
Information Retrieval
CS 6900

Razvan C. Bunescu

School of Electrical Engineering and Computer Science

bunescu@ohio.edu

Lecture 04

Tokenization: From Text to Tokens

•  Tokenization = segmenting text into tokens:
–  token = a sequence of characters, in a particular document at a

particular position.
–  type = the class of all tokens that contain the same character

sequence.
•  “... to be or not to be ...”
•  “... so be it, he said ...”

–  term = a (normalized) type that is included in the IR dictionary.
•  text = “to sleep perchance to dream”
•  tokens = to, sleep, perchance, to, dream
•  types = to, sleep, perchance, dream
•  terms = sleep, perchance, dream (stopword removal).

2
Lecture 01

3 tokens, 1 type

Tokenization: From Text to Tokens

•  Split on whitespace and non-alphanumeric?
–  Good as a starting point, but complicated by many tricky cases:

•  Appostrophes are ambiguous:
–  possessive constructions:

»  the books’s cover => the book s cover
–  contractions:

»  he’s happy => he is happy
»  aren’t => are not

–  quotations:
»  ‘let it be’ => let it be

3
Lecture 01

Tokenization: From Text to Tokens

•  Split on whitespace and non-alphanumeric?
–  Good as a starting point, but complicated by many tricky cases:

•  Whitespaces in proper names or collocations:
–  San Francisco => San_Francisco

»  how do we determine it should be a single token?
•  Hyphenations:

–  co-education => co-education
–  state-of-the-art => state of the art? state_of_the_art?
–  lowercase, lower-case, lower case => lower_case
–  Hewlett-Packard => Hewlett_Packard? Hewlett Packard?

•  Whitespaces and Hyphenations:
–  San Francisco-Los Angeles => San_Francisco Los_Angeles

4
Lecture 01

Tokenization: From Text to Tokens

•  Split on whitespace and non-alphanumeric?
–  Good as a starting point, but complicated by many tricky cases:

•  Whitespaces and Hyphenations:
–  split on hyphens and whitespaces, but use a phrase index.

•  Unusual strings that should be recognized as tokens:
–  C++, C#, B-52, C4.5,M*A*S*H.

•  URLs, IP addresses, email addresses, tracking numbers.
–  exclude numbers, monetary amounts, URLs from indexing?

•  Use same tokenization rules for queries and documents!

5
Lecture 01

Tokenization is Language Dependent

•  Need to know the language of document/query:
–  Language Identification, based on classifiers trained on short

character subsequences as features, is highly effective.
–  French (reduced definite article, postposed clitic pronouns):

•  l’ensemble, un ensemble, donne-moi.
–  German (compund nouns), need compound splitter:

•  Computerlinguistik
•  Lebensversicherungsgesellschaftsangestellter

–  East Asian languages, need word segmenter:
• 莎拉波娃现在居住在美国东南部的佛罗里达。	

–  Not always guaranteed a unique tokenization
•  Complicated in Japanese, with multiple alphabets intermingled.

6
Lecture 01

Tokenization is Language Dependent

•  Need to know the language of document/query:
–  Arabic and Hebrew:

•  Written right to left, but with certain items like numbers
written left to right.

•  Words are separated, but letter forms within a word form
complex ligatures

7
Lecture 01

← → ← → ← start

Algeria achieved its independence in 1962 after 132 years of
French occupation.

Language Dependent Processing

•  Compound Splitting for German:
–  usually implemented by finding segments that match against

dictionary entries.

•  Word Segmentation for Chinese:
–  ML sequence tagging models trained on manually segmented text:

•  Logistic Regression, HMMs, Conditional Random Fields.
–  Multiple segmentations are possible:

8
Lecture 01

From Tokens to Terms: Stop words

•  Exclude from the dictionary the most common words.
–  They have little semantic content: the, a, and, to, be
–  There are a lot of them: ~30% of postings for top 30 words.

•  Stop words = list of most common words:
–  sort tokens by collection frequency.
–  select most common types, often hand-filtered based on semantic

content.

