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Abstract

Dimensionality reduction by algebraic methods is an established technique to address a number of
problems in information retrieval. These methods are known to alleviate synonymy and polysemy, but
they convert the highly sparse corpus matrices into dense matrix format, although with a reduced dimen-
sionality. However, we can use fast, dense matrix arithmetic instead of the sparse matrix programs, which
are unsuitable for modern multi-scalar processors due to the prevalence of conditional branching. In this
paper, we introduce a new approach to dimensionality reduction for text retrieval. According to Zipf’s
law, the majority of indexing terms occurs only in a small number of documents. Our new algorithm
exploits this observation to compute a dimensionality reduction. It replaces rare terms by computing a
vector which expresses their semantics in terms of common terms. This process produces a projection
matrix, which can be applied to a corpus matrix and individual document and query vectors. We give an
accurate mathematical and algorithmic description of our algorithms and present an initial experimen-
tal evaluation on two benchmark corpora. These experiments indicate that our algorithm can deliver a
substantial reduction in the number of features, from 8,742 to 500 and from 47,236 to 392 features, while
preserving or even improving the retrieval performance.

A version of this report has been published as “Tobias Berka and Marian Vajteršic: Dimensionality Reduction for Information

Retrieval using Vector Replacement of Rare Terms. Proceedings of the Ninth Text Mining Workshop (TM’11), 2011.”

1 Introduction

Dimensionality reduction techniques reduce the number of components of a data set by representing the
original data as accurately as possible with fewer features and/or instances. The goal is to produce a more
compact representation of the data with only limited loss of information in order to reduce the storage
and runtime requirements. In some applications the reduction is used to discover and account for latent
dependencies between features which are not reflected in the original data [4]. Here, the lower dimensionality
not only reduces the computational costs, but also improves the retrieval performance. In the area of
text retrieval, low-rank matrix approximations have long been utilized in order to deal with polysemy and
synonymy – words with multiple meanings (e.g. bank or light) or different words with the same meaning (e.g.
drowsy and sleepy).

But the problem with information retrieval applications is that these systems operate on tens of thou-
sands of features and millions of documents or more. The key issues that warrant the investigation of new
dimensionality reduction techniques are performance and scalability. While traditional methods focus on
theoretic properties of the underlying mathematical method, the ultimate measure of success for any dimen-
sionality reduction technique is the impact on the retrieval performance. The development of new methods
for dimensionality reduction beyond the traditional, algebraic or statistical methods is therefore fair game,
as long as the retrieval performance is equal or better than on the unprocessed raw data.

Our approach is based on the fact that according to Zipf’s law, most terms occur only in a very limited
number of documents (see e.g. [25] [6]). This makes them interesting candidates for any form of dimensionality
reduction or compression. It is also a well-known fact that features with a low document frequency play an
important role in the query processing. This phenomenon forms the basis of the inverse-document frequency
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term weighting approach (see e.g. [20]). Deletion of such rare terms is therefore out of the question. In our
approach, we attempt to replace rare terms with a signature feature vector, which preserves the semantics of
the rare term by expressing it in more frequent terms. This vector is then scaled by the frequency of the rare
term in this document. By forming the linear combination of all rare term replacement vectors and adding
it to the original document vector we obtain a vector representation without the rare terms. The hypotheses
for our approach to dimensionality reduction can be stated as follows:

• Rare terms with a low document frequency can be replaced by a replacement vector that expresses
their semantics in feature vector form.

• A suitable replacement vector for a rare term can be obtained by forming the weighted average vector
of all documents containing this rare term.

• For any document, the rare terms can be eliminated by forming a linear combination of the corre-
sponding replacement vectors, scaled by the weight of the corresponding features in the original feature
vector.

• Performing such a replacement operation on the document and query vectors will not lead to a reduction
in retrieval quality.

• In agreement with Zipf’s law, eliminating rare terms will lead to a considerable reduction in the number
of features.

