
Information Retrieval
CS 6900

Razvan C. Bunescu

School of Electrical Engineering and Computer Science

bunescu@ohio.edu

Lecture 11

Standard Probabilistic IR

2
Lecture 01

query

d1

d2

dn

Information
 need

matching

),|(dQRP

. . .

document collection

Language Models for IR

3
Lecture 01

query

d1

dn

Information
 need

document collection

generation

P(q |Md) 1d
M

2d
M

nd
Mn  A common search heuristic is to use words that

you expect to find in matching documents as your
query.

n  The LM approach directly exploits that idea!

. . .
. . .

d2

Language Models for IR

•  Assumption: The user has a prototype document in mind
and generates a query based on words that appear in this
document.

•  Approach: View each document as a language model and
compute the probability that it generates the query:
–  Use actual document to estimate the LM’s parameters.
–  Use smoothing to avoid zeros and to include collection statistics.
–  Compute probability of generating the query.
–  Find documents most likely to have generated the query.
–  Present ranked documents to the user.

4
Lecture 01

Language Models i.e. N-gram Models

•  Next word prediction:
–  Sue swallowed the large green _______

•  tree, car, desk, pill, frog, alien, …
–  How? Predict next word w* given history w1, …, wn-1:

•  Sentence probability estimation:
–  p(“Sue swallowed the large green pill”) = ?
–  (related to) / (reformulation of) next word prediction.

5
Lecture 01

),,|(maxarg 11

−
∈

∗ = nn
Vw

wwwpw
n

…

),,|(),|()|()(),,(112131211 −= nnn wwwpwwwpwwpwpwwp ………

N-Gram Models

•  Predict next word w* given history w1, …, wn-1:

–  Unigram Model: p(wn)
–  Bigram Model: p(wn | wn-1)
–  Trigram Model: p(wn | wn-2, wn-1)

•  Building N-Gram models:
–  How can we estimate p(wn|w1, …, wn-1)?

6

Lecture 01

),,|(maxarg 11

−
∈

∗ = nn
Vw

wwwpw
n

…

history

N-gram Models: Statistical Estimation

•  Reduce to estimating the probability distribution of n-
grams:

•  Use a training text to estimate n-gram distributions:
–  Assume sequence of N words:

•  pad with n-1 dummy symbols to the beginning ⇒ N n-grams.
–  Assume the occurrence of each particular n-gram is a random

variable with Bernoulli distribution (quite untrue, but usable!).
–  Use Maximum Likelihood Estimate (here, relative frequency):

7
Lecture 01

),,(
),,(),,|(
11

1
11

−
− =

n

n
nn wwp

wwpwwwp
…
…

…

N
wwCwwp n

n
),,(),,(1

1
…

… = freq. of n-gram in training text

N-gram Models: MLE

•  MLE is in general unsuitable for statistical inference in NLP:

–  Sparsity leads to unreliable estimates for rare events!
–  Can alleviate sparsity effects (but not eliminate):

•  Increase N (text size) – how much for sufficient trigram counts?
•  Decrease n (history size) – how much for accurate probabilities?

–  go from unlimited to limited history/memory.

8
Lecture 01

N
wwCwwp n

n
),,(),,(1

1
…

… =

),,(
),,(),,|(
11

1
11

−
− =⇒

n

n
nn wwC

wwCwwwp
…
…

…

Why is this only an estimate?

Zipf’s Law

9
Lecture 01

Frequency vs. rank for all words in Moby Dick

Zipf’s Law (Log Scale)

10
Lecture 01

Moby Dick:
•  44% hapax legomena
•  17% dis legomena

Markov Chains

•  Assume next word depends only on k previous words:
–  kth order Markov assumption

–  1st order Markov model:

•  Assume vocabulary |V| = 30K:
–  0-gram LM (uniform) ⇒ 1 params: p(w)=1/|V|,
–  1-gram LM (unigram) ⇒ 3*104 params: p(wn)
–  2-gram LM (bigram) ⇒ 9*108 params: p(wn | wn-1)
–  3-gram LM (trigram) ⇒ 2.7*1013 params: p(wn | wn-2, wn-1)

11
Lecture 01

),,|(),,|(111 −−− ≈ nknnnn wwwpwwwp ……

)|(),,|(111 −− ≈ nnnn wwpwwwp … ?),,(1 ≈⇒ nwwp …

Out Of Vocabulary (OOV) Words

It is not practical to calculate n-grams for all words.
Possible approaches:
1)  Use only the most common words:

–  replace 1-count words (hapax legomena) by <UNK>.
•  half of the types, but only a fraction of the tokens (Zipf’s law).

