
HW Assignment 4 (Due by 1:30 pm on Oct 15)

1 Implementation (150 points)

Implement two versions of the softmax regression model in Python, using (1) SciPy and (2)
scikit-learn, and evaluate them on the MNIST digit recognition task. Starter code and
the MNIST dataset are available at http://ace.cs.ohio.edu/~razvan/courses/ml4900/
hw04.zip. Make sure that you organize your code in folders as shown in the table below.
Write code only in the Python files indicated in bold.

ml4900/
hw04/
code/

scipy/
sofmax.py
computeNumericalGradient.py
output.txt
softmaxExercise.py
checkNumericalGradient.py

scikit/
sofmaxExercise.py
output.txt

data/

mnist/

1.1 SciPy Implementation (100 points)

Coding effort: my implementation has 10 lines of code in softmax.py and 7 lines of code in
computeNumericalGradient.py.

1. Cost & Gradient: You will need to write code for two functions in sofmax.py:

(a) The softmaxCost() function, which computes the cost and the gradient.

(b) The softmaxPredict() function, which computes the softmax predictions on the
input data.

The cost and gradient should be computed according to the formulas shown on the
slides in Lecture 4.

2. Vectorization: It is important to vectorize your code so that it runs quickly.

3. Ground truth: The groundTruth is a matrix M such that M[c, n] = 1 if sample n
has label c, and 0 otherwise. This can be done quickly, without a loop, using the SciPy
function sparse.coo matrix(). Specifically, coo matrix((data, (i, j))) constructs a
matrix A such that A[i[k], j[k]] = data[k], where the shape is inferred from the index
arrays. The code for cumputing the ground truth matrix has been provided for you.

http://ace.cs.ohio.edu/~razvan/courses/ml4900/hw04.zip
http://ace.cs.ohio.edu/~razvan/courses/ml4900/hw04.zip
http://ace.cs.ohio.edu/~razvan/courses/ml4900/lecture04.pdf
https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.sparse.coo_matrix.html


4. Overflow: Make sure that you prevent overflow when computing the softmax proba-
bilities, as shown on the slides in Lecture 4.

5. Numerical gradient: Once you implemented the cost and the gradient in softmaxCost,
implement code for computing the gradient numerically in computeNumericalGradi-
ent.py, as shown on the slides in Lecture 4. Code is provided in checkNumericalGra-
dient.py for you to test your numerical gradient implementation.

6. Gradient checking: Use computeNumericalGradient.py to make sure that your soft-
maxCost.py is computing gradients correctly. This is done by running the main pro-
gram in Debug mode, i.e. python3 softmaxExercise.py --debug. When debugging,
you can speed up gradient checking by reducing the number of parameters your model
uses. In this case, the code reduces the size of the input data, using the first 8 pixels of
the images instead of the full 28x28 image. Show the two gradient vectors (numerical
vs. analytical) side by side and the norm of their difference.

In general, whenever implementing a learning algorithm, you should always check your
gradients numerically before proceeding to train the model. The norm of the difference
between the numerical gradient and your analytical gradient should be small, on the
order of 10−9.

7. Training: Training your softmax regression is done using L-BFGS for 100 epochs,
through the SciPy function scipy.optimize.fmin l bfgs b(). Training the model on the
entire MNIST training set of 60,000 28x28 images should be rather quick, and take
less than 5 minutes for 100 iterations. Plot the loss vs. number of epochs.

8. Testing: Now that you’ve trained your model, you will test it against the MNIST test
set, comprising 10,000 28x28 images. However, to do so, you will first need to complete
the function softmaxPredict() in softmax.py, a function which generates predictions
for input data under a trained softmax model. Once that is done, you will be able
to compute the accuracy of your model using the code provided. My implementation
achieved an accuracy of 92.6%. If your model’s accuracy is significantly less (less than
91%), check your code, ensure that you are using the trained weights, and that you are
training your model on the full 60,000 training images. Report overall accuracy and
the confusion matrix.

1.2 Scikit Implementation (50 points)

Coding effort: my implementation has 4 lines of code in softmaxExercise.py.

You will need to write code for the following 3 functionalities:

1. C parameter: As explined in homework 3, scikit’s objective function expresses the
trade-off between training error and model complexity through a parameter C that is
multiplied with the error term. Compute the C parameter such that the objective is
equivalent with the standard formulation used in scipy that multiplies the regulariza-
tion parameter (called ’decay’ in the code) with the L2 norm term.

2. Softmax training: Train a softmax regression model using the ’multinomial’ option
for multiclass classification, and the C parameter computed above. Specify training

http://ace.cs.ohio.edu/~razvan/courses/ml4900/lecture04.pdf
http://ace.cs.ohio.edu/~razvan/courses/ml4900/lecture04.pdf
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin_l_bfgs_b.html


with the L-BFGS solver for 100 max iterations. For this, you will instantiate the class
linear model.LogisticRegression.

3. Softmax testing: Use the trained softmax model to compute labels on the test
images.

The code also computes and prints the accuracy on the test images. Report the overall test
accuracy and the confusion matrix.

2 Bonus (25 points)

Create and evaluate a new version of the SciPy code that trains the softmax regression
model using minibatch gradient descent for 20 epochs, where the size of a minibatch is 100.
Start with a learning rate η = 1, but experiment with other values too if training does not
converge. Compare accuracy and speed with the batch gradient descent version. Experiment
with varying the number of epochs (plot the training loss vs. epochs) and different learning
rates.

3 Submission

Turn in a hard copy of your homework report at the beginning of class on the due date.
Electronically submit on Blackboard a hw04.zip file that contains the hw04 folder in which
you write code only in the 3 required files. The screen output produced when running
the softmaxExercise.py code should be redirected to (saved into) the output.txt files.

On a Linux system, creating the archive can be done using the command:
> zip -r hw04.zip hw04.

Please observe the following when handing in homework:

1. Structure, indent, and format your code well.

2. Use adequate comments, both block and in-line to document your code.

3. Make sure your code runs correctly when used in the directory structure shown above.


	Implementation (150 points)
	SciPy Implementation (100 points)
	Scikit Implementation (50 points)

	Bonus (25 points)
	Submission

