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Standard Probabilistic IR 

2 
Lecture 01 

query 

d1 

d2 

dn 

Information
 need 

matching 

),|( dQRP

. . . 

document collection 



Language Models for IR 
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Language Models for IR 

•  Assumption: The user has a prototype document in mind 
and generates a query based on words that appear in this 
document. 

•  Approach: View each document as a language model and 
compute the probability that it generates the query: 
–  Use actual document to estimate the LM’s parameters. 
–  Use smoothing to avoid zeros and to include collection statistics. 
–  Compute probability of generating the query. 
–  Find documents most likely to have generated the query. 
–  Present ranked documents to the user. 
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Language Models i.e. N-gram Models 

•  Next word prediction: 
–  Sue swallowed the large green _______ 

•  tree, car, desk, pill, frog, alien, … 
–  How? Predict next word w* given history w1, …, wn-1: 

 

•   Sentence probability estimation: 
–  p(“Sue swallowed the large green pill”) = ? 
–  (related to) / (reformulation of ) next word prediction. 
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N-Gram Models 

•  Predict next word w* given history w1, …, wn-1: 

–  Unigram Model: p(wn) 
–  Bigram Model:   p(wn | wn-1) 
–  Trigram Model:  p(wn | wn-2, wn-1) 

•  Building N-Gram models: 
–  How can we estimate p(wn|w1, …, wn-1)? 
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N-gram Models: Statistical Estimation 

•  Reduce to estimating the probability distribution of n-
grams: 

 
 

•  Use a training text to estimate n-gram distributions: 
–  Assume sequence of N words: 

•  pad with n-1 dummy symbols to the beginning ⇒ N n-grams. 
–  Assume the occurrence of each particular n-gram is a random 

variable with Bernoulli distribution (quite untrue, but usable!). 
–  Use Maximum Likelihood Estimate (here, relative frequency): 
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N-gram Models: MLE 

 
 
•  MLE is in general unsuitable for statistical inference in NLP: 

–  Sparsity leads to unreliable estimates for rare events! 
–  Can alleviate sparsity effects (but not eliminate): 

•  Increase N (text size) – how much for sufficient trigram counts? 
•  Decrease n (history size) – how much for accurate probabilities? 

–  go from unlimited to limited history/memory.  
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Zipf’s Law 

9 
Lecture 01 

Frequency vs. rank for all words in Moby Dick 



Zipf’s Law (Log Scale) 
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Moby Dick: 
•   44% hapax legomena 
•   17% dis legomena 

 



Markov Chains 

•  Assume next word depends only on k previous words: 
–  kth order Markov assumption 
 
–  1st order Markov model: 

•  Assume vocabulary |V| = 30K: 
–  0-gram LM (uniform) ⇒ 1 params: p(w)=1/|V|, 
–  1-gram LM (unigram) ⇒ 3*104 params: p(wn) 
–  2-gram LM (bigram)   ⇒ 9*108 params: p(wn | wn-1) 
–  3-gram LM (trigram)  ⇒  2.7*1013 params: p(wn | wn-2, wn-1) 
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Out Of Vocabulary (OOV) Words 

It is not practical to calculate n-grams for all words.  
Possible approaches: 
1)  Use only the most common words: 

–  replace 1-count words (hapax legomena) by <UNK>. 
•  half of the types, but only a fraction of the tokens (Zipf’s law). 

2)  Use a predefined vocabulary. 
–  replace OOV words by <UNK>. 

3)  Replace the first occurrence of every word type in the 
training data by <UNK> 
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Language Models for IR 

•  Build a different language model for each document: 
⇒ Text to train parameters = 1 document. 
 