The rest of this paper is structured as follows. In Section 2 we will briefly examine the state-of-the-art in
literature and how it relates to our approach. We give a mathematical description of our method in Section 3,
discuss the algorithmic aspects in Section 4 and evaluate the performance on real-world data sets in Section 5.
Lastly, we summarize our findings in Section 6.

2 Related Work

There are several well known dimensionality reduction techniques in the fields of numerical linear algebra
and statistics. The two foremost are the singular value decomposition (SVD), see e.g. [4], and the principal
component analysis (PCA), see e.g. [17]. Both methods are strongly connected and share some theoretically
desirable properties such as determinism and uniqueness. Furthermore, they have been formally shown
to produce the best linear approximation for any given rank, i.e. the effective dimensionality of the data
matrix, as shown in [10]. In multivariate statistics, factor analysis [16] and more recently independent
component analysis (ICE), see [14], attempt to determine latent statistical factors, which can provide a linear
approximation of the original data. And indeed, the latter is again based on the PCA. Kernel methods [2] have
successfully been applied to extend the ICE to account for non-linear data dependencies [27]. Non-negative
matrix factorizations (NMF), see e.g. [24], are a more recent development that is motivated by factor analysis,
where non-negativity may be necessary to interpret the factors. Multidimensional scaling (MDS), see e.g. [7],
determines a projection onto a lower dimensional space while preserving pair-wise distances. Fastmap [11] is
a modern technique for computing such a projection. However, it should be noted that the SVD is an optimal
variant of MDS [3]. A classic geometric approach to the dimensionality reduction problem is the fitting of a
mesh of grid points to produce a map, onto which the individual data points are projected. Such a map can be
constructed implicitly by self-organization, see e.g. [5], or explicitly with the ISOMAP algorithm [28] or local
linear embedding method (LLE) [26]. Moreover, clustering algorithms can also be used for dimensionality
reduction by projecting onto the representative vectors of the clusters [9] or in a supervised variant using the
centroid vectors of category-specific centroids according to a labeled set of examples [18]. But representatives
for the projection can also be chosen from the document collection, see e.g. [1] for an evolutionary approach
to the optimized selection.

In information retrieval, latent semantic indexing (LSI), see [8], is the straightforward application of the
SVD to the task at hand. The PCA has also been applied in the COV approach [19]. Factor analysis based on
the SVD applied to automated indexing has been reported as probabilistic latent semantic analysis (PLSA)
in [12]. NMF methods are often used in various text classification tasks [15] [21]. The reduction by projection
onto the representative vectors of a feature clustering has in fact been developed specifically for text retrieval
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applications [9]. The use of kernel methods can lead to a square increase in the number of features and is
therefore unsuitable for sparse, high-dimensional text data.

However, our own dimensionality reduction technique is based on an intuition about documents in the
vector space model rather than statistical, numerical or geometric properties. Due to the use of linear
combination of vectors scaled by relevance scores, the generalized vector space model (GVSM), see [30], is
much more comparable to our own method than any of the canonical methods for dimensionality reduction.
In its principal form it uses term similarities as weights for the linear combination, but it has been modified
in a number of ways, see e.g. [13] [29]. However, modifications to the query processing such as the GVSM
should be considered complementary techniques that can be used in conjunction with our dimensionality
reduction method.

3 The Vector Replacement Approach

In order to systematically devise an algorithm, we first define our approach mathematically. Table 1 presents
a summary of all symbols and notation used here. We have a set D of ‖D‖ = n documents and a set F of
‖F‖ = m features. Every document d ∈ D is represented as a feature vector d ∈ Rm to which we assign a
column index col(d) ∈ {1, ..., n}. As a convenient notation, we use dj to denote col(d) = j. Analogously,
every feature f ∈ F has a row index row(f) ∈ {1, ...,m}, using the short form fi :⇔ row(f) = i. We can
thus form a corpus matrix C ∈ Rm×n, which contains the documents’ feature vectors as column vectors

C =
[
d1 d2 · · · dn

]
∈ Rm×n.

Since we are interested in the occurrence of features within documents we define a function D : F → D to
determine which documents contain any particular feature fi, formally

D(fi) := {dj ∈ D | Ci,j 6= 0} .

