max receives all the error since
very small changes in input would perturb the result only through that unit.

5,5,1) = upsample((W(D)Té,ng)) . f’(zl(cl))

24
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Backpropagation Algorithm: CNNs

The gradient for filter k is computed by convolving the previous layer
activations a® with the flipped error map &

. @ . (1+1) ¥ (1+1)
VWk(l)] = a® « flip (5k ) Vb’(cz)] (6k ) ;

— L)
1l 3 flip 7 4 1
(456) =(852)
7 8 9 9 6 3

L]
Need convolution (sum) because same weight iIs used on multiple inputs:
—  Example: a® is 4 x 4, receptive field is 3 x 3:

- What is the dimensionality of a®** and w "
— What if a® has more than 1 channel?

e Show contribution of (Wk(l))
2 25
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Batch Normalization: Reducing Internal
COvariate Shlft [loffe & Szegedy, ICML’15]

Internal Covariate Shift:

— The distribution of each layer’s inputs changes during training:
 because the parameters of the previous layers change.

— This slows down the training:
* requires lower learning rates and careful param initialization.
 notoriously hard to train models with saturating nonlinearities.

Batch Normalization:

— Normalize the input for each layer, for each training minibatch:
 Allows for much higher learning rates, init. less important.
 Acts as a rgularizer, eliminating the need for Dropout.
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http://proceedings.mlr.press/v37/ioffe15.pdf

[loffe & Szegedy, ICML’15]

o |
Batch Normalization
1. Normalize each activation x using minibatch x and o.

v/ Var[z(F)]
2. Train parameters that scale (y) and shift (5) the |
normalized value:

(k) _ »},(k)g(k) + 3

Y

—  Thus allow the overall transformation to represent the identity
transform.



http://proceedings.mlr.press/v37/ioffe15.pdf

Batch Normalization

[loffe & Szegedy, ICML’15]

Input: Values of z over a mini-batch: B = {z1._.,};
Parameters to be learned: ~, 3

Output: {y; = BN, g(z;)}

1 T
— = i // mini-batch
pis 4 — ; x mini-batch mean
O — L i(;r: — ug)* // mini-batch variance
coom i=1 2 °

T; Ti KB // normalize
*\/0’% + €

Y; < vZ; + 8 = BN, 5(z;) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation 2 over a mini-batch.
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Batch Normalization
[loffe & Szegedy, ICML’15]

NN without BN NN with BN

Output

Hidden
Layer

Input
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Batch Normalization
[loffe & Szegedy, ICML’15]

0.8
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----- BN-Baseline
------- BN-x5
BN-x30
-+ BN-x5-Sigmoid
¢ Steps to match Inception
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Layer Normalization
[Ba, Kiros & Hinton, 2016]

« Batch Normalization:
— The effect of is dependent on the mini-batch size.
— Not obvious how to apply it to recurrent neural networks.

« Layer Normalization: Fix the mean and the variance of the
summed Inputs within each layer:

— Compute the mean and variance used for normalization from all of the
summed inputsto the neuronsin a layer on a single training example.

— [Like BN] Give each neuron its own adaptive bias and gain which are
applied after the normalization but before the non-linearity.

— [Unlike BN] Layer normalization performs exactly the same
computation at training and test times.

sS4




Layer Normalization
[Ba, Kiros & Hinton, 2016]

. Compute layer normalization statistics over all hidden
units in the same layer:

1 z z 1 & L2
M:EZG@ U:\EZ(%_FL)

1=1

Learn an adaptive bias b and gain g for each neuron after
the normalization:

hi = f(%(ai — i) + bs)

1

BN better than LN for CNNs, LN works well for RNNSs.
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Self-Normalizing Neural Nets
[Klambauer et al., NIPS 2017]

Definition 1 (Self-normalizing neural net). A neural network is self-normalizing if it possesses a
mapping g : () — ) for each activation y that maps mean and variance from one layer to the next

and has a stable and attracting fixed point depending on (w, 1) in ). Furthermore, the mean and
the variance remain in the domain ), that is g(2) C Q, where Q = {(u, V) | pt € [fhmin, hmax), Y €

[Vmin, Vmax] }- When iteratively applying the mapping g, each point within Q) converges to this fixed
point.

