
Examples and Videos  
of Markov Decision Processes (MDPs)

and Reinforcement Learning

Artificial Intelligence is
interaction to achieve a goal

Environment

actionstate

reward
Agent

• complete agent
• temporally situated
• continual learning & planning
• object is to affect environment
• environment stochastic & uncertain

States, Actions, and Rewards

The RoboCup Soccer Competition

Autonomous Learning of Efficient Gait
Kohl & Stone (UTexas) 2004

Policies

• A policy maps each state to an action to take

• Like a stimulus–response rule

• We seek a policy that maximizes cumulative
reward

• The policy is a subgoal to achieving reward

The goal of intelligence is to maximize the
cumulative sum of a single received number:

“reward” = pleasure - pain

Artificial Intelligence = reward maximization

The Reward Hypothesis

Value

Value systems are hedonism with foresight

Value systems are a means to reward,
yet we care more about values than rewards

All efficient methods for solving sequential decision
problems determine (learn or compute) “value functions”

as an intermediate step

We value situations according to how much
reward we expect will follow them

The Mountain Car Problem

Minimum-Time-to-Goal Problem

Moore, 1990

Goal

Gravity wins

SITUATIONS: car's position and
velocity

ACTIONS: three thrusts: forward,
reverse, none

REWARDS: always –1 until car
reaches the goal

No Discounting

Value Functions Learned
while solving the Mountain Car problem

Minimize Time-to-Goal

Value = estimated time to goal

Goal
region

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Chapter 3: The Reinforcement Learning Problem
(Markov Decision Processes, or MDPs)

❐ present Markov decision processes—an idealized form of
the AI problem for which we have precise theoretical
results

❐ introduce key components of the mathematics: value
functions and Bellman equations

Objectives of this chapter:

Agent and environment interact at discrete time steps: t = 0,1, 2,K
 Agent observes state at step t: St ∈
 produces action at step t : At ∈ (St)
 gets resulting reward: Rt+1 ∈

 and resulting next state: St+1 ∈

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

At
Rt+1St At+1

Rt+2St+1 At+2

Rt+3St+2 At+3
St+3.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 2

The Agent-Environment InterfaceSUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
S

t

state at t
A

t

action at t
R

t

reward at t, dependent, like S

t

, on A

t�1

and S

t�1

G

t

return (cumulative discounted reward) following t

G

(n)

t

n-step return (Section 7.1)
G

�

t

�-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡

⇡(a|s) probability of taking action a in state s under stochastic policy ⇡

p(s0|s, a) probability of transition from state s to state s

0 under action a

r(s, a, s0) expected immediate reward on transition from s to s

0 under action a

v

⇡

(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q

⇡

(s, a) value of taking action a in state s under policy ⇡

q⇤(s, a) value of taking action a in state s under the optimal policy
V

t

estimate (a random variable) of v
⇡

or v⇤
Q

t

estimate (a random variable) of q
⇡

or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,w

t

vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s

w>x inner product of vectors, w>x =
P

i

w

i

x

i

; e.g., v̂(s,w) = w>x(s)

SUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
S

t

state at t
A

t

action at t
R

t

reward at t, dependent, like S

t

, on A

t�1

and S

t�1

G

t

return (cumulative discounted reward) following t

G

(n)

t

n-step return (Section 7.1)
G

�

t

�-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡

⇡(a|s) probability of taking action a in state s under stochastic policy ⇡

p(s0|s, a) probability of transition from state s to state s

0 under action a

r(s, a, s0) expected immediate reward on transition from s to s

0 under action a

v

⇡

(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q

⇡

(s, a) value of taking action a in state s under policy ⇡

q⇤(s, a) value of taking action a in state s under the optimal policy
V

t

estimate (a random variable) of v
⇡

or v⇤
Q

t

estimate (a random variable) of q
⇡

or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,w

t

vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s

w>x inner product of vectors, w>x =
P

i

w

i

x

i

; e.g., v̂(s,w) = w>x(s)

R

! = s
0

, a
0

, s
1

, a
1

, . . .

The other random variables are a function of this sequence. The transitional

target rt+1

is a function of st, at, and st+1

. The termination condition �t,

terminal target zt, and prediction yt, are functions of st alone.

R(n)
t = rt+1

+ �t+1

zt+1

+ (1� �t+1

)R(n�1)

t+1

R(0)

t = yt

R�
t = (1� �)

1X

n=1

�n�1R(n)
t

⇢t =
⇡(st, at)

b(st, at)

�wo↵

(!) = �won

(!)
1Y

i=1

⇢i

�wt = ↵t(CtR
�
t � yt)rwyt

�wt = ↵t(
¯R�
t � yt)rwyt

1

SUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
S

t

state at t
A

t

action at t
R

t

reward at t, dependent, like S

t

, on A

t�1

and S

t�1

G

t

return (cumulative discounted reward) following t

G

(n)

t

n-step return (Section 7.1)
G

�

t

�-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡

⇡(a|s) probability of taking action a in state s under stochastic policy ⇡

p(s0|s, a) probability of transition from state s to state s

0 under action a

r(s, a, s0) expected immediate reward on transition from s to s

0 under action a

v

⇡

(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q

⇡

(s, a) value of taking action a in state s under policy ⇡

q⇤(s, a) value of taking action a in state s under the optimal policy
V

t

estimate (a random variable) of v
⇡

or v⇤
Q

t

estimate (a random variable) of q
⇡

or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,w

t

vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s

w>x inner product of vectors, w>x =
P

i

w

i

x

i

; e.g., v̂(s,w) = w>x(s)

44 CHAPTER 3. THE REINFORCEMENT LEARNING PROBLEM

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in reinforcement learning.

gives rise to rewards, special numerical values that the agent tries to maximize
over time. A complete specification of an environment defines a task , one
instance of the reinforcement learning problem.

More specifically, the agent and environment interact at each of a sequence
of discrete time steps, t = 0, 1, 2, 3,2 At each time step t, the agent receives
some representation of the environment’s state, St 2 S, where S is the set of
possible states, and on that basis selects an action, At 2 A(St), where A(St)
is the set of actions available in state St. One time step later, in part as a
consequence of its action, the agent receives a numerical reward , Rt+1 2 R, and
finds itself in a new state, St+1.3 Figure 3.1 diagrams the agent–environment
interaction.

At each time step, the agent implements a mapping from states to prob-
abilities of selecting each possible action. This mapping is called the agent’s
policy and is denoted ⇡t, where ⇡t(a|s) is the probability that At = a if St = s.
Reinforcement learning methods specify how the agent changes its policy as
a result of its experience. The agent’s goal, roughly speaking, is to maximize
the total amount of reward it receives over the long run.

This framework is abstract and flexible and can be applied to many di↵erent
problems in many di↵erent ways. For example, the time steps need not refer
to fixed intervals of real time; they can refer to arbitrary successive stages of
decision-making and acting. The actions can be low-level controls, such as the
voltages applied to the motors of a robot arm, or high-level decisions, such
as whether or not to have lunch or to go to graduate school. Similarly, the
states can take a wide variety of forms. They can be completely determined by

wider audience.
2We restrict attention to discrete time to keep things as simple as possible, even though

many of the ideas can be extended to the continuous-time case (e.g., see Bertsekas and
Tsitsiklis, 1996; Werbos, 1992; Doya, 1996).

3We use Rt+1 instead of Rt to denote the immediate reward due to the action taken
at time t because it emphasizes that the next reward and the next state, St+1, are jointly
determined.

44 CHAPTER 3. THE REINFORCEMENT LEARNING PROBLEM

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in reinforcement learning.

gives rise to rewards, special numerical values that the agent tries to maximize
over time. A complete specification of an environment defines a task , one
instance of the reinforcement learning problem.

More specifically, the agent and environment interact at each of a sequence
of discrete time steps, t = 0, 1, 2, 3,2 At each time step t, the agent receives
some representation of the environment’s state, St 2 S, where S is the set of
possible states, and on that basis selects an action, At 2 A(St), where A(St)
is the set of actions available in state St. One time step later, in part as a
consequence of its action, the agent receives a numerical reward , Rt+1 2 R ⇢
R, where R is the set of possible rewards, and finds itself in a new state, St+1.3

Figure 3.1 diagrams the agent–environment interaction.