9
Lecture 01

From Tokens to Terms: Stop words

•  But the trend is away from doing this:
–  From large stop lists (200-300), to small stop lists (7-12), to none.
–  Good compression techniques (IIR 5) means the space for

including stop words in a system is very small.
–  Good query optimization techniques (IIR 7) mean you pay little at

query time for including stop words.
–  You need them for:

•  Phrase queries: “King of Denmark”
•  Various song titles, etc.: “Let it be”, “To be or not to be”
•  Relational queries: “flights to London”

10
Lecture 01

From Tokens to Terms: Normalization

•  Token Normalization = reducing multiple tokens to the
same canonical term, such that matches occur despite
superficial differences.
1.  Create equivalence classes, named after one member of the class:

•  {anti-discriminatory, antidiscriminatory}
•  {U.S.A., USA}

–  but what about C.A.T vs. CAT?
2.  Maintain relations between unnormalized tokens:

o  can be extended with lists of synonyms (car, automobile).
1.  Index unnormalized tokens, a query term is expanded into a

disjunction of multiple postings lists.
2.  Perform expansion during index construction.

11
Lecture 01

From Tokens to Terms: Normalization

•  Accents and diacritics in French:
–  résumé vs. resume.

•  Umlauts in German:
–  Tuebingen vs. Tübingen

•  Most important criterion:
–  How are users like to write their queries for these words?

•  Even in languages that standardly have accents, users often
may not type them:

•  Often best to normalize to a de-accented term
–  Tuebingen, Tübingen, Tubingen => Tubingen

12
Lecture 01

From Tokens to Terms: Normalization

•  Case-Folding = reduce all letters to lower case:
–  allow Automobile at beginning of sentences to match automobile.
–  allow matching user typed ferrari to match Ferrari in documents.
–  but may lead to unintended matches:

•  the Fed vs. fed.
•  Bush, Black, General Motors, Associated Press, ...

•  Heuristic = lowercase only some tokens:
–  words at beginning of sentences.
–  all words in a title where most words are capitalized.

•  Truecasing = use a classifier to decide when to fold:
–  trained on many heuristic features.

13
Lecture 01

From Tokens to Terms: Normalization

•  British vs. American spellings:
–  colour vs. color.

•  Multiple formats for dates, times:
–  09/30/2013 vs. Sep 30, 2013.

•  Asymmetric expansion:
–  Enter:	 window 	 Search:	 window,	 windows	
–  Enter:	 windows 	 Search:	 Windows,	 windows,	 window	
–  Enter:	 Windows 	 Search:	 Windows	

14
Lecture 01

Lemmatization and Stemming

•  Lemmatization = reduce a word to its base/dictionary
form, i.e. its lemma:
–  is, am, are => be
–  car, cars => car

•  Lemmatization commonly only collapses the different
inflectional forms of a lemma:
–  saw => see (if verb), or saw (if noun).

15
Lecture 01

From Tokens to Terms: Stemming

•  Stemming = reduce inflectional and sometimes
derivationally related forms of a word to a common base
form i.e. the stem.
–  automate, automates, automatic, automation => automat
–  see, saw => s

•  Crude affix chopping that is language dependent:

16
Lecture 01

for example compressed
and compression are both
accepted as equivalent to
compress.

for exampl compress and
compress ar both accept
as equival to compress

Porter’s Algorithm

•  The most common stemmer for English:
–  at least as good as other stemming options.
–  5 phases of word reductions, applied sequentially.
–  conventions for rule selection and application:

•  select the reduction rule that applies to the longest suffix:

•  check the number of syllables, for suffix determination:

17
Lecture 01

http://www.tartarus.org/˜martin/PorterStemmer/

Other Stemming Algorithms

•  Lovins stemmer, Paice/Husk stemmer, Snowball:
–  http://www.cs.waikato.ac.nz/˜eibe/stemmers/
–  http://www.comp.lancs.ac.uk/computing/research/stemming/

•  Stemming is language- and often application-specific:
–  open source and commercial plug-ins.

•  Does it improve IR performance?
–  mixed results for English: improves recall, but hurts precision.

•  operative (dentistry) ⇒ oper
–  definitely useful for languages with richer morphology:

•  Spanish, German, Finish (30% gains).

18
Lecture 01