« Use Scaled Exponential Linear Units (SELU) to make an FNN self-normalizing:

T ifz >0
selu(z) = A {ae“’—a ifzx <0

e« Use 0and 1 as the first and second order moment for distributionto initialize
weights in higher layer.
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Self-Normalizing Neural Nets
[Ba, Kiros & Hinton, 2016]

Table 2: Comparison of FNNs at the Tox21 challenge dataset in terms of AUC. The rows represent
different methods and the columns different network depth and for ResNets the number of residual
blocks (6 and 32 blocks were omitted due to computational constraints). The deeper the networks,
the more prominent is the advantage of SNNs. The best networks are SNNs with 8 layers.

#layers / #blocks
method 2 3 4 6 8 16 32
SNN 83.7 o3 844 +o05 842 +04 839 +05s 845 +02 835+05s 825107
Batchnorm 80.0 +to5 798 +16 77.2+11 T7.0+17 75.0x09 737 +£20 76.0+1.1
WeightNorm 83.7 +08 829 108 82.2+09 825+06 81.9+12 78.1+13 56.6+26
LayerNorm  84.3 03 843 +0s 84.0+02 82.5+08 809 +18 787 +23 78.8 +os
Highway 833 +09 83.0+05 82.6+09 824 +o0s 803 +14 803124 79.6+os
MSR Ainit 82.7 +04 81.6 +09 8l.1+17 80.6+06 80.9+11 80.2+11 80.4 +19
ResNet 822 +11 80.0+20 805+12 812107 81.8+06 81.2 +o0s6 na




CNN Architectures

 CNNs are commonly made up of 3 layer types:

— Convolution.
— [Max/Avg Pooling]

« We find that max-pooling can simply be replaced by a convolutional layer with
increased stride without loss in accuracy ... [Striving for Simplicity: The All
Convolutional Net, Springenberg etal., ICLR 2015]

— Fully Connected.

« Common architecture:

Stack a few Conv-ReLU layers [followed by a Pool layer].
Repeat pattern until image is reduced to a small representation.
Transition to one or more FC-ReLU layers.

The last FC layer computesthe output.

e, > A
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Data Augmentation

» Apply a series of (random) distortions to artificially
Increase the data set size:

Randomly flip the image from left to right.
Randomly distort the image brightness.
Randomly distort the image contrast.
Displace each training image by a single pixel, either:
 up one pixel, down one pixel, left one pixel, or right one pixel.

36



ImageNet ILSVRC:

Large-Scale Visual Recognition Challenge
http://www.image-net.org/chalIenges/LSVR(;

 1.28 training images, in 1000 object categories.
« Human top-5 accuracy in the 5-10% range.

http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet

S e e i A,
> -3 Eorclpy. o X 3

(a) Siberian husky

Figure 1: Two distinct classes from the 1000 classes of the ILSVRC 2014 classification challenge. 37




AlexNet (2012)

[Krizhevsky et al., NIPS’12]

« Top 5 error of 16% compared to runner-up with 26% error!
— Sparked current commercial interest in deep learning.

T g\. N ol .
5 l l. i 3 _.-r-' - ------
a8 ) 192 192 128 2048 Zoas \dense
3 o7 128 o -0
e 13 13
N o B
224 . | 9 )
\ ' 27 AT 13 dense densal
= 1000
65
& 192 192 128 Max L H
i 2048
Strid Max 128 Max pooling 2048
of 4 pooling pooling
3 48

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440-186,624—64,896—64,896—43,264—
4096—4096—-1000.




AlexNet Filters (96)
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ZFNet (2013)

[Zeiler & Fergus, ECCV’14]

 Fine tuning of the previous AlexNet structure.

« Shows how to visualize the filters using DeconvNet.

Visualizing and Understanding Convolutional Networks

image size 224 110 13

filter size 7

stride 2 96 3x3 max
3x$ max pool pool 4096
stride 2 stride 2 units
I\i 55
6
Input Image 256 -
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

\3‘84 '%'56

4096
units

C
class
softmax

Layer 6 Layer?7 Outpt

Figure 3. Architecture of our 8 layer convnet model. A 224 by 224 crop of an image (with 3 color planes) is presented as
the input. This is convolved with 96 different 1st layer filters (red), each of size 7 by 7, using a stride of 2 in both x and y.
The resulting feature maps are then: (i) passed through a rectified linear function (not shown), (ii) pooled (max within
3x3 regions, using stride 2) and (iil) contrast normalized across feature maps to give 96 different 55 by 55 element feature
maps. Similar operations are repeated in layers 2,3,4,5. The last two layers are fully connected, taking features from
the top convolutional layer as input in vector form (6 - 6 - 256 = 9216 dimensions). The final layer is a C-way softmax

function, C' being the number of classes. All filters and feature maps are square in shape.