At each time step, the agent implements a mapping from states to prob-
abilities of selecting each possible action. This mapping is called the agent’s
policy and is denoted ⇡t, where ⇡t(a|s) is the probability that At = a if St = s.
Reinforcement learning methods specify how the agent changes its policy as
a result of its experience. The agent’s goal, roughly speaking, is to maximize
the total amount of reward it receives over the long run.

This framework is abstract and flexible and can be applied to many di↵erent
problems in many di↵erent ways. For example, the time steps need not refer
to fixed intervals of real time; they can refer to arbitrary successive stages of
decision-making and acting. The actions can be low-level controls, such as the
voltages applied to the motors of a robot arm, or high-level decisions, such
as whether or not to have lunch or to go to graduate school. Similarly, the
states can take a wide variety of forms. They can be completely determined by

wider audience.
2We restrict attention to discrete time to keep things as simple as possible, even though

many of the ideas can be extended to the continuous-time case (e.g., see Bertsekas and
Tsitsiklis, 1996; Werbos, 1992; Doya, 1996).

3We use Rt+1 instead of Rt to denote the immediate reward due to the action taken
at time t because it emphasizes that the next reward and the next state, St+1, are jointly
determined.

44 CHAPTER 3. THE REINFORCEMENT LEARNING PROBLEM

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in reinforcement learning.

gives rise to rewards, special numerical values that the agent tries to maximize
over time. A complete specification of an environment defines a task , one
instance of the reinforcement learning problem.

More specifically, the agent and environment interact at each of a sequence
of discrete time steps, t = 0, 1, 2, 3,2 At each time step t, the agent receives
some representation of the environment’s state, St 2 S, where S is the set of
possible states, and on that basis selects an action, At 2 A(St), where A(St)
is the set of actions available in state St. One time step later, in part as a
consequence of its action, the agent receives a numerical reward , Rt+1 2 R ⇢
R, where R is the set of possible rewards, and finds itself in a new state, St+1.3

Figure 3.1 diagrams the agent–environment interaction.

At each time step, the agent implements a mapping from states to prob-
abilities of selecting each possible action. This mapping is called the agent’s
policy and is denoted ⇡t, where ⇡t(a|s) is the probability that At = a if St = s.
Reinforcement learning methods specify how the agent changes its policy as
a result of its experience. The agent’s goal, roughly speaking, is to maximize
the total amount of reward it receives over the long run.

This framework is abstract and flexible and can be applied to many di↵erent
problems in many di↵erent ways. For example, the time steps need not refer
to fixed intervals of real time; they can refer to arbitrary successive stages of
decision-making and acting. The actions can be low-level controls, such as the
voltages applied to the motors of a robot arm, or high-level decisions, such
as whether or not to have lunch or to go to graduate school. Similarly, the
states can take a wide variety of forms. They can be completely determined by

wider audience.
2We restrict attention to discrete time to keep things as simple as possible, even though

many of the ideas can be extended to the continuous-time case (e.g., see Bertsekas and
Tsitsiklis, 1996; Werbos, 1992; Doya, 1996).

3We use Rt+1 instead of Rt to denote the immediate reward due to the action taken
at time t because it emphasizes that the next reward and the next state, St+1, are jointly
determined.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 3

Markov Decision Processes

❐ If a reinforcement learning task has the Markov Property, it is
basically a Markov Decision Process (MDP).

❐ If state and action sets are finite, it is a finite MDP.
❐ To define a finite MDP, you need to give:

! state and action sets
! one-step “dynamics”

! there is also:

58 CHAPTER 3. THE REINFORCEMENT LEARNING PROBLEM

A particular finite MDP is defined by its state and action sets and by the
one-step dynamics of the environment. Given any state and action s and a,
the probability of each possible pair of next state and reward, s0, r, is denoted

p(s0, r|s, a) = Pr{St+1 =s0, Rt+1 = r | St =s, At =a}. (3.6)

These quantities completely specify the dynamics of a finite MDP. Most of the
theory we present in the rest of this book implicitly assumes the environment
is a finite MDP.

Given the dynamics as specified by (3.6), one can compute anything else
one might want to know about the environment, such as the expected rewards
for state–action pairs,

r(s, a) = E[Rt+1 | St =s, At =a] =
X

r2R

r
X

s02S

p(s0, r|s, a), (3.7)

the state-transition probabilities,

p(s0|s, a) = Pr{St+1 =s0 | St =s, At =a} =
X

r2R

p(s0, r|s, a), (3.8)

and the expected rewards for state–action–next-state triples,

r(s, a, s0) = E[Rt+1 | St =s, At =a, St+1 = s0] =

P
r2R rp(s0, r|s, a)

p(s0|s, a)
. (3.9)

In the first edition of this book, the dynamics were expressed exclusively in
terms of the latter two quantities, which were denote Pa

ss0 and Ra
ss0 respectively.

One weakness of that notation is that it still did not fully characterize the
dynamics of the rewards, giving only their expectations. Another weakness is
the excess of subscripts and superscripts. In this edition we will predominantly
use the explicit notation of (3.6), while sometimes referring directly to the
transition probabilities (3.8).

Example 3.7: Recycling Robot MDP The recycling robot (Example
3.3) can be turned into a simple example of an MDP by simplifying it and
providing some more details. (Our aim is to produce a simple example, not
a particularly realistic one.) Recall that the agent makes a decision at times
determined by external events (or by other parts of the robot’s control system).
At each such time the robot decides whether it should (1) actively search for
a can, (2) remain stationary and wait for someone to bring it a can, or (3) go
back to home base to recharge its battery. Suppose the environment works
as follows. The best way to find cans is to actively search for them, but this
runs down the robot’s battery, whereas waiting does not. Whenever the robot
is searching, the possibility exists that its battery will become depleted. In

58 CHAPTER 3. FINITE MARKOV DECISION PROCESSES

3.6 Markov Decision Processes

A reinforcement learning task that satisfies the Markov property is called a Markov
decision process, or MDP. If the state and action spaces are finite, then it is called a
finite Markov decision process (finite MDP). Finite MDPs are particularly important
to the theory of reinforcement learning. We treat them extensively throughout this
book; they are all you need to understand 90% of modern reinforcement learning.

A particular finite MDP is defined by its state and action sets and by the one-step
dynamics of the environment. Given any state and action s and a, the probability
of each possible pair of next state and reward, s0, r, is denoted

p(s0, r|s, a)
.
= Pr

�
St+1 =s0, Rt+1 = r | St =s, At =a

. (3.6)

These quantities completely specify the dynamics of a finite MDP. Most of the theory
we present in the rest of this book implicitly assumes the environment is a finite MDP.

Given the dynamics as specified by (3.6), one can compute anything else one might
want to know about the environment, such as the expected rewards for state–action
pairs,

r(s, a)
.
= E[Rt+1 | St =s, At =a] =

X

r2R

r
X

s02S

p(s0, r|s, a), (3.7)

the state-transition probabilities,

p(s0|s, a)
.
= Pr

�
St+1 =s0 | St =s, At =a

=
X

r2R

p(s0, r|s, a), (3.8)

and the expected rewards for state–action–next-state triples,

r(s, a, s0)
.
= E

⇥
Rt+1

�� St =s, At =a, St+1 = s0⇤ =

P
r2R rp(s0, r|s, a)

p(s0|s, a)
. (3.9)

In the first edition of this book, the dynamics were expressed exclusively in terms
of the latter two quantities, which were denoted Pa

ss0 and Ra
ss0 respectively. One

weakness of that notation is that it still did not fully characterize the dynamics
of the rewards, giving only their expectations. Another weakness is the excess of
subscripts and superscripts. In this edition we will predominantly use the explicit
notation of (3.6), while sometimes referring directly to the transition probabilities
(3.8).

Example 3.7: Recycling Robot MDP The recycling robot (Example 3.3) can
be turned into a simple example of an MDP by simplifying it and providing some
more details. (Our aim is to produce a simple example, not a particularly realistic
one.) Recall that the agent makes a decision at times determined by external events
(or by other parts of the robot’s control system). At each such time the robot decides
whether it should (1) actively search for a can, (2) remain stationary and wait for
someone to bring it a can, or (3) go back to home base to recharge its battery.
Suppose the environment works as follows. The best way to find cans is to actively

58 CHAPTER 3. FINITE MARKOV DECISION PROCESSES

3.6 Markov Decision Processes

A reinforcement learning task that satisfies the Markov property is called a Markov
decision process, or MDP. If the state and action spaces are finite, then it is called a
finite Markov decision process (finite MDP). Finite MDPs are particularly important
to the theory of reinforcement learning. We treat them extensively throughout this
book; they are all you need to understand 90% of modern reinforcement learning.