•  Most work in IR uses unigram language models: 
–  1 document is not enough for training higher order LMs. 
–  IR does not depend on sentence structure as other applications of 

language models (e.g. speech recognition, machine translation): 
–  Unigram LMs are often sufficient to judge the topic of the text. 
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A different language model for each 
document 
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Language model of document d1:  

w a the that frog toad dog said likes 
P(w|M1) 0.1 0.2 0.04 0.01 0.01 0.005 0.03 0.02 

Language model of document d2:  

w a the that frog toad dog said likes 
P(w|M2) 0.1 0.2 0.04 0.0002 0.0001 0.01 0.03 0.04 

q = frog said that toad likes that dog 
P(q|M1) = 0.01×0.03×0.04×0.005×0.02×0.04×0.005 = 0.00000000000048 
P(q|M2) = 0.0002×0.03×0.04×0.0001×0.04×0.04×0.01 = 0.000000000000000384  
⇒  P(q|M1) > P(q|M2) 
⇒  document d1 is more relevant than document d2 for query q. 



Why use P(q|d) for ranking documents? 

•  Each document is treated as (basis for) a language model. 
•  Given a query q, rank documents d based on P(d|q): 

–  P(q) is the same for all documents, so ignore. 
–  P(d) is the prior, often treated as uniform distribution: 

•  But could give a higher prior to high quality documents, using criteria 
such as authority (e.g. PageRank), length, genre. 

–  P(q|d) is the posterior probability of q given d. 
⇒  for uniform prior, ranking documents according to P(d|q) or P(q|d) 

is equivalent. 
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The Query Likelihood Model 

•  Use unigram language model Md (trained on d) to estimate: 

–  |q| is the length of q; tk is the token occurring at position k in q. 
–  Same conditional independence assumptions as in Naive Bayes. 

•  This is equivalent to: 

 
–  tft,q is the term frequency of t in q. 
–  Equivalent with a multinomial model (up to a constant factor). 
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Estimating Parameters P(t|Md)  

•  Start with maximum likelihood estimates (training text = 
document d): 

 

•  Problem: zero probabilities. 
–  A single term with P(t|Md) = 0 would make P(q|Md) = 0. 

•  results in conjunctive semantics. 
•  a single term has “veto power”. 

•  Solution: smooth the estimates. 
–  make a non-occurring term possible. 
–  but no more likely than expected by chance in the entire collection. 
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Jelinek-Mercer Smoothing 

•  Create a language model MC for the entire collection: 

–  cft is the number of occurrences of term t in the collection. 
–  T is the total number of tokens in the collection. 

•  Use P(t|Mc) to smooth P(t|d) away from zero: 

–  Tuning λ is important for good performance: 
•  high values for λ = conjunctive-like search => tends to retrieve 

documents containing all query words. 
•  low values for λ = disjunctive => suitable for long queries. 
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P(t | d) = λP(t |Md )+ (1−λ)P(t |Mc )



Jelinek-Mercer Smoothing 

•  Query Likelihood Model: 

•  Assumption: The user has a prototype document in mind 
and generates a query based on words that appear in this 
document. 

•  Approach: View each document as a language model and 
compute the probability that it generates the query: 
–  The probability that the document that the user had in mind is d. 
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Example 

•  Document collection has 2 documents: 
–  d1: Xerox reports a profit but revenue is down 
–  d2: Lucent narrows quarter loss but revenue decreases further 

•  Query q = revenue down. 
•  Unigram language model: 

–  MLEs, smoothed with λ = ½. 
–  P(q|d1) = [(1/8 + 2/16)/2] x [(1/8 + 1/16)/2] 
                = 1/8 x 3/32 = 3/256 
–  P(q|d2) = [(1/8 + 2/16)/2] x [(0 + 1/16)/2] 
                = 1/8 x 1/32 = 1/256 

•  Ranking: d1 > d2 
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Dirichlet Smoothing 

•  Use background distribution P(t|Mc) as a prior distribution 
in a Bayesian updating process: 

–  Before seeing any part of the document, we start with the 
background distribution as our estimate: 

•  Rather than the uniform estimate used in Laplace smoothing. 
–  As we read the document and count terms, we update the posterior 

distribution. 
–  Parameter α determines trade-off between document effect and 

collection effect. 
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P(t | d) = tft,d+αP(t |Mc )
| d |+α



Jelinek-Mercer vs. Dirichlet 

•  Dirichlet performs better for keyword queries. 
•  Jelinek-Mercer performs better for verbose queries. 