2)  Use a predefined vocabulary.
–  replace OOV words by <UNK>.

3)  Replace the first occurrence of every word type in the
training data by <UNK>

12
Lecture 01

Language Models for IR

•  Build a different language model for each document:
⇒ Text to train parameters = 1 document.

•  Most work in IR uses unigram language models:
–  1 document is not enough for training higher order LMs.
–  IR does not depend on sentence structure as other applications of

language models (e.g. speech recognition, machine translation):
–  Unigram LMs are often sufficient to judge the topic of the text.

13
Lecture 01

A different language model for each
document

14
Lecture 01

Language model of document d1:

w a the that frog toad dog said likes
P(w|M1) 0.1 0.2 0.04 0.01 0.01 0.005 0.03 0.02

Language model of document d2:

w a the that frog toad dog said likes
P(w|M2) 0.1 0.2 0.04 0.0002 0.0001 0.01 0.03 0.04

q = frog said that toad likes that dog
P(q|M1) = 0.01×0.03×0.04×0.005×0.02×0.04×0.005 = 0.00000000000048
P(q|M2) = 0.0002×0.03×0.04×0.0001×0.04×0.04×0.01 = 0.000000000000000384
⇒  P(q|M1) > P(q|M2)
⇒  document d1 is more relevant than document d2 for query q.

Why use P(q|d) for ranking documents?

•  Each document is treated as (basis for) a language model.
•  Given a query q, rank documents d based on P(d|q):

–  P(q) is the same for all documents, so ignore.
–  P(d) is the prior, often treated as uniform distribution:

•  But could give a higher prior to high quality documents, using criteria
such as authority (e.g. PageRank), length, genre.

–  P(q|d) is the posterior probability of q given d.
⇒  for uniform prior, ranking documents according to P(d|q) or P(q|d)

is equivalent.

15
Lecture 01

P(d | q) = P(q | d)P(d)
P(q)

The Query Likelihood Model

•  Use unigram language model Md (trained on d) to estimate:

–  |q| is the length of q; tk is the token occurring at position k in q.
–  Same conditional independence assumptions as in Naive Bayes.

•  This is equivalent to:

–  tft,q is the term frequency of t in q.
–  Equivalent with a multinomial model (up to a constant factor).

16
Lecture 01

Estimating Parameters P(t|Md)

•  Start with maximum likelihood estimates (training text =
document d):

•  Problem: zero probabilities.
–  A single term with P(t|Md) = 0 would make P(q|Md) = 0.

•  results in conjunctive semantics.
•  a single term has “veto power”.

•  Solution: smooth the estimates.
–  make a non-occurring term possible.
–  but no more likely than expected by chance in the entire collection.

17
Lecture 01

P(t |Md) =
tft,d
| d |

Jelinek-Mercer Smoothing

•  Create a language model MC for the entire collection:

–  cft is the number of occurrences of term t in the collection.
–  T is the total number of tokens in the collection.

•  Use P(t|Mc) to smooth P(t|d) away from zero:

–  Tuning λ is important for good performance:
•  high values for λ = conjunctive-like search => tends to retrieve

documents containing all query words.
•  low values for λ = disjunctive => suitable for long queries.

18
Lecture 01

P(t |Mc) =
cft
T

T = cft
t∈V
∑, where

P(t | d) = λP(t |Md)+ (1−λ)P(t |Mc)

Jelinek-Mercer Smoothing

•  Query Likelihood Model:

•  Assumption: The user has a prototype document in mind
and generates a query based on words that appear in this
document.

•  Approach: View each document as a language model and
compute the probability that it generates the query:
–  The probability that the document that the user had in mind is d.