A particular finite MDP is defined by its state and action sets and by the one-step
dynamics of the environment. Given any state and action s and a, the probability
of each possible pair of next state and reward, s0, r, is denoted

p(s0, r|s, a)
.
= Pr

�
St+1 =s0, Rt+1 = r | St =s, At =a

. (3.6)

These quantities completely specify the dynamics of a finite MDP. Most of the theory
we present in the rest of this book implicitly assumes the environment is a finite MDP.

Given the dynamics as specified by (3.6), one can compute anything else one might
want to know about the environment, such as the expected rewards for state–action
pairs,

r(s, a)
.
= E[Rt+1 | St =s, At =a] =

X

r2R

r
X

s02S

p(s0, r|s, a), (3.7)

the state-transition probabilities,

p(s0|s, a)
.
= Pr

�
St+1 =s0 | St =s, At =a

=
X

r2R

p(s0, r|s, a), (3.8)

and the expected rewards for state–action–next-state triples,

r(s, a, s0)
.
= E

⇥
Rt+1

�� St =s, At =a, St+1 = s0⇤ =

P
r2R rp(s0, r|s, a)

p(s0|s, a)
. (3.9)

In the first edition of this book, the dynamics were expressed exclusively in terms
of the latter two quantities, which were denoted Pa

ss0 and Ra
ss0 respectively. One

weakness of that notation is that it still did not fully characterize the dynamics
of the rewards, giving only their expectations. Another weakness is the excess of
subscripts and superscripts. In this edition we will predominantly use the explicit
notation of (3.6), while sometimes referring directly to the transition probabilities
(3.8).

Example 3.7: Recycling Robot MDP The recycling robot (Example 3.3) can
be turned into a simple example of an MDP by simplifying it and providing some
more details. (Our aim is to produce a simple example, not a particularly realistic
one.) Recall that the agent makes a decision at times determined by external events
(or by other parts of the robot’s control system). At each such time the robot decides
whether it should (1) actively search for a can, (2) remain stationary and wait for
someone to bring it a can, or (3) go back to home base to recharge its battery.
Suppose the environment works as follows. The best way to find cans is to actively

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 4

Policy at step t = π t =

 a mapping from states to action probabilities
 π t (a | s) = probability that At = a when St = s

The Agent Learns a Policy

❐ Reinforcement learning methods specify how the agent
changes its policy as a result of experience.

❐ Roughly, the agent’s goal is to get as much reward as it can
over the long run.

Special case - deterministic policies:
 πt (s) = the action taken with prob=1 when St = s

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 5

The Meaning of Life
(goals, rewards, and returns)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 6

Return

Suppose the sequence of rewards after step t is:
 Rt+1, Rt+2 , Rt+3,K
What do we want to maximize?

At least three cases, but in all of them,
we seek to maximize the expected return, E Gt{ }, on each step t.

• Total reward, Gt = sum of all future reward in the episode

• Discounted reward, Gt = sum of all future discounted reward

• Average reward, Gt = average reward per time step

. . .

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Episodic Tasks

7

Episodic tasks: interaction breaks naturally into
episodes, e.g., plays of a game, trips through a maze

In episodic tasks, we almost always use simple total
reward:

Gt = Rt+1 + Rt+2 +L + RT ,

where T is a final time step at which a terminal state is reached,
ending an episode.

...

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 8

Continuing Tasks

Continuing tasks: interaction does not have natural episodes, but
just goes on and on...

In this class, for continuing tasks we will always use discounted
return:

 Gt = Rt+1 + γ Rt+2 + γ
2Rt+3 +L = γ kRt+k+1,

k=0

∞

∑
where γ , 0 ≤ γ ≤1, is the discount rate.

shortsighted 0 ←γ → 1 farsighted

Typically, � = 0.9

...

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 9

An Example: Pole Balancing

Avoid failure: the pole falling beyond
a critical angle or the cart hitting end of
track

reward = +1 for each step before failure
⇒ return = number of steps before failure

As an episodic task where episode ends upon failure:

As a continuing task with discounted return:
reward = −1 upon failure; 0 otherwise

⇒ return = −γ k , for k steps before failure

In either case, return is maximized by
avoiding failure for as long as possible.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 10

Another Example: Mountain Car

Get to the top of the hill
as quickly as possible.

reward = −1 for each step where not at top of hill
⇒ return = − number of steps before reaching top of hill

Return is maximized by minimizing
number of steps to reach the top of the hill.

R1 = +1S0 S1
R2 = +1 S2

R3 = +1 R4 = 0
R5 = 0. . .

❐ In episodic tasks, we number the time steps of each episode
starting from zero.

❐ We usually do not have to distinguish between episodes, so
instead of writing for states in episode j, we write just

❐ Think of each episode as ending in an absorbing state that
always produces reward of zero:

❐ We can cover all cases by writing

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 11

A Trick to Unify Notation for Returns

StSt , j

 Gt = γ kRt+k+1,
k=0

∞

∑
where γ can be 1 only if a zero reward absorbing state is always reached.

Rewards and returns
• The objective in RL is to maximize long-term future reward

• That is, to choose so as to maximize

• But what exactly should be maximized?

• The discounted return at time t:

At Rt+1, Rt+2, Rt+3, . . .

Gt = Rt+1 + �Rt+2 + �2Rt+3 + �3Rt+4 + · · · � 2 [0, 1)

Reward sequence
1 0 0 0…

Return
1

0 0 2 0 0 0…
0.5(or any)

0.5 0.5
0.9 0 0 2 0 0 0… 1.62
0.5 -1 2 6 3 2 0 0 0… 2

�

the discount rate

• Suppose and the reward sequence is

• What are the following returns?

• Suppose and the reward sequence is all 1s.

• Suppose and the reward sequence is

• And if

Gt = Rt+1 + �Rt+2 + �2Rt+3 + �3Rt+4 + · · · � 2 [0, 1)

R1 = 1, R2 = 6, R3 = �12, R4 = 16, then zeros for R5 and later

� = 0.5

G4 = 0 G3 = 16 G2 = �4 G1 = 4 G0 = 3

� = 0.5

R1 = 1, R2 = 13, R3 = 13, R4 = 13, and so on, all 13s

G =
1

1� �
= 2

� = 0.5

G2 = 26 G1 = 26 G0 = 14

� = 0.9?

G1 = 130 G0 = 118

• Suppose and the reward sequence is

• What are the following returns?

• Suppose and the reward sequence is all 1s.

• Suppose and the reward sequence is

• And if

Gt = Rt+1 + �Rt+2 + �2Rt+3 + �3Rt+4 + · · · � 2 [0, 1)

R1 = 1, R2 = 6, R3 = �12, R4 = 16, then zeros for R5 and later

� = 0.5

G4 = 0 G3 = 16 G2 = �4 G1 = 4 G0 = 3

� = 0.5

R1 = 1, R2 = 13, R3 = 13, R4 = 13, and so on, all 13s

G =
1

1� �
= 2

� = 0.5

G2 = 26 G1 = 26 G0 = 14

� = 0.9?

G1 = 130 G0 = 118

• Suppose and the reward sequence is

• What are the following returns?

• Suppose and the reward sequence is all 1s.

• Suppose and the reward sequence is

• And if

Gt = Rt+1 + �Rt+2 + �2Rt+3 + �3Rt+4 + · · · � 2 [0, 1)

R1 = 1, R2 = 6, R3 = �12, R4 = 16, then zeros for R5 and later

� = 0.5

G4 = 0 G3 = 16 G2 = �4 G1 = 4 G0 = 3

� = 0.5

R1 = 1, R2 = 13, R3 = 13, R4 = 13, and so on, all 13s

G =
1

1� �
= 2

� = 0.5

G2 = 26 G1 = 26 G0 = 14

� = 0.9?

G1 = 130 G0 = 118

• Suppose and the reward sequence is

• What are the following returns?

• Suppose and the reward sequence is all 1s.

