
HW Assignment 6 (Due by 1:30 pm on Nov 5)

1 Implementation (150 points)

Implement the 3 versions of the perceptron algorithm discussed in class: the perceptron, the
average perceptron, and the kernel perceptron. The algorithms should stop after achieving
convergence, or after a predefined number of epochs T, whichever comes first. Make sure
that you organize your code in folders as shown in the table below. Write code only in the
Python files indicated in bold.

ml4900/
hw06/
code/

perceptron.py
exercise5.py
spam exercise.py
newsgroups exercise.py
spam model p.txt
spam model ap.txt
newsgroups model p1.txt
newsgroups model ap1.txt
newsgroups model p2.txt
newsgroups model ap2.txt
output.txt

data/

spam/
spam train.txt
spam train svm.txt
spam test.txt
spam test svm.txt
spam vocab.txt

newsgroups/
stopwords.txt
newsgroups train1.txt
newsgroups test2.txt
newsgroups train2.txt
newsgroups test2.txt
newsgroups vocab.txt

1. Perceptron Convergence: Validate experimentally the conclusions you reached for
Exercise 5 in the previous assignment. For 5(a), show that the perceptron algorithm
hits the same weight vector at different epochs during training and thus it will run
forever. Report the weight vector at the end of each epoch. For 5(b), show the
number of epochs the kernel perceptron needed to converge and the values of the
dual parameters at the end, as well as after each epoch. Make sure you process the

training examples in the order given in the assignment. In perceptron.py you should
implement these five functions:

(a) perceptron train(data, labels, epochs) trains the vanilla perceptron algo-
rithm and returns the weight vector.

(b) aperceptron train(data, labels, epochs) trains the average perceptron al-
gorithm and returns the average weight vector.

(c) perceptron test(w, data) test a perceptron with weights w and returns a vec-
tor with the labels on the test examples in data.

(d) kperceptron train(data, labels, epochs, kernel) trains the kernel percep-
tron algorithm and returns the vector α of parameters.

(e) kperceptron test(alpha, tlabels, tdata, data, kernel) tests the kernel
perceptron algorithm with parameters alpha, support vectors tdata and their
labels tlabels, and returns a vector with the labels on the test examples in data.

Write the code for validating Exercise 5 in the file exercise5.py.

2. Spam vs. Non-Spam: In this problem, you will train and evaluate spam classifiers
using the perceptron and average perceptron algorithms. The dataset contains two
files: spam train.txt with 4,000 training examples and spam test.txt with 1,000
test examples. The dataset is based on a subset of the SpamAssassin Public Corpus.
Each line in the training and test files contains the pre-processed version of one email.
The line starts with the label, followed by the email tokens separated by spaces.

Figure 1 shows a sample source email, while Figure 2 shows its pre-processed version
in which web addresses are replaced with the “httpaddr” token, numbers are replaced
with a “number” token, dollar amounts are replaced with “dollarnumb”, and emaill ad-
dresses are replaced with “emailaddr”. Furthermore, all words are lower-cased, HTML
tags are removed, and words are reduced to their stems i.e. “expecting”, “expected”,
“expectation” are all replaced with “expect”. Non-words and punctuation symbols are
removed.

> Anyone knows how much it costs to host a web portal ?
> Well, it depends on how many visitors youre expecting. This can be anywhere
from less than 10 bucks a month to a couple of $100. You should checkout
http://www.rackspace.com/ or perhaps Amazon EC2 if youre running something
big..

To unsubscribe yourself from this mailing list, send an email to: groupname-
unsubscribe@egroups.com

Figure 1: Sample email from the SpamAssassin corpus.

(a) Create a vocabulary file spam vocab.txt that contains a list of only the (pre-
processed) tokens that appear at least 30 times in the training examples. The file
should contain one token per line in the format<id> <token>, where each token
is associated a unique integer identifier. The tokens should be listed in increasing
order of their identifiers, starting from 1. See for example the vocabulary file

http://spamassassin.apache.org/old/publiccorpus

anyon know how much it cost to host a web portal well it depend on how mani
visitor your expect thi can be anywher from less than number buck a month to
a coupl of dollarnumb you should checkout httpaddr or perhap amazon ecnumb
if your run someth big to unsubscrib yourself from thi mail list send an email to
emailaddr

Figure 2: Pre-processed version of email from the SpamAssassin corpus.

newsgroups vocab.txt that we generated for the newsgroup classification prob-
lem. Implement the function that creates the vocabulary in spam exercise.py.

(b) For each training and test example, create a sparse feature vector representa-
tion wherein each example is represented as one line in the file using the format
<label> <id1>:<val1> <id2>:<val2> ..., where the id’s are listed in in-
creasing order and correspond only to tokens that appear in that example (use
1 for all values, representing that fact that the corresponding token appeared
in the example). An example of this sparse representation can be seen in the
file newsgroups train1.txt that we generated for the newsgroup classification
problem. Save the new version of the dataset in the files spam train svm.txt

and spam test svm.txt. Implement the function that creates the sparse feature
vector representations in spam exercise.py.