We select the rare features through a function N : N→ F that determines the set of features occurring in at
most t documents,

N (t) := {f ∈ F | ‖D(f)‖ ≤ t} .

After choosing an elimination threshold t, which was experimentally determined to be 1% and 3% of all
documents for our experiments, we can now define the set of elimination features E ⊆ F as

E := N (t),

which will ultimately lead to a reduced-dimensional feature space consisting of k common terms, where

k := m− ‖E‖.

Our objectives can now be formulated as follows:

1. We have a corpus matrix C ∈ Rm×n for m features and n documents, which is sparse, i.e. C contains
mostly zero components.

2. We seek to eliminate all features which occur in t or fewer documents. Formally, this means that we
seek to replace all features in the set of elimination features E = N (t).

3. We want to replace every feature f ∈ E by a vector formed as a linear combination of common features
that co-occur with f . We will refer to this replacement vector as ρE(f) (rho).

4. This replacement operator should be computed in such a way, that it can be applied to the original
corpus matrix C, any new documents d and query vectors q ∈ Rm. We therefore compute a replacement
matrix R ∈ Rk×m which maps vectors from the original to the reduced feature space.

5. Finally, we apply this replacement to the original corpus matrix C to obtain a reduced dimensional
corpus matrix C ′ = RC ∈ Rk×n.
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Symbol Description

m Number of features,
n Number of documents,
k Number of common features,
t Maximum occurrences for rare features,
C Corpus matrix,
F Set of features,
D Set of documents,

E ⊆ F Elimination (rare) features
D(f) Documents containing feature f ,
F(d) Features occurring in document d,
N (t) Features with t or less documents,
τE Vector truncation operator

(eliminates indices E),
ρE(f) Replacement vector for feature f

and rare features E,
RE Replacement operator

(applies replacement vectors),
RE Replacement matrix (equivalent to RE).

Table 1: Mathematical Notation

3.1 Basic Formulation

To eliminate an index i of a vector v, we define a truncation operator τ as a formal mechanism

τ{i}(v) := (v1 · · · vi−1 vi+1 · · · vm)
T
,

and generalize it to the elimination of a set of indices with the recursive definition

τ∅(v) := v, τ{A,b}(v) := τ{b} (τA (v)) .

We use a linear combination of common features to replace rare features fi ∈ E. Formally, we will
initially determine the set of documents that contain the feature D(fi). We will truncate all document
vectors dj ∈ D(fi), eliminate all rare features by taking τE(dj) and scale them by the quantification Ci,j of
feature fi in document dj . We compute the sum of these vectors and apply a scaling factor λ to normalize the
length of the resulting replacement vector. Formally, we define the function ρE to compute the replacement
vector:

ρE(fi) :=
1

λE(fi)

∑
dj∈D(fi)

Ci,j τE (C?,j) , where

λE(fi) :=
∑

dj∈D(fi)

|Ci,j |.

If a rare feature has a high weight in a particular document, the co-occurrences in this document have a
higher impact on the replacement vector. Conversely, a low weight would marginalize the contribution of
this document.

Our next goal is to obtain a linear replacement operator RE . First, we truncate the original document
vector dj to eliminate all unwanted features fi ∈ E by computing τE(dj). Then we take the replacement
vectors ρE(fi) for these features and scale them by their relevance Ci,j in the document dj . The reduced
document vector is formed as the linear combination of the truncated source document and the scaled
replacement vectors:

RE (dj) := τE (dj) +
∑
fi∈E

Ci,j ρE (fi) .
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We can extend this operator to the corpus matrix C ∈ Rm×n by applying it to the column vectors,

RE (C) :=
[
RE (d1) · · · RE (dn)

]
.

Since this operator is a linear function we can represent it as a matrix, and we will indeed use this
representation to implement our algorithm.