•  Both models are sensitive to the smoothing parameter: 
⇒  it is very important to do proper parameter tuning. 
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Ponte and Croft’s Experiments 
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o  TREC topics 202-250 on TREC 
disks 2 and 3: 
•  Natural language queries 

consisting of one sentence. 

o  Compared LM with TF.IDF that 
includes length normalization. 
•  Statistical significance 

marked with * (Wilcoxon). 
•  Improvements especially at 

high recall levels. 



VSM vs. BM25 vs. LM 

•  BM25 and LM are both based on probability theory. 
•  Term frequency is used directly in all three: 

–  Raw term frequencies in LM, more complex in VSM and BM25. 

•  Length normalization: 
–  VSM: cosine or pivot normalization. 
–  BM25: parameterized length normalization. 
–  LM: probabilities are inherently normalized. 

•  Document (VSM, BM25) vs. collection frequency (LM): 
–  LM mixes term and collection frequencies, with similar effect. 
–  Terms rare in the general collection but common in some 

documents will have a greater influence on the ranking.e 
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LM: Pros and Cons 

•  LM approach does away with explicitly modeling relevance: 
–  Relevance feedback and user preferences are difficult to exploit. 

•  Based on probability theory: 
–  More principled than VSM, which is rather heuristic. 

•  Shown to outperform VSM and BM25: 
–  Still, insufficient evidence that performance gains vs. well tuned 

VSM justify chaning an existing implementation. 

•  Assumes documents and queries are of the same type. 
–  May be unrealistic, but same is true for VSM. 

•  Assumes terms are conditionally independent: 
–  But same is true for VSM. 
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Language Modeling for IR 
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Language Modeling for IR 

1)   Query Likelihood Model: 
•  Rank using P(q|Md). 
•  Estimate Mq from document, smooth with collection model. 
•  Problems dealing with relevance feedback, phrase queries, ... 

2)   Document Likelihood Model: 
•  Rank using P(d|Mq),  
•  Hard to estimate Mq from query => need strong smoothing. 
•  Easy to incorporate relevance feedback: 

•  expand query with terms from relevant docs, and update Mq. 
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Language Modeling for IR 

3)   Model Comparison: 
–  Create language models for both query and document. 
–  Ask how different they are from each other, and use it to rank. 

•  Use KL divergence: 

 
–  Lafferty and Zhai (2001) show that it outperforms both query and 

document likelihood models. 
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Extensions to the LM Approach 

•  Berger and Lafferty (1999) introduce translation models: 
–  Bridge lexical gap between query and document: 

•  synonymy, different word choices. 
–  Build a translation model as T(t|v) between vocabulary terms: 

•  use thesaurus, or bilingual dictionary, or SMT translation dict. 
•  can also be built using document collection, using pieces of text 

that naturally paraphrase or summarize other pieces of text: 
–  documents and their titles, abstracts, or inlink anchor texts. 

–  Build a translation query generation model from T(t|v) and P(v|Md): 
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Implementations of LM Approaches to IR 

•  The Lemur Toolkit: 
–  www.lemurproject.org 
–  Supports major language modeling approaches such as Indri and 

KL-divergence: 
•  see class lemur::langmod::UnigramLM and its subclasses. 

–  Also TF.IDF and Okapi BM25. 

•  Apache Lucene Core: 
–  http://lucene.apache.org 
–  See class lucene.search.similarity.LMSimilarity and its subclasses: 

•  LMJelinekMercerSimilarity, LMDirichletSimilarity. 
–  Also TFIDFSimilarity and BM25Similarity. 
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