
CSC421/2516 Lecture 15:
Reversible and Autoregressive Models

Roger Grosse and Jimmy Ba

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 15: Reversible and Autoregressive Models 1 / 27



Overview

In generative modeling, we’d like to train a network that models a
distribution, such as a distribution over images.

One way to judge the quality of the model is to sample from it.

This field has seen rapid progress:

2009 2015
2018

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 15: Reversible and Autoregressive Models 2 / 27



Overview

Four modern approaches to generative modeling:

Autoregressive models (Lectures 5 and 13, this lecture, next lecture)

Reversible architectures (this lecture)

Variational autoencoders (Lecture 17)

Generative adversarial networks (Lecture 19)

All four approaches have different pros and cons.

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 15: Reversible and Autoregressive Models 3 / 27



Autoregressive Models

We’ve already looked at autoregressive models in this course:

Neural language models
RNN language models (and decoders)

We can push this further, and generate very long sequences.

Problem: training an RNN to generate these sequences requires a for
loop over > 10,000 time steps.

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 15: Reversible and Autoregressive Models 4 / 27



Causal Convolution

Idea 1: causal convolution

For RNN language models, we used the training sequence as both the
inputs and the outputs to the RNN.

We made sure the model was causal: each prediction depended only on
inputs earlier in the sequence.

We can do the same thing using a convolutional architecture.

No for loops! Processing each input sequence just requires a series of
convolution operations.

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 15: Reversible and Autoregressive Models 5 / 27



Causal Convolution

Causal convolution for images:

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 15: Reversible and Autoregressive Models 6 / 27



CNN vs. RNN

We can turn a causal CNN into an RNN by adding recurrent
connections. Is this a good idea?

The RNN has a memory, so it can use information from all past time
steps. The CNN has a limited context.
But training the RNN is very expensive since it requires a for loop over
time steps. The CNN only requires a series of convolutions.
Generating from both models is very expensive, since it requires a for
loop. (Whereas generating from a GAN or a reversible model is very
fast.)

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 15: Reversible and Autoregressive Models 7 / 27



PixelCNN and PixelRNN

Van den Oord et al., ICML 2016, “Pixel recurrent neural networks”

This paper introduced two autoregressive models of images: the
PixelRNN and the PixelCNN. Both generated amazingly good
high-resolution images.

The output is a softmax over 256 possible pixel intensities.

Completing an image using an PixelCNN:

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 15: Reversible and Autoregressive Models 8 / 27



PixelCNN and PixelRNN

Samples from a PixelRNN trained on ImageNet:

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 15: Reversible and Autoregressive Models 9 / 27



Dilated Convolution

Idea 2: dilated convolution

The advantage of RNNs over CNNs is that their memory lets them
learn arbitrary long-distance dependencies.

But we can dramatically increase a CNN’s receptive field using dilated
convolution.

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 15: Reversible and Autoregressive Models 10 / 27



WaveNet

WaveNet is an autoregressive model for raw audio based on causal
dilated convolutions.

van den Oord et al., 2016. “WaveNet: a generative model for raw
audio”.

Audio needs to be sampled at at least 16k frames per second for good
quality. So the sequences are very long.

WaveNet uses dilations of 1, 2, . . . , 512, so each unit at the end of
this block as a receptive field of length 1024, or 64 milliseconds.

It stacks several of these blocks, so the total context length is about
300 milliseconds.

https://deepmind.com/blog/wavenet-generative-model-raw-audio/

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 15: Reversible and Autoregressive Models 11 / 27

https://deepmind.com/blog/wavenet-generative-model-raw-audio/


Overview

Four modern approaches to generative modeling:

Autoregressive models (Lectures 5 and 13, this lecture, next lecture)

Reversible architectures (this lecture)

Variational autoencoders (Lecture 17)

Generative adversarial networks (Lecture 19)

All four approaches have different pros and cons.

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 15: Reversible and Autoregressive Models 12 / 27



Generator Networks

Autoregressive models explicitly predict a distribution at each step.

Another approach to generative modeling is to train a neural net to
produce approximate samples from the distribution.

Start by sampling the code vector z from a fixed, simple distribution
(e.g. spherical Gaussian)

The generator network computes a differentiable function G mapping
z to an x in data space

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 15: Reversible and Autoregressive Models 13 / 27



Generator Networks

A 1-dimensional example:

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 15: Reversible and Autoregressive Models 14 / 27



Generator Networks

https://blog.openai.com/generative-models/

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 15: Reversible and Autoregressive Models 15 / 27

https://blog.openai.com/generative-models/


Generator Networks

This sort of architecture sounded preposterous to many of us, but
amazingly, it works.

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 15: Reversible and Autoregressive Models 16 / 27



Change of Variables Formula

Let f denote a differentiable, bijective mapping from space Z to
space X . (I.e., it must be 1-to-1 and cover all of X .)

Since f defines a one-to-one correspondence between values z ∈ Z
and x ∈ X , we can think of it as a change-of-variables transformation.

Change-of-Variables Formula from probability theory: if x = f (z),
then

pX (x) = pZ (z)

∣∣∣∣det

(
∂x

∂z

)∣∣∣∣−1
Intuition for the Jacobian term:

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 15: Reversible and Autoregressive Models 17 / 27



Change of Variables Formula

Suppose we have a generator network which computes the function f .
It’s tempting to apply the change-of-variables formula in order to
compute the density pX (x).