3.2 Matrix Representation

If we use the notation e1, ..., em ∈ Rm to denote the standard base vectors,

eTi = (0 · · · 0 1
i

0 · · · 0),

we can define replacement vectors rE , which either preserve features we do not wish to eliminate, or perform
the vector replacement on features f ∈ E,

rE(fi) :=

{
ρE(fi) ... fi ∈ E
τE (ei) ... fi 6∈ E.

We now assemble these vectors column-wise to form a replacement matrix RE for the elimination features
E, formally

RE :=
[
rE(f1) rE(f2) · · · rE(fm)

]
∈ Rk×m.

An improved, dimensionality-reduced corpus matrix C ′ can now be obtained by taking

C ′ := REC,

because it is easily verified that

REC = [RE (d1) RE (d2) · · · RE (dn)] = RE (C) .

Therefore, RE is the matrix representation of the linear replacement operator RE as defined above.
Theoretically, we must assume that some replacement vectors could be zero. Any particular feature may

co-occur exclusively with other infrequent features that are removed during the process. For a feature f in
a set of elimination candidates E it may hold that

(∀d ∈ D(f)) (τE (d) = 0) .

A consequence of this phenomenon is that the replacement vector obtained by the approach outlined above
is zero, i.e. ρE(f) = 0. If it occurs, we may need to retain the affected feature(s) to avoid loosing them.
However, thus far we have not observed this behavior in practice.

3.3 Queries and Index Updating

Now that we can map our original corpus matrix C into the reduced dimensional space by taking C ′ := REC,
we have to consider the on-line query processing. For any incoming query q ∈ Rm, we compute q′ := RE q
and evaluate all similarities on the augmented corpus C ′. For practical reasons, we will normalize the column
vectors of the augmented corpus C ′ and all query vectors q′ to unit length prior to query processing.

An equally important question is the maintenance of the index. New documents must be added, existing
documents modified and old documents retired and deleted. Currently, our support for index maintenance
is very crude. New documents d are mapped to the reduced dimensional space by computing d′ := RE d
and added by extending both the original and augmented corpus matrix with an additional column. The
projection matrix RE must be re-evaluated periodically from the sparse raw corpus. Improved support for
updates is one of our future research objectives.

5



3.4 Subsequent Rank Reduction

During our experiments, we found that we can get a greater reduction in the number of features with a
higher retrieval performance if we apply a spectral dimensionality reduction to the augmented corpus matrix
C ′. We compute a rank-reduced principal component analysis with a biased covariance, i.e. we do not shift
the data to the mean. Due to the fact that C ′ is already dimensionality reduced, it is advisable to solve
the underlying eigenvalue problem using a one-sided eigensolver to compute the first h left eigenvectors of
C ′. These eigenvectors are identical to the left singular vectors of a singular value decomposition, but the
computation is more effective. More specifically, we compute the rank-reduced factorization

C ′C ′T ≈ PhShPTh .

The choice of h is as difficult a decision as the selection of the rank of the SVD in an LSI system. A practical
means to determine a cut-off threshold is to compute a larger number of singular values and plot them on
a logarithmic scale. In such a plot, the threshold is much more visible than on a linear scale. We can now
compute a joint left factor matrix Q = PTh RE ∈ Rh×m as the final projection matrix, which we can use to
map the original feature vectors into a rank reduced feature space. In any case, it is important to note that a
significant reduction in the number of features has already been achieved before computing the factorization.

4 Implementation Details

Our mathematical definition for the construction of a replacement matrix R easily translates into an algo-
rithmic formulation, as given in Algorithm 1.

Input: The corpus matrix C ∈ Rm×n, the sets of documents D, the set of features F and the
threshold t ∈ N.

Data: The occurrence count N ∈ N, the elimination features E ⊆ F , the permutation π : N→ N, a
floating point variable l ∈ R, the feature fi ∈ F , the document dj ∈ D and an integer k ∈ N.

