
Information Retrieval
CS 6900

Razvan C. Bunescu

School of Electrical Engineering and Computer Science

bunescu@ohio.edu

Lecture 02

 Typical IR task

•  Input:
–  A large collection of unstructured text documents.
–  A user query expressed as text.

•  Output:
–  A ranked list of documents that are relevant to the query.

2
Lecture 01

IR System Query
String

Document
corpus

Ranked
Documents

1. Doc1
2. Doc2
3. Doc3
 .
 .

Boolean Typical IR task

•  Input:
–  A large collection of unstructured text documents.
–  A user query expressed as text.

•  Output:
–  A ranked list of documents that are relevant to the query.

3
Lecture 01

IR System Query
String

Document
corpus

Ranked
Documents

1. Doc1
2. Doc2
3. Doc3
 .
 .

Boolean Retrieval

•  Information Need: Which plays by Shakespeare mention
Brutus and Caesar, but not Calpurnia?

•  Boolean Query: Brutus AND Caesar AND NOT Calpurnia

•  Possible search procedure:
–  Linear scan through all documents (Shakespeare’s collected works).
–  Compile list of documents that contain Brutus and Caesar, but not

Calpurnia.
–  Advantage: simple, it works for moderately sized corpora.
–  Disadvantage: need to do linear scan for every query ⇒ slow for

large corpora.

4
Lecture 01

Term-document incidence matrices

5
Lecture 01

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

1 if document contains word, 0 otherwise

•  Precompute a data structure that makes search fast for
every query.

Term-document incidence matrix M

6
Lecture 01

Brutus AND Caesar AND NOT Calpurnia Query =

Answer = M(Brutus) ∧ M(Caesar) ∧¬M(Calpurnia)
 = 1 1 0 1 0 0 ∧ 1 1 0 1 1 1 ∧ 1 0 1 1 1 1
 = 1 0 0 1 0 0
 ⇒ Anthony and Cleopatra, Hamlet

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

110100 ∧
110111 ∧
101111
100100

Answers to Query

•  Antony and Cleopatra, Act III, Scene ii
 Agrippa [Aside to DOMITIUS ENOBARBUS]: Why, Enobarbus,

 When Antony found Julius Caesar
dead,

 He cried almost to roaring; and he wept
 When at Philippi he found Brutus slain.

•  Hamlet, Act III, Scene ii
 Lord Polonius: I did enact Julius Caesar I was killed i’ the

 Capitol; Brutus killed me.
7

Lecture 01

Scalability: Dense Format

•  Assume:
–  Corpus has 1 million documents.
–  Each document is about 1,000 words long.
–  Each word takes 6 bytes, on average.
–  Of the 1 billion word tokens 500,000 are unique.

•  Then:
–  Corpus storage takes:

•  1M * 1, 000 * 6 = 6GB
–  Term-Document incidence matrix would take:

•  500,000 * 1,000,000 = 0.5 * 1012 bits

8
Lecture 01

Scalability: Sparse Format

•  Of the 500 billion entries, at most 1 billion are non-zero.
⇒  at least 99.8% of the entries are zero.
⇒  use a sparse representation to reduce storage size!

•  Store only non-zero entries ⇒ Inverted Index.

9
Lecture 01

Inverted Index for Boolean Retrieval

•  Map each term to a posting list of documents containing it:
–  Identify each document by a numerical docID.
–  Dictionary of terms usually in memory.
–  Posting list:

•  linked lists of variable-sized array, if in memory.
•  contiguous run of postings, if on disk.

10
Lecture 01

Brutus

Calpurnia

Caesar 1 2 4 5 6 16 57 132

1 2 4 11 31 45 173

2 31

174

54 101

Dictionary Postings

Inverted Index: Step 1

•  Assemble sequence of 〈token, docID〉 pairs.
–  assume text has been tokenized (next lecture).