https://arxiv.org/pdf/1311.2901v3.pdf

ZFNet (2013)

[Zeiler & Fergus, ECCV’14]

Visualizing and Understanding Convolutional Networks
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VGGNet and GooglLeNet (2014)

* VGGNet (7.3%) was runner-up in ImageNet 2014, showed
depth of the network is critical for good performance:
— Best configuration has 16 CONV/FC layers.
— Only 3x3 convolutionsand 2x2 poolingin all layers.
— Pretrained model is available in Caffee.

« GooglLeNet (6.7%) was the winner in ImageNet 2014.

— An Inception module dramatically reduced the number of
parameters.

— Used average poolinginstead of fully connected layers.
— 22 layers deep!

— Inception-v3 reaches 3.46% top 5 error rate.
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GooglLeNet

[Szegedy etal., CVPR’15]

Use a diverse set of convolutions:
— Filters capture invariances at different scales.

number of
filters

1x1

Filter

concatenation

3x3

5x5
convolutions

| | 5X5

a4



https://arxiv.org/pdf/1409.4842.pdf

Inception Module
[Szegedy etal., CVPR’15]

Filter
concatenation

/V
1x1 convolutions 3x3 convolutions 5x5 convolutions 3x3 max pooling
‘\ﬂ.

Previous layer

(a) Inception module, naive version

Even a modest number of 5x5 convolutions can be prohibitively
expensive on top of a convolutional layer with a large number of filters.
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Inception Module
[Szegedy etal., CVPR’15]

Filter
concatenation
3x3 convolutions 5x5 convolutions 1x1 convolutions
1x1 convolutions [} ) [}

Qtions 1x1 convolutions 3x3 max pooling

Previous layer

(b) Inception module with dimension reductions

1x1 convolutionsare used to compute reductions before the expensive
3x3 and 5x5 convolutions.
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Inception Network
[Szegedy etal., CVPR’15]

 Inception network is a network consisting of (9) Inception
modules stacked upon each other:

— QOccasional max-pooling layers with stride 2 to halve the resolution
of the grid.

— For memory efficiency during training, use Inception modules only
at higher layers, keeping the lower layers traditional convolutional.



https://arxiv.org/pdf/1409.4842.pdf

Inception Network

Softmax outputs In the
middle, same labels as
at the top:

— Encourage the network
to learn features that are
useful for classification.

[Szegedy etal., CVPR’15]

DepthConcat

Conv Conv Conv Conv
1x1+1(S) 3Ix3+1(S) 5x5+1(S) 1x1+1(S)

Conv Conv MaxPool
1x1+1(S) 1x1+1(S) 3x3+1(S)

DepthConcat

Conv Conv Conv Conv Conv
1x1+1(5) 3x3+1(5) 5x5+1(5) 1x1+1(S) 1x1+1(5)

Conv Conv MaxPool
1x1+1(5) 1x1+1(5) 3Ix3+1(S)

AveragePool
5x5+3(V)

DepthConcat
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Microsoft ResNet (2015)

[He atal, CVPR 2016]

« The winner in ImageNet 2015:

Ultra-deep: from 34 to 152 layers.

Batch normalization after each convolution, before activation.
First layer is (7x7 conv, 64 kernels, S=2), and (3x3 pool, S=2).
A shortcut connection is added for every block of:

« Two (3x3,64;relu) layers (34 deep).

» Three (1x1,64;relu, 3x3,64;relu, 1x1,256;relu) layers (152 deep).

64-d

256-d

1x1, 64

| relu

3x3, 64 |

lrem

1x1, 256



https://arxiv.org/pdf/1512.03385v1.pdf

Training/Testing Error Increases with Very

Large Depth [He at al, CVPR 2016]

=
=

56-layer

g -
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5. S 20-layer
50 )

K= S6-layer 2

= 3
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=
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. 0 . .
5 I3 ] 1 2

5 [

=

1

=

3 i’[erf‘(le«iﬂ4 i’[f.trf}(le«il)4
Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error. Similar phenomena
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Residual Connections
[He atal, CVPR 2016]]

« Make it easier for the network to learn identity mappings.

