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Web Challenges for IR 

•  Distributed Data: Documents spread over millions of different web 
servers. 

•  Volatile Data:  Many documents change or disappear rapidly (e.g. 
dead links). 

•  Large Volume: Billions of separate documents. 

•  Unstructured and Redundant Data: No uniform structure, HTML 
errors, up to 30% (near) duplicate documents. 

•  Quality of Data: No editorial control, false information, poor 
quality writing, typos, etc. 

•  Heterogeneous Data: Multiple media types (images, video, VRML), 
languages, character sets, etc.  
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The Web (Corpus) by the 
Numbers (1) 
• 43 million web servers 

• 167 Terabytes of data  
– About 20% text/html 

• 100 Terabytes in “deep Web” 
• 440 Terabytes in emails 

– Original content 

 
 
 
 
•  [Lyman & Varian: How much Information? 2003] 

–  http://www.sims.berkeley.edu/research/projects/how-much-info-2003/ 
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The Web (Corpus) by the 
Numbers (2) 

35 Terabytes of text on  
surface Web? 

35 academic research 
libraries  

(with some 20,000 
meters of shelved 

books each!) 

1 Kilobyte = a  
very short story 

“Jack and Jill went up the  
hill to fetch a pail of water.  
Jack fell down and broke  
his crown and Jill came  
tumbling after.” 

1 Megabyte = a  
short book 

1 Gigabyte = 20  
meters of shelved 

books 

1 Terabyte = an  
academic research 

library 
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Graph Structure of the Web 

http://www9.org/w9cdrom/160/160.html	
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Zipf’s Law on the Web 

•  Number of in-links/out-links to/from a page has a Zipfian distribution. 
•  Length of web pages has a Zipfian distribution. 

•  Number of hits to a web page has a Zipfian distribution. 
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Web Search Using IR 

Query 
String 

IR 
System 

Ranked 
Documents 

1. Page1 
2. Page2 
3. Page3 
    . 
    . 
 

Document 
corpus 

Web Spider 

The spider represents the main 
difference compared to 

traditional IR.	
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Spiders (Robots/Bots/Crawlers) 

• Start with a comprehensive set of root URL’s from 
which to start the search. 

• Follow all links on these pages recursively to find 
additional pages. 

•  Index/Process all novel found pages in an inverted 
index as they are encountered. 

• May allow users to directly submit pages to be indexed 
(and crawled from). 

– You’ll need to build a simple spider for Assignment 2 to traverse 
the OU webpages. 
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Search Strategies 

Breadth-first Search 
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Search Strategies (cont) 

Depth-first Search 
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Search Strategy Trade-Off’s 

•  Breadth-first explores uniformly outward from the root 
page but requires memory of all nodes on the previous 
level (exponential in depth).  Standard spidering 
method. 

•  Depth-first requires memory of only depth times 
branching-factor (linear in depth) but gets “lost” 
pursuing a single thread. 

•  Both strategies can be easily implemented using a 
queue of links (URL’s). 
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Avoiding Page Duplication 

•  Must detect when revisiting a page that has already 
been spidered (web is a graph not a tree). 

•  Must efficiently index visited pages to allow rapid 
recognition test. 
–  Tree indexing (e.g. trie) 
–  Hashtable 

•  Index page using URL as a key. 
–  Must canonicalize URL’s (e.g. delete ending “/”)  
–  Cannot detect duplicated or mirrored pages. 

•  Index page using textual content as a key. 
–  Requires first downloading page. 
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Duplicate & Near-Duplicate Detection 

• The web is full of duplicated content. 

• Strict duplicates are not that common: 
– exact match can be detected using fingerprinting. 

