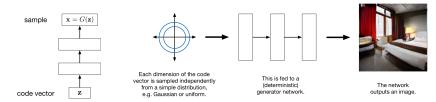
CSC421/2516 Lecture 17: Variational Autoencoders

Roger Grosse and Jimmy Ba

Overview

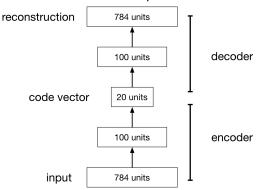
• Recall the generator network:



- One of the goals of unsupervised learning is to learn representations of images, sentences, etc.
- With reversible models, z and x must be the same size. Therefore, we can't reduce the dimensionality.
- Today, we'll cover the variational autoencoder (VAE), a generative model that explicitly learns a low-dimensional representation.

Autoencoders

- An autoencoder is a feed-forward neural net whose job it is to take an input x and predict x.
- To make this non-trivial, we need to add a bottleneck layer whose dimension is much smaller than the input.



Autoencoders

Why autoencoders?

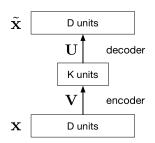
- Map high-dimensional data to two dimensions for visualization
- Compression (i.e. reducing the file size)
 - Note: this requires a VAE, not just an ordinary autoencoder.
- Learn abstract features in an unsupervised way so you can apply them to a supervised task
 - Unlabled data can be much more plentiful than labeled data
- Learn a semantically meaningful representation where you can, e.g., interpolate between different images.

Principal Component Analysis (optional)

 The simplest kind of autoencoder has one hidden layer, linear activations, and squared error loss.

$$\mathcal{L}(\mathbf{x}, \tilde{\mathbf{x}}) = \|\mathbf{x} - \tilde{\mathbf{x}}\|^2$$

- This network computes $\tilde{\mathbf{x}} = \mathbf{UVx}$, which is a linear function.
- If K ≥ D, we can choose U and V such that
 UV is the identity. This isn't very interesting.
 - But suppose *K* < *D*:
 - **V** maps **x** to a *K*-dimensional space, so it's doing dimensionality reduction.
 - The output must lie in a K-dimensional subspace, namely the column space of U.



4 D > 4 B > 4 B > 4 B >

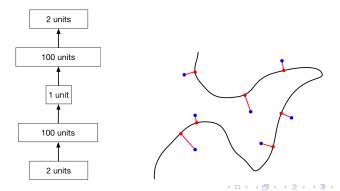
Principal Component Analysis (optional)

- Review from CSC421: linear autoencoders with squared error loss are equivalent to Principal Component Analysis (PCA).
- Two equivalent formulations:
 - Find the subspace that minimizes the reconstruction error.
 - Find the subspace that maximizes the projected variance.
- The optimal subspace is spanned by the dominant eigenvectors of the empirical covariance matrix.

"Eigenfaces"

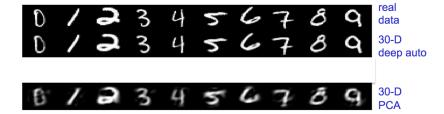
Deep Autoencoders

- Deep nonlinear autoencoders learn to project the data, not onto a subspace, but onto a nonlinear manifold
- This manifold is the image of the decoder.
- This is a kind of nonlinear dimensionality reduction.



Deep Autoencoders

 Nonlinear autoencoders can learn more powerful codes for a given dimensionality, compared with linear autoencoders (PCA)



Deep Autoencoders

- Some limitations of autoencoders
 - They're not generative models, so they don't define a distribution
 - How to choose the latent dimension?

Observation Model

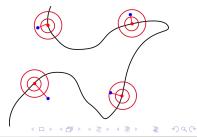
Consider training a generator network with maximum likelihood.

$$\rho(\mathbf{x}) = \int \rho(\mathbf{z}) \rho(\mathbf{x} \,|\, \mathbf{z}) \,\mathrm{d}\mathbf{z}$$

- One problem: if z is low-dimensional and the decoder is deterministic, then p(x) = 0 almost everywhere!
 - ullet The model only generates samples over a low-dimensional sub-manifold of ${\mathcal X}$
- Solution: define a noisy observation model, e.g.

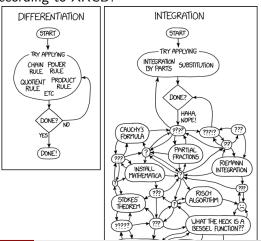
$$p(\mathbf{x} \mid \mathbf{z}) = \mathcal{N}(\mathbf{x}; G_{\theta}(\mathbf{z}), \eta \mathbf{I}),$$

where G_{θ} is the function computed by the decoder with parameters θ .