(c) Write an additional function read examples(file name) inside perceptron.py
that reads all examples from a file with sparse feature vectors and returns a tuple
(data, labels) where the data is a two dimensional array containing all feature
vectors, one per row, in the same order as in the file, and the labels is a vector
containing the corresponding labels.

(d) Train the perceptron algorithm until convergence, by reading the training exam-
ples from spam train svm.txt and by calling perceptron train(data, labels,

epochs) in the code you write inside spam exercise.py. Process the exam-
ples in the order they are listed in the files. Report the number of epochs
needed for convergence, the number of mistakes made during each epoch, and
the total number of mistakes made, and save the returned parameter vector in
spam model p.txt. Test the perceptron algorithm by reading the parameter vec-
tor from spam model p.txt and the test examples from spam test svm.txt and
calling perceptron test(w, data) in the code inside spam exercise.py. Re-
port the test accuracy.

(e) Train the average perceptron algorithm until the corresponding perceptron conver-
gences, by reading the training examples from spam train svm.txt and by calling
aperceptron train(data, labels, epochs) in the code inside spam exercise.py.
Process the examples in the order they are listed in the files. Report the num-
ber of epochs needed for convergence, the number of mistakes made during each
epoch, and the total number of mistakes made, and save the returned average
parameter vector in spam model ap.txt. Test the average perceptron algorithm
by reading the parameter vector from spam model ap.txt and the test examples
from spam test svm.txt and calling perceptron test(w, data) in the code in-
side spam exercise.py. Report the test accuracy. Compare the test accuracy
between the perceptron and the average perceptron.

3. Atheism vs. Religion: In this problem, you will train and evaluate the binary per-
ceptron and average perceptron algorithms on a subset of the 20 newsgroups dataset. In
this subset, there are 857 positive example and 570 test examples, on the topics of athe-
ism and religion. Newsgroup postings on the topic of Atheism (alt.atheism) are given
label 1, whereas newsgroup posting on the topic of Religion (talk.religion.misc)
are given label -1. Thus, the models will be trained to distinguish between postings on
Atheism and postings on Religion.

The feature vectors have already been created for you and are stored in files using the
sparse feature vector representation described above. To create these feature vectors,
we stripped metadata, quotes, and headers from the documents. The words were
stemmed and tokens that appeared less than 20 times in the training examples were
filtered out. Common tokens from the stopwords.txt file were also removed. The
remaining tokens are stored in the vocabulary file newsgroups vocab.txt and are
used to create two versions of the dataset:

• [Version 1] In this version, each token corresponds to a feature whose value for a
particular document is computed using the standard tf.idf formula from Informa-
tion Retrieval (think search engines). The term frequency tf refers to the number
of times the token appears in the document, whereas the inverse document fre-
quency idf refers to the inverse of the log of the total number of documents that
contain the token. The idf numbers are computed using the entire 20 newsgroup
dataset. The two quantities are multiplied into one tf.idf value and are meant
to give more importance to words that are rare (i.e. large idf) and appear more
frequently inside the corresponding document example (i.e. large tf). The train-
ing and test examples thus created are stored in newsgroups train1.txt and
newsgroups test1.txt respectively.

• [Version 2] This is the same as version 1 above, except that the term frequencies
are set to 1 for all tokens that appear in a document, i.e. the number of times
a token appears in the document is irrelevant and the only thing that matters
is whether the token appeared or not in the document, and also how rare it is
(through the idf weight). The training and test examples for this version are
stored in newsgroups train2.txt and newsgroups test2.txt respectively.

For more details on how the feature vectors were created, you can read the Scikit
section at http://scikit-learn.org/stable/datasets/twenty_newsgroups.html.

For each version of the dataset, use the perceptron and average perceptron implemen-
tations that you wrote in perceptron.py and train the two algorithms for 10,000
epochs. Process the examples in the order they are listed in the files. Save the param-
eters in the corresponding newsgroups model <x>.txt files. Then evaluate the two
perceptron algorithms on the corresponding test examples for each version. For each
version, report and compare the accuracies of the two models.

4. {Spam vs. Non-Spam} vs. {Atheism vs. Religion}: Why is the accuracy on
the second dataset (atheism vs. religion) much lower than the accuracy on the first
dataset (spam vs. non-spam)? To answer this question accurately, you may want to
download the original documents in the two datasets and look at some of them.

http://qwone.com/~jason/20Newsgroups
http://scikit-learn.org/stable/datasets/twenty_newsgroups.html

2 Submission

Turn in a hard copy of your homework report at the beginning of class on the due date.
Electronically submit on Blackboard a hw06.zip file that contains the hw06 folder in which
you write code only in the required files. The screen output produced when running the
code should be redirected to (saved into) the output¡x¿.txt files.

On a Linux system, creating the archive can be done using the command:
> zip -r hw06.zip hw06.

Please observe the following when handing in homework:

1. Structure, indent, and format your code well.

2. Use adequate comments, both block and in-line to document your code.

3. Make sure your code runs correctly when used in the directory structure shown above.

	Implementation (150 points)
	Submission