Output: The replacement matrix R ∈ Rk×m.
k := 1;
for fi ∈ F do

if ‖D(fi)‖ ≤ t then E := E ∪ {fi};
else π(i) := k, k+= 1;

k -= 1;
for fi ∈ E do

l := 0;
for dj ∈ D(fi) do

R(1 : k, i) +=C(i, j) ∗ τE(C(1 : m, j));
l+= |Ci,j |;

if l 6= 0 then R(1 : k, i) /= l;

for fi 6∈ E do R(1 : k, i) := eπ(i);

Algorithm 1: The naive implementation proceeds feature-wise and computes all replacement vectors
individually.

The algorithmic complexity of this algorithm depends heavily on the distribution of non-zero components
in the corpus matrix. In general, the upper bound for the complexity is O(m2n). But since our method has
been specifically designed for text retrieval, we can consider the specific properties of text index data, notably
Zipf’s law, and derive tighter bound for our application domain. Let c be the maximum number of non-
zero components in any document vector, i.e. c = argmax

d∈D
‖ {j ∈ {1, ...,m} | dj 6= 0} ‖. Then the truncation

operator τ can be implemented has a complexity of O(‖E‖+ c) by keeping the non-zero entries of the sparse
vector implementation sorted by the component index. But for text retrieval we may assume that ‖E‖ > c,
and so we can simplify the complexity to O(‖E‖). In order to compute a single replacement vector, one has to
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process at most t documents, because if the feature occurred in more documents it would not be eliminated.
Consequently, an individual vector can be computed in O (t‖E‖)). The complexity of constructing the
replacement matrix R consists of two parts: building the replacement vectors for rare features and setting a
single feature to one for all others. This leads to a complexity of O(‖E‖2t + k). Due to Zipf’s law, we can
assume that k < ‖E‖, and so we obtain a practical complexity of O(‖E‖2t) for text retrieval applications.
Summarizing, we can state two bounds for the algorithmic complexity of our vector replacement algorithm:

• In general, the algorithm will perform no worse than O(m2n).

• For text retrieval applications, we can assume that it is bounded by O(‖E‖2t).

In this serial form, our method does not necessarily provide an improvement in the algorithmic complexity,
especially if ‖D‖ � ‖F‖. But since the replacement vectors can be computed independently of each other,
we have a great potential for parallel scalability. We plan to investigate this issue in our future research.

The algorithm suffers a serious drawback in this form: since many documents contain more than one
rare term, most documents have to be read from main memory more than once, leading to poor memory
and cache performance. However, it is possible to vectorize the naive version and rearrange the loops so
that every document is accessed only once. We introduce a new function F : D → F that determines which
features occur in a given document, formally F(dj) := {fi ∈ F | Ci,j 6= 0}. Using this function, Algorithm 2
describes an optimized variant of our construction method which uses the same number of computational
steps, but requires only a single sweep over all documents in the corpus.

Unfortunately, we cannot present a full performance comparison at this early stage of our research. But
we would like to point out some initial observations. The simultaneous accumulation of all replacement
vectors using vectorized processing incurs a small overhead, which can lead to a performance degradation for
small data sets. However, we have observed a speed-up on larger data sets.

5 Evaluation

To test the performance of our approach in a small-scale environment with a low number of documents, we
have used the classic MEDLARS collection, see e.g. [23]. With merely 1,033 documents this collection is indeed
quite small. But it also contains 30 evaluation queries, along with a hand-generated set of relevant documents
for each query, allowing us to conduct a standard precision-at-rank k retrieval performance evaluation. The
documents have been converted into (unweighted) term frequency vectors with 8,742 features. The resulting
corpus matrix C contained 57,013 non-zero components, making this corpus matrix merely 0.63% dense, i.e.
less than one percent of all components are non-zero.

For a larger and more realistic test, we have used the Reuters Corpus Volume I in its corrected second
version (RCV1-v2) [22]. We used the pre-vectorized TF-IDF version with 47,236 features in a corpus matrix
which is 0.16% dense. Since this is a benchmark corpus for text categorization, we used the available class
labels for the 23,149 training documents to discriminate between relevant and irrelevant search results. All
documents in the official set of training documents were used as sample queries and evaluated against all
other vectors. Every sample query has been evaluated for all of its categories, which have been counted as
though they were independent queries with the same vector.

