
 Slide 1

Web Challenges for IR

•  Distributed Data: Documents spread over millions of different web
servers.

•  Volatile Data: Many documents change or disappear rapidly (e.g.
dead links).

•  Large Volume: Billions of separate documents.

•  Unstructured and Redundant Data: No uniform structure, HTML
errors, up to 30% (near) duplicate documents.

•  Quality of Data: No editorial control, false information, poor
quality writing, typos, etc.

•  Heterogeneous Data: Multiple media types (images, video, VRML),
languages, character sets, etc.

 Slide 2

The Web (Corpus) by the
Numbers (1)
• 43 million web servers

• 167 Terabytes of data
– About 20% text/html

• 100 Terabytes in “deep Web”
• 440 Terabytes in emails

– Original content

•  [Lyman & Varian: How much Information? 2003]

–  http://www.sims.berkeley.edu/research/projects/how-much-info-2003/

 Slide 3

The Web (Corpus) by the
Numbers (2)

35 Terabytes of text on
surface Web?

35 academic research
libraries

(with some 20,000
meters of shelved

books each!)

1 Kilobyte = a
very short story

“Jack and Jill went up the
hill to fetch a pail of water.
Jack fell down and broke
his crown and Jill came
tumbling after.”

1 Megabyte = a
short book

1 Gigabyte = 20
meters of shelved

books

1 Terabyte = an
academic research

library

 Slide 4

Graph Structure of the Web

http://www9.org/w9cdrom/160/160.html	

 Slide 5

Zipf’s Law on the Web

•  Number of in-links/out-links to/from a page has a Zipfian distribution.
•  Length of web pages has a Zipfian distribution.

•  Number of hits to a web page has a Zipfian distribution.

 Slide 6

Web Search Using IR

Query
String

IR
System

Ranked
Documents

1. Page1
2. Page2
3. Page3
 .
 .

Document
corpus

Web Spider

The spider represents the main
difference compared to

traditional IR.	

 Slide 7

Spiders (Robots/Bots/Crawlers)

• Start with a comprehensive set of root URL’s from
which to start the search.

• Follow all links on these pages recursively to find
additional pages.

•  Index/Process all novel found pages in an inverted
index as they are encountered.

• May allow users to directly submit pages to be indexed
(and crawled from).

– You’ll need to build a simple spider for Assignment 2 to traverse
the OU webpages.

 Slide 8

Search Strategies

Breadth-first Search

 Slide 9

Search Strategies (cont)

Depth-first Search

 Slide 10

Search Strategy Trade-Off’s

•  Breadth-first explores uniformly outward from the root
page but requires memory of all nodes on the previous
level (exponential in depth). Standard spidering
method.

•  Depth-first requires memory of only depth times
branching-factor (linear in depth) but gets “lost”
pursuing a single thread.

•  Both strategies can be easily implemented using a
queue of links (URL’s).

 Slide 11

Avoiding Page Duplication

•  Must detect when revisiting a page that has already
been spidered (web is a graph not a tree).

•  Must efficiently index visited pages to allow rapid
recognition test.
–  Tree indexing (e.g. trie)
–  Hashtable

•  Index page using URL as a key.
–  Must canonicalize URL’s (e.g. delete ending “/”)
–  Cannot detect duplicated or mirrored pages.

•  Index page using textual content as a key.
–  Requires first downloading page.

 Slide 12

Duplicate & Near-Duplicate Detection

• The web is full of duplicated content.

• Strict duplicates are not that common:
– exact match can be detected using fingerprinting.

• Near duplicates are much more common:
– Example: last modified date the only difference between two

copies of a page.
– Efficient detection using a randomized algorithm called shingling:

•  Shingles are word n-grams:
-­‐  a	
 rose	
 is	
 a	
 rose	
 is	
 a	
 rose	
 →	
 4-­‐grams	
 are	

–  a_rose_is_a,	
 rose_is_a_rose,	
 	
 is_a_rose_is,	
 a_rose_is_a	

•  Use Jaccard similarity between 2 docs as sets of shingles:

-­‐  Size_of_Intersec7on	
 /	
 Size_of_Union.	

•  Efficient	
 approxima7on	
 using	
 a	
 sketch	
 of	
 shingles	
 from	
 each	
 document:	

-­‐  More	
 details	
 on	
 randomized	
 algorithm	
 in	
 IIR	
 19.6.	

 Slide 13

Spidering Algorithm

Initialize queue (Q) with initial set of known URL’s.
Until Q empty or page or time limit exhausted:
 Pop URL, L, from front of Q.
 If L is not to an HTML page (.gif, .jpeg, .ps, .pdf, .ppt…)
 continue loop.
 If already visited L, continue loop.
 Download page, P, for L.
 If cannot download P (e.g. 404 error, robot excluded)
 continue loop.
 Index P (e.g. add to inverted index or store cached copy).
 Parse P to obtain list of new links N.
 Append N to the end of Q.