• Near duplicates are much more common: 
– Example: last modified date the only difference between two 

copies of a page. 
– Efficient detection using a randomized algorithm called shingling: 

•  Shingles are word n-grams: 
-­‐  a	
  rose	
  is	
  a	
  rose	
  is	
  a	
  rose	
  →	
  4-­‐grams	
  are	
  

–  a_rose_is_a,	
  rose_is_a_rose,	
  	
  is_a_rose_is,	
  a_rose_is_a	
  
•  Use Jaccard similarity between 2 docs as sets of shingles: 

-­‐  Size_of_Intersec7on	
  /	
  Size_of_Union.	
  
•  Efficient	
  approxima7on	
  using	
  a	
  sketch	
  of	
  shingles	
  from	
  each	
  document:	
  

-­‐  More	
  details	
  on	
  randomized	
  algorithm	
  in	
  IIR	
  19.6.	
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Spidering Algorithm 

Initialize queue (Q) with initial set of known URL’s. 
Until Q empty or page or time limit exhausted: 
      Pop URL, L, from front of Q. 
      If L is not to an HTML page (.gif, .jpeg, .ps, .pdf, .ppt…) 
              continue loop. 
      If already visited L, continue loop. 
      Download page, P, for L. 
      If cannot download P (e.g. 404 error, robot excluded) 
              continue loop. 
      Index P (e.g. add to inverted index or store cached copy). 
      Parse P to obtain list of new links N. 
      Append N to the end of Q. 
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Queueing Strategy 

•  How new links are added to the queue determines 
search strategy. 

•  FIFO (append to end of Q) gives breadth-first search. 

•  LIFO (add to front of Q) gives depth-first search. 

•  Heuristically ordering the Q gives a “focused crawler” 
that directs its search towards “interesting” pages. 
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Restricting Spidering 

• You can restrict spider to a particular site. 
– Remove links to other sites from Q. 

• You can restrict spider to a particular directory. 
– Remove links not in the specified directory. 

• Explicit politeness: 
– Obey page-owner restrictions (robot exclusion). 

•  Implicit politeness: 
– Avoid hitting same site too often. 
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Implicit Politeness 

• The bandwidth available for a crawler is usually much 
higher than the bandwidth of the Web sites it visits. 

• Using multiple threads, a Web crawler might easily 
overload a Web server, specially a smaller one. 

• To avoid this, it is customary: 
– to open only one connection to a given Web server at a time. 
– to take a delay between two consecutive accesses: 

•  Common	
  heuris7c:	
  insert	
  7me	
  gap	
  between	
  successive	
  requests	
  to	
  
a	
  host	
  that	
  is	
  >>	
  7me	
  for	
  most	
  recent	
  fetch	
  from	
  that	
  host. 

•  [Cho et al.] suggested adopting 10 seconds as the interval 
between consecutive accesses 
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Link Extraction 

•  Must find all links in a page and extract URLs. 
–  <a href=“http://ace.cs.ohio.edu/~razvan/courses/ir6900”> ... 
–  <a href="hw02.pdf”> ... 

•  Must complete relative URL’s using current 
page URL: 

–  <a href=“hw02.pdf”>   to             
    http://ace.cs.ohio.edu/~razvan/courses/ir6900/hw02.pdf 
–  <a href=“../cs3200/idnex.html”>  to 

http://ace.cs.ohio.edu/~razvan/courses/cs3200/index.html 
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URL Syntax 

•  A URL has the following syntax: 
–  <scheme>://<authority><path>?<query>#<fragment> 

•  A query passes variable values from an HTML form and 
has the syntax: 
–  <variable>=<value>&<variable>=<value>… 

•   A fragment is also called a reference or a ref and is a 
pointer within the document to a point specified by an 
anchor tag of the form: 
–  <A NAME=“<fragment>”> 
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Link Canonicalization 

• Equivalent variations of ending directory normalized by 
removing ending slash. 
– http://ace.cs.ohio.edu/~razvan/ 
– http://ace.cs.ohio.edu/~razvan 

•  Internal page fragments (ref’s) removed: 
– http://nltk.org/book/ch03.html#chap-words 
– http://nltk.org/book/ch03.html 
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Anchor Text Indexing 

•  Extract anchor text (between <a> and </a>) of each 
link followed. 