Figures 1 and 2 depict the occurrence counts for all features in both document collections used in our
evaluation. The power distribution observed by Zipf’s law is clearly visible in both plots, and we have
included the cut-off threshold and the resulting division between rare and common features for a more
intuitive understanding of our reduction.

We have conducted a preliminary evaluation of the sensitivity of our reduction with respect to the choice
of parameters, the threshold t and the reduced rank k of the subsequent PCA. Currently, we believe that the
performance of our method is potentially quite stable under a relatively wide range of values for t, but that
some care must be taken when choosing k. Overzealous attempts at reducing the dimensionality with the
spectral rank reductions are met with a drastic drop in retrieval performance.

For the MEDLARS collection, we have computed the replacement vector matrix for all features occurring
in less than 1% of all documents on an Intel Xeon E5520 CPU clocked at 2.27 GHz in just under 1.9 seconds
using Algorithm 1 or 2.6 seconds with Algorithm 2. As we have previously indicated, we can expect a slight
performance degradation with the single-sweep algorithm on such a small document collection because of
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Input: The corpus matrix C ∈ Rm×n, the set of documents D, the set of features F and the
maximum occurrence count for rare features t ∈ N.

Data: The occurrence count vector N ∈ Nm for all features, the elimination features E ⊆ F , the
elimination features present in a document G ⊆ F , the permutation π : N→ N, the feature
fi ∈ F , the document dj ∈ D and an integer k ∈ N.

Output: The replacement matrix R ∈ Rk×m.
for dj ∈ D do

for fi ∈ F(dj) do
N(i) += 1;

k := 1;
for fi ∈ F do

if N(i) ≤ t then
E := E ∪ {fi};

else
π(i) := k;
k+= 1;

k -= 1;
for dj ∈ D do

G := E ∩ F(dj);
for fi ∈ G do

R(1 : k, i) +=C(i, j) ∗ τE(C(1 : m, j));
li += |C(i, j)|;

for fi ∈ F do
if fi ∈ E then

R(1 : k, i) := (l(i))
−1 ∗R(1 : k, i);

else
R(1 : k, i) := eπ(i);

Algorithm 2: This optimized variant of the naive algorithm proceeds document-wise and accumulates
all replacement vectors simultaneously in a single sweep over all documents. Since every document
vector is read only once, this optimization results in a more cache and memory friendly algorithm.
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Figure 1: Feature occurrence counts for the MEDLARS corpus – depicted along with the quartiles, the
sampling mean and the cut-off threshold for rare features. The vertical line indicated by the arrow shows
the dividing line between rare and common features.
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Figure 2: Feature occurrence counts for the Reuters Corpus Volume I Version 2 – depicted along with the
quartiles, the sampling mean and the cut-off threshold for rare features. The vertical line indicated by the
arrow shows the dividing line between rare and common features.

9



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  5  10  15  20  25  30

m
ea

n
 p

re
ci

si
o
n

hit list rank

sparse TF (8,742)
vector replacement (1,136)

rank-reduced vector replacement (500)

Figure 3: Precision-at-k retrieval performance evaluation on the MEDLARS benchmark corpus with 1,033
documents and 30 sample queries. The hit list rank k was sampled from 1 to 30. This measurement has
been conducted with (1) the raw, sparse term-frequency vectors, (2) the replacement vector approach and (3)
the replacement vector approach with subsequent rank reduction. The data indicates that the replacement
vector approach can deliver a dimensionality reduction which succeeds to preserve or improve the retrieval
effectiveness on small scale document collections.

the overhead of the vectorized processing. Our reduction produced a reduced corpus matrix C ′ with 1,136
features containing 750,903 non-zero features, now being 63.99% dense. Lastly, we computed a rank-500
dimensionality reduction of C ′ via a principal component analysis on the biased 1,136 by 1,136 feature
covariance matrix, producing a third corpus matrix C ′′ with 500 features. We conducted three runs on these
three versions of the corpus: (1) retrieval using the vector space model without term weighting on the sparse
vectors in the corpus C, (2) on the vector replacement dimensionality reduction C ′ = REC, and (3) on a the
rank-reduced corpus C ′′ = QC.