« Shortcut connections:
— Make identity mappings trivial (all weights 0).
— Addition operation distributes the gradient.

weight layer
F(x) lrelu

weight layer

X

identity

Figure 2. Residual learning: a building block.
51
R



https://arxiv.org/pdf/1512.03385v1.pdf

| ™lcom,64/2 |

Microsoft ResNet

[He atal, CVPR 2016]
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SGD with minibatch of 256, momentum of 0.9, decay of 0.0001.
Learning rate = 0.1 divided by 10 when error plateaus, 6x10° epochs.

Depth vs. error rate on validation:
— 34 depth: top5 = 7.4%, topl = 24.2%.
— 152 depth: top5 =5.7%, topl = 21.4%

¥
£ 100
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http://image-net.org/challenges/talks/ilsvrc2015 deep residual learning_kaiminghe.pdf

Microsoft

Research

Revolution of Depth

{ 152 layers 1

| 22 layers H 19 Iavers ‘
\ 6.7 I

3 57 I I 8 layers 8 layers

ILSVRC'15  ILSVRC'14  ILSVRC'14  ILSVRC'13  [ILSVRC'12  ILSVRC'11  ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. arXiv 2015.
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Visualization of CNNs

Activation Maximization [Erhan et al., 2009]:
— Works well for first layer (see Homework 2).
— For higher layers => non-convex optimization problem:
« Use gradient ascent, need careful initialization.

* Does not give info about unit’s invariances (translation, scaling, etc.)
Data Gradient [Symonian et al., 2014]:

— Same idea as activation maximization, but applied to ImageNet.

— Deep Inside Convolutional Networks: Visualising Image Classification Models and
Saliency Maps

DeconvNet [Zeiler & Fergus, 2013]:
— Visualizing and Understanding Convolutional Networks

Guided Backpropagation [Springenberg et al., 2015]:
— Striving for Simplicity: The All Convolutional Net
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Data Gradient: Deep Inside CNNs
https://arxiv.org/pdf/1312.6034.pdf

 Class model visualization:

— Find the L2-regularized image | such that its score S(I) for class C is

maximized:
arg max Sc(D) — |13

— Use Backpropagation and the logit scores for Sc:

» Because maximizing P(CJl) could be achieved by minimizing the logit scores
of the other classes.

» Image-specificclass saliency visualization:

— Given image |, and class C, rank the input pixels based on their influence
on the score S(1).

» Linearize S(l) around I, using 1%t order Taylor approximation:

T
0S
Sc(D) = (5—;’ (1@) I+b
\_Y_)

Use Backpropagation, this is the pixel-level ranking score. e



https://arxiv.org/pdf/1312.6034.pdf

Data Gradient: Deep Inside CNNSs
https://arxiv.org/pdf/1312.6034.pdf
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Data Gradient: Deep Inside CNNSs
https://arxiv.org/pdf/1312.6034.pdf
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Data Gradient: Deep Inside CNNSs
https://arxiv.org/pdf/1312.6034.pdf
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DeconvNet: Visualizing and Understanding CNNSs
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DeconvNet: Visualizing and Understanding
CNNSs

« A “deconvnet” layer is attached to each convnet layer.

— It will reconstructan approximate version of the convnet features
from the previous layer.

 FF to compute features.

» Record the locations of each maxima in a poolingregion using
switches.

 For each activation in a feature map:

1. Unpooling: use switches to place the reconstructions
from the layer above into appropriate locations.

2. Rectification: Pass reconstructed signal through ramp.
Filtering: Apply the “transposed” filter:
» actually, the flipped filter (rotate right 90° twice).
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DeconvNet: Feature Visualization
https://arxiv.ora/pdf/1311.2901.pdf

Trained and evaluated using AlexNet architecture.
For layers 2 to 5, show top 9 activations in a random subset of feature
maps (figure 2, page 4):
— For each layer, also show the corresponding image patches.
1. Strong grouping within each reconstructed feature map.
2. Greater invariance at higher layers:
« Translation and Scaling, but not Rotation / Viewpoint:
— Capsule Networks are more robust to affine transforms.
» https://arxiv.org/pdf/1710.09829.pdf
3. Exageration of discriminative parts of images:
« Image patches have greater variation.
— Reconstructed features focus on discriminative structure.
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DeconvNet: Occlusion Sensitivity
https://arxiv.org/pdf/1311.2901.pdf

Is the model truly identifying the location of the object in the image, or
just using the surrounding context?

Occlude different portions of the input image with a grey square, and
monitor the outputof the classifier (figure7, page 7):
— Build heat maps to show:

« How the probability of the correct class changes as the occlusion box
moves over the input image.