•  Anchor text is usually descriptive of the document to 
which it points. 

•  Add anchor text to the content of the destination page 
to provide additional relevant keyword indices. 

•  Used by Google: 
–  <a href=“http://www.microsoft.com”>Evil Empire</a> 
–  <a href=“http://www.ibm.com”>IBM</a>  
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Anchor Text Indexing (cont’d) 

•  Helps when descriptive text in destination page is 
embedded in image logos rather than in accessible text. 

•  Many times anchor text is not useful: 
–  “click here” 

•  Increases content more for popular pages with many in-
coming links, increasing recall of these pages. 

•  May even give higher weights to tokens from anchor 
text. 
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Robot Exclusion 

• Web sites and pages can specify that robots should not 
crawl/index certain areas. 

• Two components: 
– Robots Exclusion Protocol: Site wide specification of excluded 

directories. 
– Robots META Tag: Individual document tag to exclude indexing 

or following links. 

• http://www.robotstxt.org/orig.html  
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Robots Exclusion Protocol 

•  Site administrator puts a “robots.txt” file at the root of 
the host’s web directory. 
–  http://www.ebay.com/robots.txt 
–  http://www.cnn.com/robots.txt 

•  File is a list of excluded directories for a given robot 
(user-agent). 
–  Exclude all robots from the entire site: 

        User-agent: * 
    Disallow: / 
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Robot Exclusion Protocol Examples 
•  Exclude specific directories: 
     User-agent: * 
   Disallow: /tmp/ 

   Disallow: /cgi-bin/ 

   Disallow: /users/paranoid/ 

•  Exclude a specific robot: 
     User-agent: GoogleBot 
   Disallow: / 

•  Allow a specific robot: 
     User-agent: GoogleBot 
   Disallow:  
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Robot Exclusion Protocol Details 

• Only use blank lines to separate different User-agent 
disallowed directories. 

• One directory per “Disallow” line. 

• No regex patterns in directories. 
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Robots META Tag 

•  Include META tag in HEAD section of a specific HTML 
document. 
– <meta name=“robots” content=“none”> 

• Content value is a pair of values for two aspects: 
–  index | noindex:  Allow/disallow indexing of this page. 
– follow | nofollow: Allow/disallow following links on this page. 
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Robots META Tag (cont) 

• Special values: 
– all = index,follow 
– none = noindex,nofollow 

• Examples: 
 <meta name=“robots” content=“noindex,follow”> 

    <meta name=“robots” content=“index,nofollow”> 

    <meta name=“robots” content=“none”> 
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Robot Exclusion  Issues 

•  META tag is newer and less well-adopted than 
“robots.txt”. 

•  Standards are conventions to be followed by “good 
robots.” 

•  Companies have been prosecuted for “disobeying” 
these conventions and “trespassing” on private 
cyberspace. 
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Multi-Threaded Spidering 

•  Bottleneck is network delay in downloading individual 
pages. 

•  Best to have multiple threads running in parallel each 
requesting a page from a different host. 

•  Distribute URL’s to threads to guarantee equitable 
distribution of requests across different hosts to 
maximize through-put and avoid overloading any single 
server. 

•  Early Google spider had multiple co-ordinated crawlers 
with about 300 threads each, together able to download 
over 100 pages per second.  



 Slide 30 

Directed/Focused Spidering 

• Sort queue to explore more “interesting” pages first. 

• Two styles of focus: 
– Topic-Directed 
– Link-Directed 
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Topic-Directed Spidering 

• Assume desired topic description or sample pages of 
interest are given. 

• Sort queue of links by the similarity (e.g. cosine metric) 
of their source pages and/or anchor text to this topic 
description. 
– Related to Topic Tracking and Detection 
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Link-Directed Spidering 

• Monitor links and keep track of in-degree and out-
degree of each page encountered. 