Observation Model

- At least $p(\mathbf{x}) = \int p(\mathbf{z})p(\mathbf{x} \mid \mathbf{z}) d\mathbf{z}$ is well-defined, but how can we compute it?
- Integration, according to XKCD:



Observation Model

- At least $p(\mathbf{x}) = \int p(\mathbf{z})p(\mathbf{x} \mid \mathbf{z}) d\mathbf{z}$ is well-defined, but how can we compute it?
 - The decoder function $G_{\theta}(\mathbf{z})$ is very complicated, so there's no hope of finding a closed form.
- Instead, we will try to maximize a lower bound on $\log p(\mathbf{x})$.
 - The math is essentially the same as in the EM algorithm from CSC411.

 We obtain the lower bound using Jensen's Inequality: for a convex function h of a random variable X,

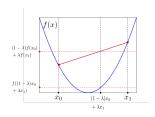
$$\mathbb{E}[h(X)] \geq h(\mathbb{E}[X])$$

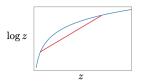
Therefore, if h is concave (i.e. -h is convex),

$$\mathbb{E}[h(X)] \leq h(\mathbb{E}[X])$$

The function log z is concave.
 Therefore,

$$\mathbb{E}[\log X] \le \log \mathbb{E}[X]$$





- Suppose we have some distribution $q(\mathbf{z})$. (We'll see later where this comes from.)
- We use Jensen's Inequality to obtain the lower bound.

$$\begin{split} \log \rho(\mathbf{x}) &= \log \int \rho(\mathbf{z}) \, \rho(\mathbf{x}|\mathbf{z}) \, \mathrm{d}\mathbf{z} \\ &= \log \int q(\mathbf{z}) \, \frac{\rho(\mathbf{z})}{q(\mathbf{z})} \rho(\mathbf{x}|\mathbf{z}) \, \mathrm{d}\mathbf{z} \\ &\geq \int q(\mathbf{z}) \log \left[\frac{\rho(\mathbf{z})}{q(\mathbf{z})} \, \rho(\mathbf{x}|\mathbf{z}) \right] \, \mathrm{d}\mathbf{z} \qquad \text{(Jensen's Inequality)} \\ &= \mathbb{E}_q \left[\log \frac{\rho(\mathbf{z})}{q(\mathbf{z})} \right] + \mathbb{E}_q \left[\log \rho(\mathbf{x}|\mathbf{z}) \right] \end{split}$$

• We'll look at these two terms in turn.

- The first term we'll look at is $\mathbb{E}_q[\log p(\mathbf{x}|\mathbf{z})]$
- Since we assumed a Gaussian observation model,

$$\begin{split} \log p(\mathbf{x}|\mathbf{z}) &= \log \mathcal{N}(\mathbf{x}; G_{\boldsymbol{\theta}}(\mathbf{z}), \eta \mathbf{I}) \\ &= \log \left[\frac{1}{(2\pi\eta)^{D/2}} \exp \left(-\frac{1}{2\eta} \|\mathbf{x} - G_{\boldsymbol{\theta}}(\mathbf{z})\|^2 \right) \right] \\ &= -\frac{1}{2\eta} \|\mathbf{x} - G_{\boldsymbol{\theta}}(\mathbf{z})\|^2 + \mathrm{const} \end{split}$$

So this term is the expected squared error in reconstructing x from z.
 We call it the reconstruction term.

- The second term is $\mathbb{E}_q\left[\log\frac{p(\mathbf{z})}{q(\mathbf{z})}\right]$.
- This is just $-D_{KL}(q(z)||p(z))$, where D_{KL} is the Kullback-Leibler (KL) divergence

$$\mathrm{D_{KL}}(q(\mathbf{z}) \| p(\mathbf{z})) riangleq \mathbb{E}_q \left[\log rac{q(\mathbf{z})}{p(\mathbf{z})}
ight]$$

- KL divergence is a widely used measure of distance between probability distributions, though it doesn't satisfy the axioms to be a distance metric.
- More details in tutorial.
- Typically, $p(\mathbf{z}) = \mathcal{N}(\mathbf{0}, \mathbf{I})$. Hence, the KL term encourages q to be close to $\mathcal{N}(\mathbf{0}, \mathbf{I})$.
- We'll give the KL term a much more interesting interpretation when we discuss Bayesian neural nets.

 Hence, we're trying to maximize the variational lower bound, or variational free energy:

$$\log p(\mathbf{x}) \geq \mathcal{F}(\boldsymbol{\theta}, q) = \mathbb{E}_q \left[\log p(\mathbf{x}|\mathbf{z}) \right] - \mathrm{D}_{\mathrm{KL}}(q||p).$$

- The term "variational" is a historical accident: "variational inference" used to be done using variational calculus, but this isn't how we train VAEs.
- We'd like to choose q to make the bound as tight as possible.
- It's possible to show that the gap is given by:

$$\log p(\mathbf{x}) - \mathcal{F}(\boldsymbol{\theta}, q) = \mathrm{D_{KL}}(q(\mathbf{z}) \| p(\mathbf{z} | \mathbf{x})).$$

Therefore, we'd like q to be as close as possible to the posterior distribution $p(\mathbf{z}|\mathbf{x})$.