The data obtained during these measurements are depicted in Figure 3. These figures indicate that
the vector replacement approach succeeds in its objective of creating a reduced-dimensional representation
which preserves or improves the retrieval performance. Even the limited number of documents available in
the MEDLARS collection provided enough information to construct replacement vectors that stand up to a
performance evaluation with the raw, sparse term frequency vectors. The subsequent rank reduction does
not provide a decisive advantage in terms of retrieval performance, but it does succeed in cutting the final
number of features in half without a significant loss in terms of accuracy.

Replacing all features which occur in less than 3% of all documents of the RCV1-v2 was performed on
the same CPU in under 8 minutes using Algorithm 1 and just under 6 minutes with Algorithm 2. While
we cannot give a serious performance comparison at this stage, our preliminary measurements indicate that
the single-sweep strategy does provide a speed-up for larger document collections. The reduction produced
535 features and a corpus matrix which is 99.98% dense. We again performed a subsequent rank-reduction
creating 392 features as a third representation for our evaluation. Figure 4 illustrates our results, which
provide a clear indication that our approach succeeds in reducing the dimensionality and improving the
retrieval performance on this substantially larger data set. Here, the subsequent rank reduction manages
to both cut the number of features by 50% and further improve the precision of the vector replacement
approach.
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Figure 4: All-documents all-categories evaluation of the precision-at-k retrieval performance on the 23,149
training documents of the Reuters Corpus Volume I Version 2 with the topic categorization. Queries have
been conducted using every document as a query example. For all categories of the query example, we have
scanned the hit list and considered only those documents relevant that featured the same category. The graph
depicts the mean average accuracy over all documents and categories for (1) the precomputed sparse TF-IDF
vectors as available in the RCV1-v2 collection, (2) the replacement vector approach and (3) the replacement
vector approach with subsequent rank reduction. This exhaustive measurement indicates the ability of the
replacement vector approach to preserve and improve the similarities on a large text categorization collection.

6 Summary & Conclusions

In this paper, we have introduced a novel approach to dimensionality reduction in text retrieval, which is
based on the replacement of rare terms with linear combinations of their co-occurring terms. We have given
a detailed description of the mathematical formulation of the corresponding linear replacement operator.
Furthermore, we have given a detailed report of the algorithmic formulation in pseudo-code. We analyzed
the algorithmic complexity, which is O(m2n) for m features and n documents in the most general case.
For text retrieval applications, we can refine this bound to O(‖E‖2t) where t is the maximum number of
containing documents for a rare feature and E the corresponding set of elimination features.

We have evaluated our approach on two standard benchmark collections, the small MEDLARS collection
with 1,033 documents and the Reuters Corpus Volume I Version 2 with 23,149 documents. For both corpora,
we eliminated all features which occurred in less than 1% or 3% of all documents. The MEDLARS collection
was thus reduced from 8,752 to 1,136 features using rare vector replacement and to 500 features with a
subsequent conventional rank reduction. Our experiments show that both dimensionality reduced versions
are competitive with the sparse vector format in terms of retrieval accuracy. For the Reuters corpus we
conducted an extensive cross-evaluation using all topics as indicators for related and unrelated results and all
documents as sample queries. We reduced the original 47,236 features to 525 features using vector replacement
and to 392 terms using a subsequent rank reduction. This transformation consistently increased the average
precision for all result list ranks. While these experiments are still preliminary, we believe that they do deliver
an initial proof-of-concept for our reduction method.

In our future research, we plan to extend our experiments to a wider range of test corpora, especially large-
scale text collections, to improve the empirical evidence for the utility of our method and to conduct a full-scale
performance evaluation. In addition, we will investigate how we can efficiently update an existing reduction
to account for new, changed and deleted documents as well as new features. Lastly, our method shows great
potential for parallel implementation, because the replacement vectors can be computed independently. We
hope that this will allow us to outperform the SVD in terms of scalability in future experiments.
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