• Sort queue to prefer popular pages with many in-coming 
links (authorities). 

• Sort queue to prefer summary pages with many out-
going links (hubs). 
– Google’s PageRank algorithm. 
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Keeping Spidered Pages  
Up to Date 

•  Web is very dynamic: many new pages, updated pages, 
deleted pages, etc. 

•  Periodically check spidered pages for updates and 
deletions: 
–  Just look at header info (e.g. META tags on last update) to 

determine if page has changed, only reload entire page if 
needed. 

•  Track how often each page is updated and preferentially 
return to pages which are historically more dynamic. 

•  Preferentially update pages that are accessed more 
often to optimize freshness of more popular pages.  
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Web Crawling in Python 

Extracting links from HTML documents: 

1)  Via regular expressions. 

2)  Via the HTMLParse class from the HTMLParse module: 
– Event based parser: 

•  Scans through the document, and whenever finds an html tag, it 
generates an event and calls a predefined handler function. 

– Flexible, customizable: 
•  We can overwrite handler functions, by subclassing. 

– We can extract both links and text content in one sweep: 
•  For text content, can also use nltk.clean_html. 

http://docs.python.org/2.7/library/htmlparser.html 	
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HTMLParser: Event Handlers 

• HTMLParser.handle_starttag(self, tag, attrs): 
– This method is called to handle the start of a tag. 

•  The attrs argument is a list of (name, value) pairs. 

• HTMLParser.handle_endtag(tag): 
– This method is called to handle the start of a tag. 

• HTMLParser.handle_data(data) 
– This method is called to process arbitrary data (e.g. text nodes 

and the content of <script>...</script> and <style>...</style>) 

• Example: 
– <a href=”http://www.ohio.edu”> Ohio University </a> 

starttag	

 endtag	

data	

(name, value)	
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Extracting links from HTML in Python 

from HTMLParser import HTMLParser 
 
class MyHTMLParser(HTMLParser): 
    def __init__(self): 
        HTMLParser.__init__(self) 
        self.links = [] 
    def handle_starttag(self, tag, attrs): 
        if tag == 'a’: 
            for (name, value) in attrs: 
                if name == 'href': 
                    self.links.append(value) 
                break 
 
 
 Add code to this class to also extract anchor text for each link.	
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Normalizing HTML links in Python 

from urllib import urlopen 
from MyHTMLParser import MyHTMLParser 
from urlparse import urljoin 
 
parser = MyHTMLParser() 
url = "http://nltk.org/book/ch01.html" 
parser.feed(urlopen(url).read()) 
 
absolutes = [urljoin(url, link) for link in parser.links] 
print absolutes 

 
http://docs.python.org/2/library/urlparse.html 	
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RobotFileParser: parser for robots.txt 

• The module robotparser provides a single class, 
RobotFileParser, which answers questions about 
whether or not a particular user agent can fetch a URL 
on the Web site that published the robots.txt file. 

 

>>> import robotparser 

>>> rp = robotparser.RobotFileParser() 

>>> rp.set_url("http://www.musi-cal.com/robots.txt") 

>>> rp.read() 

>>> rp.can_fetch(”*", "www.ohio.edu") 
True 
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Open Source Web Crawlers 

• NUTCH is an open-source crawler written in Java that is 
part of the Lucene search engine: 
– It is sponsored by the Apache Foundation. 
– It includes a simple interface for intranet Web crawling as well as 

a more powerful set of commands for large-scale crawl. 

• WIRE is an open-source web crawler written in C++: 
– Includes several policies for scheduling the page downloads. 
– Also includes a module for generating reports and statistics on 

the downloaded pages. 
– It has been used for Web characterization. 

• Other crawlers described in the literature include: 
– ht://Dig (in C++), WebBase (in C), CobWeb (in Perl), PolyBot (in 

C++ and Python), and WebRace (in Java). 