 Slide 14

Queueing Strategy

•  How new links are added to the queue determines
search strategy.

•  FIFO (append to end of Q) gives breadth-first search.

•  LIFO (add to front of Q) gives depth-first search.

•  Heuristically ordering the Q gives a “focused crawler”
that directs its search towards “interesting” pages.

 Slide 15

Restricting Spidering

• You can restrict spider to a particular site.
– Remove links to other sites from Q.

• You can restrict spider to a particular directory.
– Remove links not in the specified directory.

• Explicit politeness:
– Obey page-owner restrictions (robot exclusion).

•  Implicit politeness:
– Avoid hitting same site too often.

 Slide 16

Implicit Politeness

• The bandwidth available for a crawler is usually much
higher than the bandwidth of the Web sites it visits.

• Using multiple threads, a Web crawler might easily
overload a Web server, specially a smaller one.

• To avoid this, it is customary:
– to open only one connection to a given Web server at a time.
– to take a delay between two consecutive accesses:

•  Common	
 heuris7c:	
 insert	
 7me	
 gap	
 between	
 successive	
 requests	
 to	

a	
 host	
 that	
 is	
 >>	
 7me	
 for	
 most	
 recent	
 fetch	
 from	
 that	
 host.

•  [Cho et al.] suggested adopting 10 seconds as the interval
between consecutive accesses

 Slide 17

Link Extraction

•  Must find all links in a page and extract URLs.
–  ...
–  ...

•  Must complete relative URL’s using current
page URL:

–  to
 http://ace.cs.ohio.edu/~razvan/courses/ir6900/hw02.pdf
–  to

http://ace.cs.ohio.edu/~razvan/courses/cs3200/index.html

 Slide 18

URL Syntax

•  A URL has the following syntax:
–  <scheme>://<authority><path>?<query>#<fragment>

•  A query passes variable values from an HTML form and
has the syntax:
–  <variable>=<value>&<variable>=<value>…

•  A fragment is also called a reference or a ref and is a
pointer within the document to a point specified by an
anchor tag of the form:
–  <A NAME=“<fragment>”>

 Slide 19

Link Canonicalization

• Equivalent variations of ending directory normalized by
removing ending slash.
– http://ace.cs.ohio.edu/~razvan/
– http://ace.cs.ohio.edu/~razvan

•  Internal page fragments (ref’s) removed:
– http://nltk.org/book/ch03.html#chap-words
– http://nltk.org/book/ch03.html

 Slide 20

Anchor Text Indexing

•  Extract anchor text (between <a> and) of each
link followed.

•  Anchor text is usually descriptive of the document to
which it points.

•  Add anchor text to the content of the destination page
to provide additional relevant keyword indices.

•  Used by Google:
–  Evil Empire
–  IBM

 Slide 21

Anchor Text Indexing (cont’d)

•  Helps when descriptive text in destination page is
embedded in image logos rather than in accessible text.

•  Many times anchor text is not useful:
–  “click here”

•  Increases content more for popular pages with many in-
coming links, increasing recall of these pages.

•  May even give higher weights to tokens from anchor
text.

 Slide 22

Robot Exclusion

• Web sites and pages can specify that robots should not
crawl/index certain areas.

• Two components:
– Robots Exclusion Protocol: Site wide specification of excluded

directories.
– Robots META Tag: Individual document tag to exclude indexing

or following links.

• http://www.robotstxt.org/orig.html

 Slide 23

Robots Exclusion Protocol

•  Site administrator puts a “robots.txt” file at the root of
the host’s web directory.
–  http://www.ebay.com/robots.txt
–  http://www.cnn.com/robots.txt

•  File is a list of excluded directories for a given robot
(user-agent).
–  Exclude all robots from the entire site:

 User-agent: *
 Disallow: /

 Slide 24

Robot Exclusion Protocol Examples
•  Exclude specific directories:
 User-agent: *
 Disallow: /tmp/

 Disallow: /cgi-bin/

 Disallow: /users/paranoid/

•  Exclude a specific robot:
 User-agent: GoogleBot
 Disallow: /

•  Allow a specific robot:
 User-agent: GoogleBot
 Disallow:

 Slide 25

Robot Exclusion Protocol Details

• Only use blank lines to separate different User-agent
disallowed directories.

• One directory per “Disallow” line.

• No regex patterns in directories.

 Slide 26

Robots META Tag

•  Include META tag in HEAD section of a specific HTML
document.
– <meta name=“robots” content=“none”>

• Content value is a pair of values for two aspects:
–  index | noindex: Allow/disallow indexing of this page.
– follow | nofollow: Allow/disallow following links on this page.

 Slide 27

Robots META Tag (cont)

• Special values:
– all = index,follow
– none = noindex,nofollow

• Examples:
 <meta name=“robots” content=“noindex,follow”>

 <meta name=“robots” content=“index,nofollow”>

 <meta name=“robots” content=“none”>

 Slide 28

Robot Exclusion Issues

•  META tag is newer and less well-adopted than
“robots.txt”.