11
Lecture 01

I did enact Julius
Caesar I was killed

i' the Capitol;
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble

Brutus hath told you
Caesar was ambitious

Doc 2

Inverted Index: Step 2

•  Sort by terms, then by docIDs.

12
Lecture 01

Inverted Index: Step 3

•  Merge multiple term entries per document.

•  Split into dictionary and posting lists.
–  keep posting lists sorted, for efficient query processing.

•  Add document frequency information:
–  useful for efficient query processing.
–  also useful later in document ranking.

13
Lecture 01

Inverted Index: Step 3

14
Lecture 01

Query Processing: AND

•  Consider processing the query:
Brutus AND Caesar
–  Locate Brutus in the Dictionary;

•  Retrieve its postings.
–  Locate Caesar in the Dictionary;

•  Retrieve its postings.
–  “Merge” the two postings (intersect the document sets):

15
Lecture 01

128
34

2 4 8 16 32 64
1 2 3 5 8 13 21

2 8

Brutus
Caesar

Query Processing: AND

16
Lecture 01

Query Processing: OR

17
Lecture 01

Add(answer, docID(p1)

Add(answer, docID(p2)

Query Processing: NOT

•  Exercise: Adapt the merge for the queries:
 Brutus AND NOT Caesar
 Brutus OR NOT Caesar

•  Can we still run through the merge in time O(x+y)?

•  Exercise: What about an arbitrary Boolean formula?
 (Brutus OR Caesar) AND NOT
 (Antony OR Cleopatra)

18
Lecture 01

Query Optimization:
What is the best order for query processing?

•  Consider a query that is an AND of n terms.

19
Lecture 01

128

34

2 4 8 16 32 64

1 2 3 5 8 13 21

Brutus

Caesar

Calpurnia 13 16

Query: Brutus AND Calpurnia AND Caesar

–  For each of the n terms, get its postings, then AND them together.
–  Process in order of increasing freq:

•  start with smallest set, then keep cutting further.
•  use document frequencies stored in the dictionary.
⇒ execute the query as (Calpurnia AND Brutus) AND Caesar

Query Optimization

•  Exercise: recommend a query processing order for:
–  (tangerine OR trees) AND

(marmalade OR skies) AND
(kaleidoscope OR eyes)

–  which two terms should we process first?

20
Lecture 01

 Term Freq
 eyes 213312
 kaleidoscope 87009
 marmalade 107913
 skies 271658
 tangerine 46653
 trees 316812

–  Get document frequencies (DF) for all terms.
–  Estimate the size of each OR by the sum of its DF’s.
–  Process in order of increasing OR sizes

•  start with smallest set, then keep cutting further.
•  use document frequencies stored in the dictionary.

Extended Boolean Model

•  Phrase Queries:
–  Want to answer query “Ohio University”, as a phrase.
–  The concept of phrase queries is one of the few “advanced search”

ideas has proven easily understood by users.
•  about 10% of web queries are phrase queries.
•  many more are implicit phrase queries (e.g. person names).

•  Proximity Queries:
–  Altavista: Python NEAR language
–  WestLaw: limit! \3 statute \3 federal \2 tort
–  Google: Python * language

–  many search engines use keyword proximity implicitly.

21
Lecture 01

Solution 1 for Phrase Queries:
Biword Indexes

•  Index every two consecutive tokens in the text.
–  Treat each biword as a vocabulary term.
–  The text “modern information retrieval” generates biwords:

•  modern information
•  information retrieval

–  Bigram phrase querry processing is now straightforward.
–  Longer phrase queries?

•  Heuristic solution: break them into conjunction of biwords.
–  Query “electrical engineering and computer science”:

»  “electrical engineering” AND “engineering and” AND
“and computer” AND “computer science”

•  Without verifying the retrieved docs, can have false positives!

22
Lecture 01

Biword Indexes

•  Can have false positives:
–  Unless retrieved docs are verified ⇒ increased time complexity.

•  Larger dictionary leads to index blowup:
–  clearly unfeasible for ngrams larger than bigrams.