I.e., compute z = f −1(x)

pX (x) = pZ (z)

∣∣∣∣det

(
∂x

∂z

)∣∣∣∣−1
Problems?

It needs to be differentiable, so that the Jaobian ∂x/∂z is defined.
The mapping f needs to be invertible, with an easy-to-compute inverse.
We need to be able to compute the (log) determinant.

Differentiability is easy (just use a differentiable activation function),
but the other requirements are trickier.

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 15: Reversible and Autoregressive Models 18 / 27



Change of Variables Formula

Suppose we have a generator network which computes the function f .
It’s tempting to apply the change-of-variables formula in order to
compute the density pX (x).

I.e., compute z = f −1(x)

pX (x) = pZ (z)

∣∣∣∣det

(
∂x

∂z

)∣∣∣∣−1
Problems?

It needs to be differentiable, so that the Jaobian ∂x/∂z is defined.
The mapping f needs to be invertible, with an easy-to-compute inverse.
We need to be able to compute the (log) determinant.

Differentiability is easy (just use a differentiable activation function),
but the other requirements are trickier.

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 15: Reversible and Autoregressive Models 18 / 27



Reversible Blocks

Now let’s define a reversible block which is invertible and has a
tractable determinant.

Such blocks can be composed.

Inversion: f −1 = f −1
1 ◦ · · · ◦ f −1

k

Determinants:
∣∣∂xk
∂z

∣∣ =
∣∣ ∂xk
∂xk−1

∣∣ · · · ∣∣∂x2∂x1

∣∣∣∣∂x1
∂z

∣∣

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 15: Reversible and Autoregressive Models 19 / 27



Reversible Blocks

Recall the residual blocks:

y = x + F(x)

Reversible blocks are a variant of
residual blocks. Divide the units into
two groups, x1 and x2.

y1 = x1 + F(x2)

y2 = x2

Inverting a reversible block:

x2 = y2

x1 = y1 −F(x2)

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 15: Reversible and Autoregressive Models 20 / 27



Reversible Blocks

Composition of two reversible blocks, but with x1 and x2 swapped:

Forward:

y1 = x1 + F(x2)

y2 = x2 + G(y1)

Backward:

x2 = y2 − G(y1)

x1 = y1 −F(x2)

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 15: Reversible and Autoregressive Models 21 / 27



Volume Preservation

It remains to compute the log determinant of the Jacobian.

The Jacobian of the reversible block:

y1 = x1 + F(x2)

y2 = x2
∂y

∂x
=

(
I ∂F

∂x2
0 I

)

This is an upper triangular matrix. The determinant of an upper
triangular matrix is the product of the diagonal entries, or in this
case, 1.

Since the determinant is 1, the mapping is said to be volume
preserving.

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 15: Reversible and Autoregressive Models 22 / 27



Nonlinear Independent Components Estimation

We’ve just defined the reversible block.
Easy to invert by subtracting rather than adding the residual function.
The determinant of the Jacobian is 1.

Nonlinear Independent Components Estimation (NICE) trains a
generator network which is a composition of lots of reversible blocks.

We can compute the likelihood function using the change-of-variables
formula:

pX (x) = pZ (z)

∣∣∣∣det

(
∂x

∂z

)∣∣∣∣−1 = pZ (z)

We can train this model using maximum likelihood. I.e., given a
dataset {x(1), . . . , x(N)}, we maximize the likelihood

N∏
i=1

pX (x(i)) =
N∏
i=1

pZ (f −1(x(i)))

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 15: Reversible and Autoregressive Models 23 / 27



Nonlinear Independent Components Estimation

Likelihood:
pX (x) = pZ (z) = pZ (f −1(x))

Remember, pZ is a simple, fixed distribution (e.g. independent
Gaussians)

Intuition: train the network such that f −1 maps each data point to a
high-density region of the code vector space Z.

Without constraints on f , it could map everything to 0, and this
likelihood objective would make no sense.
But it can’t do this because it’s volume preserving.

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 15: Reversible and Autoregressive Models 24 / 27



Nonlinear Independent Components Estimation

Dinh et al., 2016. Density estimation using RealNVP.

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 15: Reversible and Autoregressive Models 25 / 27



Nonlinear Independent Components Estimation

Samples produced by RealNVP, a model based on NICE.

Dinh et al., 2016. Density estimation using RealNVP.

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 15: Reversible and Autoregressive Models 26 / 27



RevNets (optional)

A side benefit of reversible blocks: you don’t need to store the
activations in memory to do backprop, since you can reverse the
computation.

I.e., compute the activations as you need them, moving backwards
through the computation graph.

Notice that reversible blocks look a lot like residual blocks.

We recently designed a reversible residual network (RevNet)
architecture which is like a ResNet, but with reversible blocks instead
of residual blocks.

Matches state-of-the-art performance on ImageNet, but without the
memory cost of activations!
Gomez et al., NIPS 2017. “The revesible residual network: backrpop
without storing activations”.

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 15: Reversible and Autoregressive Models 27 / 27