• Suppose and the reward sequence is

• And if

Gt = Rt+1 + �Rt+2 + �2Rt+3 + �3Rt+4 + · · · � 2 [0, 1)

R1 = 1, R2 = 6, R3 = �12, R4 = 16, then zeros for R5 and later

� = 0.5

G4 = 0 G3 = 16 G2 = �4 G1 = 4 G0 = 3

� = 0.5

R1 = 1, R2 = 13, R3 = 13, R4 = 13, and so on, all 13s

G =
1

1� �
= 2

� = 0.5

G2 = 26 G1 = 26 G0 = 14

� = 0.9?

G1 = 130 G0 = 118

• Suppose and the reward sequence is

• What are the following returns?

• Suppose and the reward sequence is all 1s.

• Suppose and the reward sequence is

• And if

Gt = Rt+1 + �Rt+2 + �2Rt+3 + �3Rt+4 + · · · � 2 [0, 1)

R1 = 1, R2 = 6, R3 = �12, R4 = 16, then zeros for R5 and later

� = 0.5

G4 = 0 G3 = 16 G2 = �4 G1 = 4 G0 = 3

� = 0.5

R1 = 1, R2 = 13, R3 = 13, R4 = 13, and so on, all 13s

G =
1

1� �
= 2

� = 0.5

G2 = 26 G1 = 26 G0 = 14

� = 0.9?

G1 = 130 G0 = 118

• Suppose and the reward sequence is

• What are the following returns?

• Suppose and the reward sequence is all 1s.

• Suppose and the reward sequence is

• And if

Gt = Rt+1 + �Rt+2 + �2Rt+3 + �3Rt+4 + · · · � 2 [0, 1)

R1 = 1, R2 = 6, R3 = �12, R4 = 16, then zeros for R5 and later

� = 0.5

G4 = 0 G3 = 16 G2 = �4 G1 = 4 G0 = 3

� = 0.5

R1 = 1, R2 = 13, R3 = 13, R4 = 13, and so on, all 13s

G =
1

1� �
= 2

� = 0.5

G2 = 26 G1 = 26 G0 = 14

� = 0.9?

G1 = 130 G0 = 118

• Suppose and the reward sequence is

• What are the following returns?

• Suppose and the reward sequence is all 1s.

• Suppose and the reward sequence is

• And if

Gt = Rt+1 + �Rt+2 + �2Rt+3 + �3Rt+4 + · · · � 2 [0, 1)

R1 = 1, R2 = 6, R3 = �12, R4 = 16, then zeros for R5 and later

� = 0.5

G4 = 0 G3 = 16 G2 = �4 G1 = 4 G0 = 3

� = 0.5

R1 = 1, R2 = 13, R3 = 13, R4 = 13, and so on, all 13s

G =
1

1� �
= 2

� = 0.5

G2 = 26 G1 = 26 G0 = 14

� = 0.9?

G1 = 130 G0 = 118

• Suppose and the reward sequence is

• What are the following returns?

• Suppose and the reward sequence is all 1s.

• Suppose and the reward sequence is

• And if

Gt = Rt+1 + �Rt+2 + �2Rt+3 + �3Rt+4 + · · · � 2 [0, 1)

R1 = 1, R2 = 6, R3 = �12, R4 = 16, then zeros for R5 and later

� = 0.5

G4 = 0 G3 = 16 G2 = �4 G1 = 4 G0 = 3

� = 0.5

R1 = 1, R2 = 13, R3 = 13, R4 = 13, and so on, all 13s

G =
1

1� �
= 2

� = 0.5

G2 = 26 G1 = 26 G0 = 14

� = 0.9?

G1 = 130 G0 = 118

• Suppose and the reward sequence is

• What are the following returns?

• Suppose and the reward sequence is all 1s.

• Suppose and the reward sequence is

• And if

Gt = Rt+1 + �Rt+2 + �2Rt+3 + �3Rt+4 + · · · � 2 [0, 1)

R1 = 1, R2 = 6, R3 = �12, R4 = 16, then zeros for R5 and later

� = 0.5

G4 = 0 G3 = 16 G2 = �4 G1 = 4 G0 = 3

� = 0.5

R1 = 1, R2 = 13, R3 = 13, R4 = 13, and so on, all 13s

G =
1

1� �
= 2

� = 0.5

G2 = 26 G1 = 26 G0 = 14

� = 0.9?

G1 = 130 G0 = 118

• Suppose and the reward sequence is

• What are the following returns?

• Suppose and the reward sequence is all 1s.

• Suppose and the reward sequence is

• And if

Gt = Rt+1 + �Rt+2 + �2Rt+3 + �3Rt+4 + · · · � 2 [0, 1)

R1 = 1, R2 = 6, R3 = �12, R4 = 16, then zeros for R5 and later

� = 0.5

G4 = 0 G3 = 16 G2 = �4 G1 = 4 G0 = 3

� = 0.5

R1 = 1, R2 = 13, R3 = 13, R4 = 13, and so on, all 13s

G =
1

1� �
= 2

� = 0.5

G2 = 26 G1 = 26 G0 = 14

� = 0.9?

G1 = 130 G0 = 118

• Suppose and the reward sequence is

• What are the following returns?

• Suppose and the reward sequence is all 1s.

• Suppose and the reward sequence is

• And if

Gt = Rt+1 + �Rt+2 + �2Rt+3 + �3Rt+4 + · · · � 2 [0, 1)

R1 = 1, R2 = 6, R3 = �12, R4 = 16, then zeros for R5 and later

� = 0.5

G4 = 0 G3 = 16 G2 = �4 G1 = 4 G0 = 3

� = 0.5

R1 = 1, R2 = 13, R3 = 13, R4 = 13, and so on, all 13s

G =
1

1� �
= 2

� = 0.5

G2 = 26 G1 = 26 G0 = 14

� = 0.9?

G1 = 130 G0 = 118

• Suppose and the reward sequence is

• What are the following returns?

• Suppose and the reward sequence is all 1s.

• Suppose and the reward sequence is

• And if

Gt = Rt+1 + �Rt+2 + �2Rt+3 + �3Rt+4 + · · · � 2 [0, 1)

R1 = 1, R2 = 6, R3 = �12, R4 = 16, then zeros for R5 and later

� = 0.5

G4 = 0 G3 = 16 G2 = �4 G1 = 4 G0 = 3

� = 0.5

R1 = 1, R2 = 13, R3 = 13, R4 = 13, and so on, all 13s

G =
1

1� �
= 2

� = 0.5

G2 = 26 G1 = 26 G0 = 14

� = 0.9?

G1 = 130 G0 = 118

• Suppose and the reward sequence is

• What are the following returns?

• Suppose and the reward sequence is all 1s.

• Suppose and the reward sequence is

• And if

Gt = Rt+1 + �Rt+2 + �2Rt+3 + �3Rt+4 + · · · � 2 [0, 1)

R1 = 1, R2 = 6, R3 = �12, R4 = 16, then zeros for R5 and later

� = 0.5

G4 = 0 G3 = 16 G2 = �4 G1 = 4 G0 = 3

� = 0.5

R1 = 1, R2 = 13, R3 = 13, R4 = 13, and so on, all 13s

G =
1

1� �
= 2

� = 0.5

G2 = 26 G1 = 26 G0 = 14

� = 0.9?

G1 = 130 G0 = 118

• Suppose and the reward sequence is

• What are the following returns?

• Suppose and the reward sequence is all 1s.

• Suppose and the reward sequence is

• And if

Gt = Rt+1 + �Rt+2 + �2Rt+3 + �3Rt+4 + · · · � 2 [0, 1)

R1 = 1, R2 = 6, R3 = �12, R4 = 16, then zeros for R5 and later

� = 0.5

G4 = 0 G3 = 16 G2 = �4 G1 = 4 G0 = 3

� = 0.5

R1 = 1, R2 = 13, R3 = 13, R4 = 13, and so on, all 13s

G =
1

1� �
= 2

� = 0.5

G2 = 26 G1 = 26 G0 = 14

� = 0.9?