 Strongest feature map in layer 5 (strongest over the unoccluded
iImage).
— Also show projection of strongest feature map.
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DeconvNet vs. Data Gradient
https://arxiv.ora/pdf/1312.6034.pdf

Apart from the ReLLU layer, computing the approximate feature map
reconstruction R, using a DeconvNet is equivalent to computing the
Data Gradient of /0X,, using Backpropagation:

For the convolutional layer Xn+1 = Xp*K,, the gradient is computed as 0 f/0X,, = 3f /0 X +1%

K, n, Where K, and K are the convolution kernel and its flipped version, respectively. The convo-
lution with the flipped kernel exactly corresponds to computing the n-th layer reconstruction R,, in

a DeconvNet: R, = R,, 11 x K,,.

For the RELU rectification layer X, 1 = max(X,, 0), the sub-gradient takes the form: 9f/0X,, =
0f /0Xn 111 (X, > 0), where 1 is the element-wise indicator function. This is slightly different
from the DeconvNet RELU reconstruction: R, = R, +1 1 (R,+1 > 0), where the sign indicator is
computed on the output reconstruction R,, 1 instead of the layer input X,,.

Finally, consider a max-pooling layer X, 1(p) = max,cq(p) Xn(q), where the element p of
the output feature map is computed by pooling over the corresponding spatial neighbourhood
Q(p) of the input. The sub-gradient is computed as 0f/0X,(s) = Of/0Xnt1(p)1(s =
arg maXqeq(p) Xn(q)). Here, arg max corresponds to the max-pooling “switch” in a DeconvNet.
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The All Convolutional Net
https://arxiv.ora/pdf/1412.6806.pdf

DeconvNet and Backprop differ only in how they treat the ReLU.

Combine the two methods:

— Rather than masking out values corresponding to negative entries of the top
gradient (’deconvnet’) or bottom data (backprop), mask out the values for which at
least one of these values is negative.

a) Forward pass 1o | b) 1|-1]s 1]o]s
i 0 f1 L-1f L [
Input image ° —{ f P G5 | Forward pass 2 [s]=2] = [2]0]0
Feature map | 31214 01214
Backward pass
Reconstructed( = = ofo ot | T 1o 11
image R’ 0|2 | Backward pass: -—
| backpropagation 61010 6131
———————————————————— | o[-1]3 2|-1]3
c) —_— I+1 ! ! |
activation: T =relu(f;) = max(f;,0
/! () =max(£,0) | T 5T
Backward pass:
ione pl l 141 afet | P
backpropagation: R! = (f! > 0)- Rit!, where R = 57| “deconvnet” 6loj1]| <« |6]|-3]|1
Ji 2|03 21-1]3
backward Rl — . RAH! I
'deconvnet': ¢ b |
| Backward pass: 0 I © 2 I -1
i i 6|00 6|-3|1
backgtj't;dzd ation: Ri - (fj - 0) i 'REH | ggg(eio agation h
propag : | propag olol 3 2]-113
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The All Convolutional Net
https://arxiv.orq/pdf/1412.6806.pdf

guided backpropagation

deconv corresponding image crops

deconv guided backpropagation

Figure 3: Visualization of patterns learned by the layer conv6 (top) and layer conv9 (bottom) of the
network trained on ImageNet. Each row corresponds to one filter. The visualization using “guided
backpropagation” is based on the top 10 image patches activating this filter taken from the ImageNet 65
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The All Convolutional Net
https://arxiv.orq/pdf/1412.6806.pdf

backpropagation ’deconvnet’ guided backpropagation
)
with %
pooling +
switches
without
pooling

Figure 5: Visualization of descriptive image regions with different methods from the single largest
activation in the pre-softmax layer global_pool of the network trained on ImageNet.
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Local Response Normalization
[Krizhevsky et al., NIPS’12]

 Lateral inhibition (neurobiology):
— Capacity of an excited neuron to subdue its neighbors.
 Create contrast (significant peak), increase sensory perception.

- Leta',, be the activity of a neuron:
— Computed by applying kernel 1 at position (X, y) and then ReLU.

« Compute the response-normalized activity:
— Sumruns over n adjacent kernel maps at the same spatial position:

min(N—1,i4+n/2) B

{ i " )2
b:t;y - ﬂ'm,y/ k+a Z (ﬂ'gzzy)
j=max(0,i—n/2)
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