•  Standards are conventions to be followed by “good
robots.”

•  Companies have been prosecuted for “disobeying”
these conventions and “trespassing” on private
cyberspace.

 Slide 29

Multi-Threaded Spidering

•  Bottleneck is network delay in downloading individual
pages.

•  Best to have multiple threads running in parallel each
requesting a page from a different host.

•  Distribute URL’s to threads to guarantee equitable
distribution of requests across different hosts to
maximize through-put and avoid overloading any single
server.

•  Early Google spider had multiple co-ordinated crawlers
with about 300 threads each, together able to download
over 100 pages per second.

 Slide 30

Directed/Focused Spidering

• Sort queue to explore more “interesting” pages first.

• Two styles of focus:
– Topic-Directed
– Link-Directed

 Slide 31

Topic-Directed Spidering

• Assume desired topic description or sample pages of
interest are given.

• Sort queue of links by the similarity (e.g. cosine metric)
of their source pages and/or anchor text to this topic
description.
– Related to Topic Tracking and Detection

 Slide 32

Link-Directed Spidering

• Monitor links and keep track of in-degree and out-
degree of each page encountered.

• Sort queue to prefer popular pages with many in-coming
links (authorities).

• Sort queue to prefer summary pages with many out-
going links (hubs).
– Google’s PageRank algorithm.

 Slide 33

Keeping Spidered Pages
Up to Date

•  Web is very dynamic: many new pages, updated pages,
deleted pages, etc.

•  Periodically check spidered pages for updates and
deletions:
–  Just look at header info (e.g. META tags on last update) to

determine if page has changed, only reload entire page if
needed.

•  Track how often each page is updated and preferentially
return to pages which are historically more dynamic.

•  Preferentially update pages that are accessed more
often to optimize freshness of more popular pages.

 Slide 34

Web Crawling in Python

Extracting links from HTML documents:

1)  Via regular expressions.

2)  Via the HTMLParse class from the HTMLParse module:
– Event based parser:

•  Scans through the document, and whenever finds an html tag, it
generates an event and calls a predefined handler function.

– Flexible, customizable:
•  We can overwrite handler functions, by subclassing.

– We can extract both links and text content in one sweep:
•  For text content, can also use nltk.clean_html.

http://docs.python.org/2.7/library/htmlparser.html 	

 Slide 35

HTMLParser: Event Handlers

• HTMLParser.handle_starttag(self, tag, attrs):
– This method is called to handle the start of a tag.

•  The attrs argument is a list of (name, value) pairs.

• HTMLParser.handle_endtag(tag):
– This method is called to handle the start of a tag.

• HTMLParser.handle_data(data)
– This method is called to process arbitrary data (e.g. text nodes

and the content of <script>...</script> and <style>...</style>)

• Example:
–  Ohio University

starttag	

 endtag	

data	

(name, value)	

 Slide 36

Extracting links from HTML in Python

from HTMLParser import HTMLParser

class MyHTMLParser(HTMLParser):
 def __init__(self):
 HTMLParser.__init__(self)
 self.links = []
 def handle_starttag(self, tag, attrs):
 if tag == 'a’:
 for (name, value) in attrs:
 if name == 'href':
 self.links.append(value)
 break

 Add code to this class to also extract anchor text for each link.	

 Slide 37

Normalizing HTML links in Python

from urllib import urlopen
from MyHTMLParser import MyHTMLParser
from urlparse import urljoin

parser = MyHTMLParser()
url = "http://nltk.org/book/ch01.html"
parser.feed(urlopen(url).read())

absolutes = [urljoin(url, link) for link in parser.links]
print absolutes

http://docs.python.org/2/library/urlparse.html 	

 Slide 38

RobotFileParser: parser for robots.txt

• The module robotparser provides a single class,
RobotFileParser, which answers questions about
whether or not a particular user agent can fetch a URL
on the Web site that published the robots.txt file.

>>> import robotparser

>>> rp = robotparser.RobotFileParser()

>>> rp.set_url("http://www.musi-cal.com/robots.txt")

>>> rp.read()

>>> rp.can_fetch(”*", "www.ohio.edu")
True

 Slide 39

Open Source Web Crawlers

• NUTCH is an open-source crawler written in Java that is
part of the Lucene search engine:
– It is sponsored by the Apache Foundation.
– It includes a simple interface for intranet Web crawling as well as

a more powerful set of commands for large-scale crawl.

• WIRE is an open-source web crawler written in C++:
– Includes several policies for scheduling the page downloads.
– Also includes a module for generating reports and statistics on

the downloaded pages.
– It has been used for Web characterization.

• Other crawlers described in the literature include:
– ht://Dig (in C++), WebBase (in C), CobWeb (in Perl), PolyBot (in

C++ and Python), and WebRace (in Java).