G1 = 130 G0 = 118

4 value functions

• All theoretical objects, mathematical ideals (expected values)

• Distinct from their estimates:

state
values

action
values

prediction

control q⇤v⇤

v⇡ q⇡

Vt(s) Qt(s, a)

Values are expected returns
• The value of a state, given a policy:

• The value of a state-action pair, given a policy:

• The optimal value of a state:

• The optimal value of a state-action pair:

• Optimal policy: is an optimal policy if and only if

• in other words, is optimal iff it is greedy wrt

v⇡(s) = E{Gt | St = s,At:1⇠⇡} v⇡ : S ! <

q⇡(s, a) = E{Gt | St = s,At = a,At+1:1⇠⇡} q⇡ : S⇥A ! <

v⇤(s) = max

⇡
v⇡(s) v⇤ : S ! <

⇡⇤(a|s) > 0 only where q⇤(s, a) = max

b
q⇤(s, b)

⇡⇤

⇡⇤ q⇤

8s 2 S

q⇤(s, a) = max

⇡
q⇡(s, a) q⇤ : S⇥A ! <

4 value functions

• All theoretical objects, mathematical ideals (expected values)

• Distinct from their estimates:

state
values

action
values

prediction

control q⇤v⇤

v⇡ q⇡

Vt(s) Qt(s, a)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 18

Gridworld

❐ Actions: north, south, east, west; deterministic.
❐ If would take agent off the grid: no move but reward = –1
❐ Other actions produce reward = 0, except actions that move

agent out of special states A and B as shown.

State-value function
for equiprobable
random policy;
γ = 0.9

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

What we learned so far

❐ Finite Markov decision processes!
! States, actions, and rewards
! And returns
! And time, discrete time
! They capture essential elements of life — state, causality

❐ The goal is to optimize expected returns
! returns are discounted sums of future rewards

❐ Thus we are interested in values — expected returns
❐ There are four value functions

! state vs state-action values
! values for a policy vs values for the optimal policy

20

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 21

π ≥ #π if and only if vπ (s) ≥ vπ # (s) for all s ∈

Optimal Value Functions

v*(s) = max
π
vπ (s) for all s ∈

q*(s,a) = max
π
qπ (s,a) for all s ∈ and a∈ (s)

This is the expected return for taking action a in state s
and thereafter following an optimal policy.

❐ For finite MDPs, policies can be partially ordered:

❐ There are always one or more policies that are better than or
equal to all the others. These are the optimal policies. We
denote them all π*.

❐ Optimal policies share the same optimal state-value function:

❐ Optimal policies also share the same optimal action-value
function:

SUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
S

t

state at t
A

t

action at t
R

t

reward at t, dependent, like S

t

, on A

t�1

and S

t�1

G

t

return (cumulative discounted reward) following t

G

(n)

t

n-step return (Section 7.1)
G

�

t

�-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡

⇡(a|s) probability of taking action a in state s under stochastic policy ⇡

p(s0|s, a) probability of transition from state s to state s

0 under action a

r(s, a, s0) expected immediate reward on transition from s to s

0 under action a

v

⇡

(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q

⇡

(s, a) value of taking action a in state s under policy ⇡

q⇤(s, a) value of taking action a in state s under the optimal policy
V

t

estimate (a random variable) of v
⇡

or v⇤
Q

t

estimate (a random variable) of q
⇡

or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,w

t

vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s

w>x inner product of vectors, w>x =
P

i

w

i

x

i

; e.g., v̂(s,w) = w>x(s)

SUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
S

t

state at t
A

t

action at t
R

t

reward at t, dependent, like S

t

, on A

t�1

and S

t�1

G

t

return (cumulative discounted reward) following t

G

(n)

t

n-step return (Section 7.1)
G

�

t

�-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡

⇡(a|s) probability of taking action a in state s under stochastic policy ⇡

p(s0|s, a) probability of transition from state s to state s

0 under action a

r(s, a, s0) expected immediate reward on transition from s to s

0 under action a

v

⇡

(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q

⇡

(s, a) value of taking action a in state s under policy ⇡

q⇤(s, a) value of taking action a in state s under the optimal policy
V

t

estimate (a random variable) of v
⇡

or v⇤
Q

t

estimate (a random variable) of q
⇡

or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,w

t

vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s

w>x inner product of vectors, w>x =
P

i

w

i

x

i

; e.g., v̂(s,w) = w>x(s)

SUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
S

t

state at t
A

t

action at t
R

t

reward at t, dependent, like S

t

, on A

t�1

and S

t�1

G

t

return (cumulative discounted reward) following t

G

(n)

t

n-step return (Section 7.1)
G

�

t

�-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡

⇡(a|s) probability of taking action a in state s under stochastic policy ⇡

p(s0|s, a) probability of transition from state s to state s

0 under action a

r(s, a, s0) expected immediate reward on transition from s to s

0 under action a

v

⇡

(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q

⇡

(s, a) value of taking action a in state s under policy ⇡

q⇤(s, a) value of taking action a in state s under the optimal policy
V

t

estimate (a random variable) of v
⇡

or v⇤
Q

t

estimate (a random variable) of q
⇡

or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,w

t

vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s

w>x inner product of vectors, w>x =
P

i

w

i

x

i

; e.g., v̂(s,w) = w>x(s)

SUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
S

t

state at t
A

t

action at t
R

t

reward at t, dependent, like S

t

, on A

t�1

and S

t�1

G

t

return (cumulative discounted reward) following t

G

(n)

t

n-step return (Section 7.1)
G

�

t

�-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡

⇡(a|s) probability of taking action a in state s under stochastic policy ⇡

p(s0|s, a) probability of transition from state s to state s

0 under action a

r(s, a, s0) expected immediate reward on transition from s to s

0 under action a

v

⇡

(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q

⇡

(s, a) value of taking action a in state s under policy ⇡

q⇤(s, a) value of taking action a in state s under the optimal policy
V

t

estimate (a random variable) of v
⇡

or v⇤
Q

t

estimate (a random variable) of q
⇡

or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,w

t

vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s

w>x inner product of vectors, w>x =
P

i

w

i

x

i

; e.g., v̂(s,w) = w>x(s)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 22

Why Optimal State-Value Functions are Useful

v*

v*

Any policy that is greedy with respect to is an optimal policy.

Therefore, given , one-step-ahead search produces the
long-term optimal actions.

E.g., back to the gridworld:

a) gridworld b) V* c) !*

22.0 24.4 22.0 19.4 17.5

19.8 22.0 19.8 17.8 16.0

17.8 19.8 17.8 16.0 14.4

16.0 17.8 16.0 14.4 13.0

14.4 16.0 14.4 13.0 11.7

A B

A'

B'+10

+5

v* π*

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 24

What About Optimal Action-Value Functions?

Given , the agent does not even
have to do a one-step-ahead search:

q*

π*(s) = argmaxa q*(s,a)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 25

Value Functions
x 4

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 26

Bellman Equations
x 4

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 27

Bellman Equation for a Policy π

Gt = Rt+1 + γ Rt+2 + γ
2Rt+3 + γ

3Rt+4L
= Rt+1 + γ Rt+2 + γ Rt+3 + γ

2Rt+4L()
= Rt+1 + γGt+1

The basic idea:

So: vπ (s) = Eπ Gt St = s{ }
= Eπ Rt+1 + γ vπ St+1() St = s{ }

Or, without the expectation operator:

...+

...+

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i
, (2)

i

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 28

More on the Bellman Equation

This is a set of equations (in fact, linear), one for each state.
The value function for π is its unique solution.

Backup diagrams:

for vπ for qπ

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i
, (2)

i

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 30

Bellman Optimality Equation for v*

The value of a state under an optimal policy must equal
the expected return for the best action from that state:

The relevant backup diagram:

 is the unique solution of this system of nonlinear equations.v*

s,as

a

s'

r

a'

s'

r

(b)(a)

max

max

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0
)

i

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=

X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0
)

i
, (2)

v⇤(s) = max

a
q⇡⇤(s, a)

= max

a
E[Rt+1 + �v⇤(St+1) | St=s,At=a] (3)

= max

a

X

s0,r

p(s0, r|s, a)
⇥
r + �v⇤(s

0
)

⇤
. (4)

i

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 31

Bellman Optimality Equation for q*

The relevant backup diagram:

 is the unique solution of this system of nonlinear equations.q*

s,as

a

s'

r

a'

s'

r

(b)(a)

max

max

68 CHAPTER 3. THE REINFORCEMENT LEARNING PROBLEM

q⇤(s, driver). These are the values of each state if we first play a stroke with
the driver and afterward select either the driver or the putter, whichever is
better. The driver enables us to hit the ball farther, but with less accuracy.
We can reach the hole in one shot using the driver only if we are already very
close; thus the �1 contour for q⇤(s, driver) covers only a small portion of
the green. If we have two strokes, however, then we can reach the hole from
much farther away, as shown by the �2 contour. In this case we don’t have
to drive all the way to within the small �1 contour, but only to anywhere
on the green; from there we can use the putter. The optimal action-value
function gives the values after committing to a particular first action, in this
case, to the driver, but afterward using whichever actions are best. The �3
contour is still farther out and includes the starting tee. From the tee, the best
sequence of actions is two drives and one putt, sinking the ball in three strokes.