- Let's think about the role of each of the two terms.
- The reconstruction term

$$\mathbb{E}_q[\log p(\mathbf{x}|\mathbf{z})] = -\frac{1}{2\sigma^2} \mathbb{E}_q[\|\mathbf{x} - G_{\theta}(\mathbf{z})\|^2] + \text{const}$$

is minimized when q is a point mass on

$$\mathbf{z}_* = \arg\min_{\mathbf{z}} \|\mathbf{x} - G_{\theta}(\mathbf{z})\|^2.$$

 But a point mass would have infinite KL divergence. (Exercise: check this.) So the KL term forces q to be more spread out.

Reparameterization Trick

- To fit q, let's assign it a parametric form, in particular a Gaussian distribution: $q(\mathbf{z}) = \mathcal{N}(\mathbf{z}; \boldsymbol{\mu}, \boldsymbol{\Sigma})$, where $\boldsymbol{\mu} = (\mu_1, \dots, \mu_K)$ and $\boldsymbol{\Sigma} = \operatorname{diag}(\sigma_1^2, \dots, \sigma_K^2)$.
- In general, it's hard to differentiate through an expectation. But for Gaussian q, we can apply the reparameterization trick:

$$z_i = \mu_i + \sigma_i \epsilon_i$$

where $\epsilon_i \sim \mathcal{N}(0,1)$.

Hence,

$$\overline{\mu_i} = \overline{z_i} \qquad \overline{\sigma_i} = \overline{z_i} \epsilon_i.$$

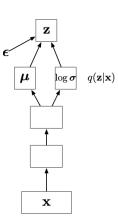
 This is exactly analogous to how we derived the backprop rules for droopout.

Amortization

- This suggests one strategy for learning the decoder. For each training example,
 - **1** Fit q to approximate the posterior for the current x by doing many steps of gradient ascent on \mathcal{F} .
 - **2** Update the decoder parameters θ with gradient ascent on \mathcal{F} .
- Problem: this requires an expensive iterative procedure for every training example, so it will take a long time to process the whole training set.

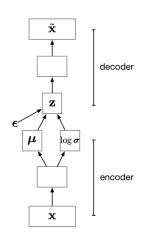
Amortization

- Idea: amortize the cost of inference by learning an inference network which predicts (μ, Σ) as a function of x.
- The outputs of the inference net are μ and log σ . (The log representation ensures $\sigma > 0$.)
- If $\sigma \approx 0$, then this network essentially computes **z** deterministically, by way of μ .
 - But the KL term encourages $\sigma > 0$, so in general **z** will be noisy.
- The notation q(z|x) emphasizes that q depends on x, even though it's not actually a conditional distribution.



Amortization

- Combining this with the decoder network, we see the structure closely resembles an ordinary autoencoder. The inference net is like an encoder.
- Hence, this architecture is known as a variational autoencoder (VAE).
- The parameters of both the encoder and decoder networks are updated using a single pass of ordinary backprop.
 - The reconstruction term corresponds to squared error $\|\mathbf{x} \tilde{\mathbf{x}}\|^2$, like in an ordinary VAE.
 - The KL term regularizes the representation by encouraging z to be more stochastic.

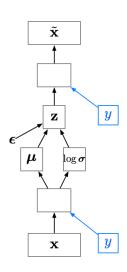


VAEs vs. Other Generative Models

- In short, a VAE is like an autoencoder, except that it's also a generative model (defines a distribution $p(\mathbf{x})$).
- Unlike autoregressive models, generation only requires one forward pass.
- Unlike reversible models, we can fit a low-dimensional latent representation. We'll see we can do interesting things with this...

Class-Conditional VAE

- So far, we haven't used the labels y. A class-conditional VAE provides the labels to both the encoder and the decoder.
- Since the latent code z no longer has to model the image category, it can focus on modeling the stylistic features.
- If we're lucky, this lets us disentangle style and content. (Note: disentanglement is still a dark art.)
- See Kingma et al., "Semi-supervised learning with deep generative models."



Class-Conditional VAE

 By varying two latent dimensions (i.e. dimensions of z) while holding y fixed, we can visualize the latent space.

```
222222222
            333333333333
                         444444444
222222222
            3333333333
22222222222
            3333333333
22222222222
            3333333333
222222222222
               33333333
22222222222
22222222222
222222222222
2222222222
222222222222
```

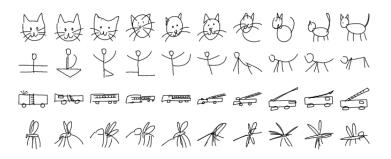
Class-Conditional VAE

 By varying the label y while holding z fixed, we can solve image analogies.

```
4 0123456789
 0123456789
5 0123456789
0123456789
20123456789
7 0123456789
50123456789
 0123456789
 0123456789
```


Latent Space Interpolations

• You can often get interesting results by interpolating between two vectors in the latent space:



Ha and Eck, "A neural representation of sketch drawings"

Latent Space Interpolations

 Latent space interpolation of music: https://magenta.tensorflow.org/music-vae