19
Lecture 01

Document LM Collection LM

Example

•  Document collection has 2 documents:
–  d1: Xerox reports a profit but revenue is down
–  d2: Lucent narrows quarter loss but revenue decreases further

•  Query q = revenue down.
•  Unigram language model:

–  MLEs, smoothed with λ = ½.
–  P(q|d1) = [(1/8 + 2/16)/2] x [(1/8 + 1/16)/2]
 = 1/8 x 3/32 = 3/256
–  P(q|d2) = [(1/8 + 2/16)/2] x [(0 + 1/16)/2]
 = 1/8 x 1/32 = 1/256

•  Ranking: d1 > d2

20
Lecture 01

Dirichlet Smoothing

•  Use background distribution P(t|Mc) as a prior distribution
in a Bayesian updating process:

–  Before seeing any part of the document, we start with the
background distribution as our estimate:

•  Rather than the uniform estimate used in Laplace smoothing.
–  As we read the document and count terms, we update the posterior

distribution.
–  Parameter α determines trade-off between document effect and

collection effect.

21
Lecture 01

P(t | d) = tft,d+αP(t |Mc)
| d |+α

Jelinek-Mercer vs. Dirichlet

•  Dirichlet performs better for keyword queries.
•  Jelinek-Mercer performs better for verbose queries.

•  Both models are sensitive to the smoothing parameter:
⇒  it is very important to do proper parameter tuning.

22
Lecture 01

Ponte and Croft’s Experiments

23
Lecture 01

o  TREC topics 202-250 on TREC
disks 2 and 3:
•  Natural language queries

consisting of one sentence.

o  Compared LM with TF.IDF that
includes length normalization.
•  Statistical significance

marked with * (Wilcoxon).
•  Improvements especially at

high recall levels.

VSM vs. BM25 vs. LM

•  BM25 and LM are both based on probability theory.
•  Term frequency is used directly in all three:

–  Raw term frequencies in LM, more complex in VSM and BM25.

•  Length normalization:
–  VSM: cosine or pivot normalization.
–  BM25: parameterized length normalization.
–  LM: probabilities are inherently normalized.

•  Document (VSM, BM25) vs. collection frequency (LM):
–  LM mixes term and collection frequencies, with similar effect.
–  Terms rare in the general collection but common in some

documents will have a greater influence on the ranking.e

24
Lecture 01

LM: Pros and Cons

•  LM approach does away with explicitly modeling relevance:
–  Relevance feedback and user preferences are difficult to exploit.

•  Based on probability theory:
–  More principled than VSM, which is rather heuristic.

•  Shown to outperform VSM and BM25:
–  Still, insufficient evidence that performance gains vs. well tuned

VSM justify chaning an existing implementation.

•  Assumes documents and queries are of the same type.
–  May be unrealistic, but same is true for VSM.

•  Assumes terms are conditionally independent:
–  But same is true for VSM.

25
Lecture 01

Language Modeling for IR

26
Lecture 01

Language Modeling for IR

1)   Query Likelihood Model:
•  Rank using P(q|Md).
•  Estimate Mq from document, smooth with collection model.
•  Problems dealing with relevance feedback, phrase queries, ...

2)   Document Likelihood Model:
•  Rank using P(d|Mq),
•  Hard to estimate Mq from query => need strong smoothing.
•  Easy to incorporate relevance feedback:

•  expand query with terms from relevant docs, and update Mq.

27
Lecture 01

Language Modeling for IR

3)   Model Comparison:
–  Create language models for both query and document.
–  Ask how different they are from each other, and use it to rank.

•  Use KL divergence:

–  Lafferty and Zhai (2001) show that it outperforms both query and

document likelihood models.

28
Lecture 01

Extensions to the LM Approach

•  Berger and Lafferty (1999) introduce translation models:
–  Bridge lexical gap between query and document:

•  synonymy, different word choices.
–  Build a translation model as T(t|v) between vocabulary terms:

•  use thesaurus, or bilingual dictionary, or SMT translation dict.
•  can also be built using document collection, using pieces of text

that naturally paraphrase or summarize other pieces of text:
–  documents and their titles, abstracts, or inlink anchor texts.

–  Build a translation query generation model from T(t|v) and P(v|Md):

29
Lecture 01

Implementations of LM Approaches to IR

•  The Lemur Toolkit:
–  www.lemurproject.org
–  Supports major language modeling approaches such as Indri and

KL-divergence:
•  see class lemur::langmod::UnigramLM and its subclasses.

–  Also TF.IDF and Okapi BM25.

•  Apache Lucene Core:
–  http://lucene.apache.org
–  See class lucene.search.similarity.LMSimilarity and its subclasses:

•  LMJelinekMercerSimilarity, LMDirichletSimilarity.
–  Also TFIDFSimilarity and BM25Similarity.

30
Lecture 01