Because v⇤ is the value function for a policy, it must satisfy the self-
consistency condition given by the Bellman equation for state values (3.12).
Because it is the optimal value function, however, v⇤’s consistency condition
can be written in a special form without reference to any specific policy. This
is the Bellman equation for v⇤, or the Bellman optimality equation. Intuitively,
the Bellman optimality equation expresses the fact that the value of a state
under an optimal policy must equal the expected return for the best action
from that state:

v⇤(s) = max
a2A(s)

q⇡⇤(s, a)

= max
a

E⇡⇤[Gt | St =s, At =a]

= max
a

E⇡⇤

" 1X

k=0

�kRt+k+1

����� St =s, At =a

#

= max
a

E⇡⇤

"
Rt+1 + �

1X

k=0

�kRt+k+2

����� St =s, At =a

#

= max
a

E[Rt+1 + �v⇤(St+1) | St =s, At =a] (3.16)

= max
a2A(s)

X

s0,r

p(s0, r|s, a)
⇥
r + �v⇤(s

0)
⇤
. (3.17)

The last two equations are two forms of the Bellman optimality equation for
v⇤. The Bellman optimality equation for q⇤ is

q⇤(s, a) = E
h
Rt+1 + � max

a0
q⇤(St+1, a

0)
��� St = s, At = a

i

=
X

s0,r

p(s0, r|s, a)
h
r + � max

a0
q⇤(s

0, a0)
i
.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 32

Solving the Bellman Optimality Equation
❐ Finding an optimal policy by solving the Bellman

Optimality Equation requires the following:
! accurate knowledge of environment dynamics;
! we have enough space and time to do the computation;
! the Markov Property.

❐ How much space and time do we need?
! polynomial in number of states (via dynamic

programming methods; Chapter 4),
! BUT, number of states is often huge (e.g., backgammon

has about 1020 states).
❐ We usually have to settle for approximations.
❐ Many RL methods can be understood as approximately

solving the Bellman Optimality Equation.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 33

Summary

❐ Agent-environment interaction
! States
! Actions
! Rewards

❐ Policy: stochastic rule for
selecting actions

❐ Return: the function of future
rewards agent tries to maximize

❐ Episodic and continuing tasks
❐ Markov Property
❐ Markov Decision Process

! Transition probabilities
! Expected rewards

❐ Value functions
! State-value function for a policy
! Action-value function for a policy
! Optimal state-value function
! Optimal action-value function

❐ Optimal value functions
❐ Optimal policies
❐ Bellman Equations
❐ The need for approximation

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1

Chapter 4: Dynamic Programming

❐ Overview of a collection of classical solution methods
for MDPs known as dynamic programming (DP)

❐ Show how DP can be used to compute value functions,
and hence, optimal policies

❐ Discuss efficiency and utility of DP

Objectives of this chapter:

Policy Evaluation: for a given policy π, compute the
 state-value function vπ

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 2

Policy Evaluation (Prediction)

Recall: State-value function for policy π

SUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
S

t

state at t

A

t

action at t

R

t

reward at t, dependent, like S

t

, on A

t�1

and S

t�1

G

t

return (cumulative discounted reward) following t

G

(n)

t

n-step return (Section 7.1)
G

�

t

�-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡

⇡(a|s) probability of taking action a in state s under stochastic policy ⇡

p(s0|s, a) probability of transition from state s to state s

0 under action a

r(s, a, s

0) expected immediate reward on transition from s to s

0 under action a

v

⇡

(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q

⇡

(s, a) value of taking action a in state s under policy ⇡

q⇤(s, a) value of taking action a in state s under the optimal policy
V

t

estimate (a random variable) of v

⇡

or v⇤
Q

t

estimate (a random variable) of q

⇡

or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,w

t

vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s

w>x inner product of vectors, w>x =
P

i

w

i

x

i

; e.g., v̂(s,w) = w>x(s)

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0
)

i

v⇡(s) = E⇡[Gt | St = s] = E⇡

" 1X

k=0

�kRt+k+1

����� St = s

#

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=

X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0
)

i
, (2)

v⇤(s) = max

a
q⇡⇤(s, a)

= max

a
E[Rt+1 + �v⇤(St+1) | St=s,At=a] (3)

= max

a

X

s0,r

p(s0, r|s, a)
⇥
r + �v⇤(s

0
)

⇤
. (4)

i

Recall: Bellman equation for vπ

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0
)

i

v⇡(s) = E⇡[Gt | St = s] = E⇡

" 1X

k=0

�kRt+k+1

����� St = s

#

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=

X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0
)

i
, (2)

v⇤(s) = max

a
q⇡⇤(s, a)

= max

a
E[Rt+1 + �v⇤(St+1) | St=s,At=a] (3)

= max

a

X

s0,r

p(s0, r|s, a)
⇥
r + �v⇤(s

0
)

⇤
. (4)

i

—a system of | | simultaneous equations

.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 3

Iterative Policy Evaluation (Prediction)

a “sweep”

A sweep consists of applying a backup operation to each state.

A full policy-evaluation backup:

v0 ! v1 ! · · · ! vk ! vk+1 ! · · · ! v⇡

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0
)

i

vk+1(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �vk(s

0
)

i
8s 2 S

v⇡(s) = E⇡[Gt | St = s] = E⇡

" 1X

k=0

�kRt+k+1

����� St = s

#

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=

X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0
)

i
, (2)

v⇤(s) = max

a
q⇡⇤(s, a)

= max

a
E[Rt+1 + �v⇤(St+1) | St=s,At=a] (3)

= max

a

X

s0,r

p(s0, r|s, a)
⇥
r + �v⇤(s

0
)

⇤
. (4)

i

v0 ! v1 ! · · · ! vk ! vk+1 ! · · · ! v⇡

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0
)

i

vk+1(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �vk(s

0
)

i
8s 2 S

v⇡(s) = E⇡[Gt | St = s] = E⇡

" 1X

k=0

�kRt+k+1

����� St = s

#

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=

X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0
)

i
, (2)

v⇤(s) = max

a
q⇡⇤(s, a)

= max

a
E[Rt+1 + �v⇤(St+1) | St=s,At=a] (3)

= max

a

X

s0,r

p(s0, r|s, a)
⇥
r + �v⇤(s

0
)

⇤
. (4)

i

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 5

A Small Gridworld Example

❐ An undiscounted episodic task
❐ Nonterminal states: 1, 2, . . ., 14;
❐ One terminal state (shown twice as shaded squares)
❐ Actions that would take agent off the grid leave state unchanged
❐ Reward is –1 until the terminal state is reached

R

γ = 1

6

Iterative Policy Eval  
for the Small Gridworld

€

π = equiprobable random action choices

∞

R

γ = 1

❐ An undiscounted episodic task
❐ Nonterminal states: 1, 2, . . ., 14;
❐ One terminal state (shown twice as shaded squares)

❐ Actions that would take agent off the grid leave state unchanged
❐ Reward is –1 until the terminal state is reached

v0 ! v1 ! · · · ! vk ! vk+1 ! · · · ! v⇡

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0
)

i

vk+1(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �vk(s

0
)

i
8s 2 S

v⇡(s) = E⇡[Gt | St = s] = E⇡

" 1X

k=0

�kRt+k+1

����� St = s

#

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=

X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0
)

i
, (2)

v⇤(s) = max

a
q⇡⇤(s, a)

= max

a
E[Rt+1 + �v⇤(St+1) | St=s,At=a] (3)

= max

a

X

s0,r

p(s0, r|s, a)
⇥
r + �v⇤(s

0
)

⇤
. (4)

i

4

Iterative Policy Evaluation – One array version
86 CHAPTER 4. DYNAMIC PROGRAMMING

Input ⇡, the policy to be evaluated
Initialize an array V (s) = 0, for all s 2 S+

Repeat
� 0
For each s 2 S:

v V (s)
V (s)

P
a ⇡(a|s)

P
s0,r p(s0, r|s, a)

⇥
r + �V (s0)

⇤

� max(�, |v � V (s)|)
until � < ✓ (a small positive number)
Output V ⇡ v⇡

Figure 4.1: Iterative policy evaluation.