⇒ not a standard solution for phrase queries:
–  but useful in compound strategies.

23
Lecture 01

Solution 2 for Phrase Queries:
Positional Indexes

•  In the postings list:
–  for each token tok:

•  for each document docID:
–  store the positions in which tok appears in docID.

»  < be: 993427;
 1: 7, 18, 33, 72, 86, 231;
 2: 3, 149;
 4: 17, 191, 291, 430, 434;
 5: 363, 367, … >

»  which documents might contain “to be or not to be”?

24
Lecture 01

Positional Indexes: Query Processing

•  Use a merge algorithm at two levels:
1.  Postings level, to find matchings docIDs for query tokens.
2.  Document level, to find consecutive positions for query tokens.

–  Extract	 index	 entries	 for	 each	 dis1nct	 term:	 to,	 be,	 or,	 not.	
–  Merge	 their	 doc:posi(on	 lists	 to	 enumerate	 all	 posi1ons	 with	 “to	

be	 or	 not	 to	 be”.	
•  to: 	 2:1,17,74,222,551;	 4:8,16,190,429,433;	 7:13,23,191;	 ...	
•  be: 	 1:17,19;	 4:17,191,291,430,434;	 5:14,19,101;	 ...	

•  Same	 general	 method	 for	 proximity	 searches.	

25
Lecture 01

Proximity Queries

•  LIMIT! /3 STATUTE /3 FEDERAL /2 TORT
–  Again, here, /k means “within k words of”.

•  Cannot use biword indexes.

•  Can use positional indexes:
–  Adapt the linear merge of postings to handle proximity queries.

Can you make it work for any value of k?
–  This is a little tricky to do correctly and efficiently.
–  Algorithm in Figure 2.12 of IIR.

26
Lecture 01

Lecture 01
27

Positional Index: Size

•  Need an entry for each occurrence, not just for each
document.

•  Index size depends on average document size:
–  Average web page has less than 1000 terms.
–  SEC filings, books, even some epic poems … easily 100,000 terms.

•  large documents cause an increase of 2 orders of magnitude.
–  Consider a term with frequency 0.1%:

28
Lecture 01

Positional Index

•  A positional index expands postings storage substantially.
–  2 to 4 times as large as a non-positional index
–  compressed, it is between a third and a half of uncompressed raw

text.

•  Nevertheless, a positional index is now standardly used
because of the power and usefulness of phrase and
proximity queries:
–  whether used explicitly or implicitly in a ranking retrieval system.

29
Lecture 01

Combined Strategy

•  Biword and positional indexes can be fruitfully combined:
–  For particular phrases (“Michael Jackson”, “Britney Spears”) it is

inefficient to keep on merging positional postings lists
•  Even more so for phrases like “The Who”. Why?

1.  Use a phrase index, or a biword index, for certain queries:
–  Queries known to be common based on recent querying behavior.
–  Queries where the individual words are common but the desired

phrase is comparatively rare.

2.  Use a positional index for remaining phrase queries.

30
Lecture 01

Boolean Retrieval vs. Ranked Retrieval

•  Many users (professionals) prefer Boolean query models:
–  Boolean queries are precise: a document either matches the query

or it does not.
•  Greater control and transparency over what is retrieved.

–  Some domains allow an effective ranking criterion:
•  Westlaw returns documents in reverse chronological order.

•  Hard to tune precision vs. recall:

–  AND operator tends to produce high precision but low recall.
–  OR operator gives low precision but high recall.
–  Difficult/impossible to find satisfactory middle ground.

31
Lecture 01

Boolean Retrieval vs. Ranked Retrieval

•  Need an effective method to rank the matched documents.
–  Give more weight to documents that mention a token several times

vs. documents that mention it only once.
•  record term frequency in the postings list.

•  Web search engines implement ranked retrieval models:
–  Most include at least partial implementations of Boolean models:

•  Boolean operators.
•  Phrase search.

–  Still, improvements are generally focused on free text queries.

32
Lecture 01