Another implementation point concerns the termination of the algorithm.
Formally, iterative policy evaluation converges only in the limit, but in practice
it must be halted short of this. A typical stopping condition for iterative policy
evaluation is to test the quantity maxs2S |vk+1(s)�vk(s)| after each sweep and
stop when it is su�ciently small. Figure 4.1 gives a complete algorithm for
iterative policy evaluation with this stopping criterion.

Example 4.1 Consider the 4⇥4 gridworld shown below.

actions

r = !1

on all transitions

1 2 3

4 5 6 7

8 9 10 11

12 13 14

R

The nonterminal states are S = {1, 2, . . . , 14}. There are four actions pos-
sible in each state, A = {up, down, right, left}, which deterministically
cause the corresponding state transitions, except that actions that would take
the agent o↵ the grid in fact leave the state unchanged. Thus, for instance,
p(6|5, right) = 1, p(10|5, right) = 0, and p(7|7, right) = 1. This is an undis-
counted, episodic task. The reward is �1 on all transitions until the terminal
state is reached. The terminal state is shaded in the figure (although it is
shown in two places, it is formally one state). The expected reward function is
thus r(s, a, s0) = �1 for all states s, s0 and actions a. Suppose the agent follows
the equiprobable random policy (all actions equally likely). The left side of
Figure 4.2 shows the sequence of value functions {vk} computed by iterative
policy evaluation. The final estimate is in fact v⇡, which in this case gives for
each state the negation of the expected number of steps from that state until

Enough Prediction,
let’s start towards Control!

Policy improvement theorem

Given the value function for any policy :

It can always be greedified to obtain a better policy:

where better means:

with equality only if both policies are optimal

q⇡(s, a) for all s, a

⇡0
(s) = argmax

a
q⇡(s, a)

q⇡0
(s, a) � q⇡(s, a) for all s, a

⇡

(is not unique)⇡0

The dance of policy and value (Policy Iteration)

Any policy evaluates to a unique value
function (soon we will see how to learn it)

which can be greedified to produce a
better policy

That in turn evaluates to a value function

which can in turn be greedified…

Each policy is strictly better than the
previous, until eventually both are optimal

There are no local optima

The dance converges in a finite number of
steps, usually very few

⇡1

q⇡1

⇡2
q⇡2

⇡3

⇡⇤

q⇡3

q⇤

⇡⇤

. . .

evaluate

greedify

evaluate

greedify

evaluate

eval

gre
ed

gree
dify

7

Policy Improvement

Suppose we have computed for a deterministic policy π.vπ

For a given state s,
would it be better to do an action ? a ≠ π (s)

And, we can compute qπ (s,a) from vπ by:

88 CHAPTER 4. DYNAMIC PROGRAMMING

termination.

Exercise 4.1 If ⇡ is the equiprobable random policy, what is q⇡(11, down)?
What is q⇡(7, down)?

Exercise 4.2 Suppose a new state 15 is added to the gridworld just below
state 13, and its actions, left, up, right, and down, take the agent to states
12, 13, 14, and 15, respectively. Assume that the transitions from the original
states are unchanged. What, then, is v⇡(15) for the equiprobable random
policy? Now suppose the dynamics of state 13 are also changed, such that
action down from state 13 takes the agent to the new state 15. What is v⇡(15)
for the equiprobable random policy in this case?

Exercise 4.3 What are the equations analogous to (4.3), (4.4), and (4.5) for
the action-value function q⇡ and its successive approximation by a sequence of
functions q0, q1, q2, . . . ?

Exercise 4.4 In some undiscounted episodic tasks there may be policies
for which eventual termination is not guaranteed. For example, in the grid
problem above it is possible to go back and forth between two states forever.
In a task that is otherwise perfectly sensible, v⇡(s) may be negative infinity
for some policies and states, in which case the algorithm for iterative policy
evaluation given in Figure 4.1 will not terminate. As a purely practical matter,
how might we amend this algorithm to assure termination even in this case?
Assume that eventual termination is guaranteed under the optimal policy.

4.2 Policy Improvement

Our reason for computing the value function for a policy is to help find better
policies. Suppose we have determined the value function v⇡ for an arbitrary
deterministic policy ⇡. For some state s we would like to know whether or not
we should change the policy to deterministically choose an action a 6= ⇡(s).
We know how good it is to follow the current policy from s—that is v⇡(s)—but
would it be better or worse to change to the new policy? One way to answer
this question is to consider selecting a in s and thereafter following the existing
policy, ⇡. The value of this way of behaving is

q⇡(s, a) = E⇡[Rt+1 + �v⇡(St+1) | St =s, At =a] (4.6)

=
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s0)

i
.

The key criterion is whether this is greater than or less than v⇡(s). If it is
greater—that is, if it is better to select a once in s and thereafter follow ⇡

7

Policy Improvement

Suppose we have computed for a deterministic policy π.vπ

For a given state s,
would it be better to do an action ? a ≠ π (s)

It is better to switch to action a for state s if and only if
 qπ (s,a) > vπ (s)

And, we can compute qπ (s,a) from vπ by:

88 CHAPTER 4. DYNAMIC PROGRAMMING

termination.

Exercise 4.1 If ⇡ is the equiprobable random policy, what is q⇡(11, down)?
What is q⇡(7, down)?

Exercise 4.2 Suppose a new state 15 is added to the gridworld just below
state 13, and its actions, left, up, right, and down, take the agent to states
12, 13, 14, and 15, respectively. Assume that the transitions from the original
states are unchanged. What, then, is v⇡(15) for the equiprobable random
policy? Now suppose the dynamics of state 13 are also changed, such that
action down from state 13 takes the agent to the new state 15. What is v⇡(15)
for the equiprobable random policy in this case?

Exercise 4.3 What are the equations analogous to (4.3), (4.4), and (4.5) for
the action-value function q⇡ and its successive approximation by a sequence of
functions q0, q1, q2, . . . ?

Exercise 4.4 In some undiscounted episodic tasks there may be policies
for which eventual termination is not guaranteed. For example, in the grid
problem above it is possible to go back and forth between two states forever.
In a task that is otherwise perfectly sensible, v⇡(s) may be negative infinity
for some policies and states, in which case the algorithm for iterative policy
evaluation given in Figure 4.1 will not terminate. As a purely practical matter,
how might we amend this algorithm to assure termination even in this case?
Assume that eventual termination is guaranteed under the optimal policy.

4.2 Policy Improvement

Our reason for computing the value function for a policy is to help find better
policies. Suppose we have determined the value function v⇡ for an arbitrary
deterministic policy ⇡. For some state s we would like to know whether or not
we should change the policy to deterministically choose an action a 6= ⇡(s).
We know how good it is to follow the current policy from s—that is v⇡(s)—but
would it be better or worse to change to the new policy? One way to answer
this question is to consider selecting a in s and thereafter following the existing
policy, ⇡. The value of this way of behaving is

q⇡(s, a) = E⇡[Rt+1 + �v⇡(St+1) | St =s, At =a] (4.6)

=
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s0)

i
.

The key criterion is whether this is greater than or less than v⇡(s). If it is
greater—that is, if it is better to select a once in s and thereafter follow ⇡

8

Policy Improvement Cont.

Do this for all states to get a new policy !π ≥ π that is
greedy with respect to vπ :

90 CHAPTER 4. DYNAMIC PROGRAMMING

other words, to consider the new greedy policy, ⇡0, given by

⇡0(s) = arg max
a

q⇡(s, a)

= arg max
a

E[Rt+1 + �v⇡(St+1) | St =s, At =a] (4.9)

= arg max
a

X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s0)

i
,

where arg maxa denotes the value of a at which the expression that follows is
maximized (with ties broken arbitrarily). The greedy policy takes the action
that looks best in the short term—after one step of lookahead—according to
v⇡. By construction, the greedy policy meets the conditions of the policy
improvement theorem (4.7), so we know that it is as good as, or better than,
the original policy. The process of making a new policy that improves on an
original policy, by making it greedy with respect to the value function of the
original policy, is called policy improvement.

Suppose the new greedy policy, ⇡0, is as good as, but not better than, the
old policy ⇡. Then v⇡ = v⇡0 , and from (4.9) it follows that for all s 2 S:

v⇡0(s) = max
a

E[Rt+1 + �v⇡0(St+1) | St =s, At =a]

= max
a

X

s0,r

p(s0, r|s, a)
h
r + �v⇡0(s0)

i
.

But this is the same as the Bellman optimality equation (4.1), and therefore,
v⇡0 must be v⇤, and both ⇡ and ⇡0 must be optimal policies. Policy improve-
ment thus must give us a strictly better policy except when the original policy
is already optimal.

So far in this section we have considered the special case of deterministic
policies. In the general case, a stochastic policy ⇡ specifies probabilities, ⇡(a|s),
for taking each action, a, in each state, s. We will not go through the details,
but in fact all the ideas of this section extend easily to stochastic policies. In
particular, the policy improvement theorem carries through as stated for the
stochastic case, under the natural definition:

q⇡(s, ⇡0(s)) =
X

a

⇡0(a|s)q⇡(s, a).

In addition, if there are ties in policy improvement steps such as (4.9)—that
is, if there are several actions at which the maximum is achieved—then in the
stochastic case we need not select a single action from among them. Instead,
each maximizing action can be given a portion of the probability of being

What if the policy is unchanged by this?
Then the policy must be optimal!

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 10

Policy Iteration

 policy evaluation policy improvement
“greedification”

4.3. POLICY ITERATION 91

selected in the new greedy policy. Any apportioning scheme is allowed as long
as all submaximal actions are given zero probability.

The last row of Figure 4.2 shows an example of policy improvement for
stochastic policies. Here the original policy, ⇡, is the equiprobable random
policy, and the new policy, ⇡0, is greedy with respect to v⇡. The value function
v⇡ is shown in the bottom-left diagram and the set of possible ⇡0 is shown in
the bottom-right diagram. The states with multiple arrows in the ⇡0 diagram
are those in which several actions achieve the maximum in (4.9); any appor-
tionment of probability among these actions is permitted. The value function
of any such policy, v⇡0(s), can be seen by inspection to be either �1, �2, or �3
at all states, s 2 S, whereas v⇡(s) is at most �14. Thus, v⇡0(s) � v⇡(s), for all
s 2 S, illustrating policy improvement. Although in this case the new policy
⇡0 happens to be optimal, in general only an improvement is guaranteed.

4.3 Policy Iteration

Once a policy, ⇡, has been improved using v⇡ to yield a better policy, ⇡0, we can
then compute v⇡0 and improve it again to yield an even better ⇡00. We can thus
obtain a sequence of monotonically improving policies and value functions:

⇡0
E�! v⇡0

I�! ⇡1
E�! v⇡1

I�! ⇡2
E�! · · · I�! ⇡⇤

E�! v⇤,

where
E�! denotes a policy evaluation and

I�! denotes a policy improvement .
Each policy is guaranteed to be a strict improvement over the previous one
(unless it is already optimal). Because a finite MDP has only a finite number
of policies, this process must converge to an optimal policy and optimal value
function in a finite number of iterations.

This way of finding an optimal policy is called policy iteration. A complete
algorithm is given in Figure 4.3. Note that each policy evaluation, itself an
iterative computation, is started with the value function for the previous policy.
This typically results in a great increase in the speed of convergence of policy
evaluation (presumably because the value function changes little from one
policy to the next).

Policy iteration often converges in surprisingly few iterations. This is illus-
trated by the example in Figure 4.2. The bottom-left diagram shows the value
function for the equiprobable random policy, and the bottom-right diagram
shows a greedy policy for this value function. The policy improvement theo-
rem assures us that these policies are better than the original random policy.
In this case, however, these policies are not just better, but optimal, proceed-
ing to the terminal states in the minimum number of steps. In this example,
policy iteration would find the optimal policy after just one iteration.

6

Iterative Policy Eval  
for the Small Gridworld

∞

❐ An undiscounted episodic task
❐ Nonterminal states: 1, 2, . . ., 14;
❐ One terminal state (shown twice as shaded squares)

❐ Actions that would take agent off the grid leave state unchanged
❐ Reward is –1 until the terminal state is reached

€

π = equiprobable random action choices

R

γ = 1

⇡0
(s)

.
= argmax

a

X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0
)

i

60 CHAPTER 4. DYNAMIC PROGRAMMING

4.1 Policy Evaluation (Prediction)

First we consider how to compute the state-value function v⇡ for an arbitrary policy ⇡. This is called
policy evaluation in the DP literature. We also refer to it as the prediction problem. Recall from Chapter
3 that, for all s 2 S,

v⇡(s)
.
= E⇡[Gt | St =s]

= E⇡[Rt+1 + �Gt+1 | St =s] (from (3.8))

= E⇡[Rt+1 + �v⇡(St+1) | St =s] (4.3)

=
X

a

⇡(a|s)
X

s0,r

p(s0, r |s, a)
h
r + �v⇡(s0)

i
, (4.4)

where ⇡(a|s) is the probability of taking action a in state s under policy ⇡, and the expectations are
subscripted by ⇡ to indicate that they are conditional on ⇡ being followed. The existence and uniqueness
of v⇡ are guaranteed as long as either � < 1 or eventual termination is guaranteed from all states under
the policy ⇡.

If the environment’s dynamics are completely known, then (4.4) is a system of |S| simultaneous linear
equations in |S| unknowns (the v⇡(s), s 2 S). In principle, its solution is a straightforward, if tedious,
computation. For our purposes, iterative solution methods are most suitable. Consider a sequence
of approximate value functions v0, v1, v2, . . ., each mapping S+ to R (the real numbers). The initial
approximation, v0, is chosen arbitrarily (except that the terminal state, if any, must be given value 0),
and each successive approximation is obtained by using the Bellman equation for v⇡ (4.4) as an update
rule:

vk+1(s)
.
= E⇡[Rt+1 + �vk(St+1) | St =s]

=
X

a

⇡(a|s)
X

s0,r

p(s0, r |s, a)
h
r + �vk(s0)

i
, (4.5)

for all s 2 S. Clearly, vk = v⇡ is a fixed point for this update rule because the Bellman equation for v⇡

assures us of equality in this case. Indeed, the sequence {vk} can be shown in general to converge to
v⇡ as k ! 1 under the same conditions that guarantee the existence of v⇡. This algorithm is called
iterative policy evaluation.

To produce each successive approximation, vk+1 from vk, iterative policy evaluation applies the same
operation to each state s: it replaces the old value of s with a new value obtained from the old values of
the successor states of s, and the expected immediate rewards, along all the one-step transitions possible
under the policy being evaluated. We call this kind of operation an expected update. Each iteration of
iterative policy evaluation updates the value of every state once to produce the new approximate value
function vk+1. There are several di↵erent kinds of expected updates, depending on whether a state (as
here) or a state–action pair is being updated, and depending on the precise way the estimated values of
the successor states are combined. All the updates done in DP algorithms are called expected updates
because they are based on an expectation over all possible next states rather than on a sample next
state. The nature of a update can be expressed in an equation, as above, or in an update diagram like
those introduced in Chapter 3. For example, the update diagram corresponding to the expected update
used in iterative policy evaluation is shown on page 47.

To write a sequential computer program to implement iterative policy evaluation as given by (4.5)
you would have to use two arrays, one for the old values, vk(s), and one for the new values, vk+1(s).
With two arrays, the new values can be computed one by one from the old values without the old values
being changed. Of course it is easier to use one array and update the values “in place,” that is, with
each new value immediately overwriting the old one. Then, depending on the order in which the states
are updated, sometimes new values are used instead of old ones on the right-hand side of (4.5). This

11

Policy Iteration – One array version (+ policy)

92 CHAPTER 4. DYNAMIC PROGRAMMING

1. Initialization
V (s) 2 R and ⇡(s) 2 A(s) arbitrarily for all s 2 S

2. Policy Evaluation
Repeat

� 0
For each s 2 S:

v V (s)
V (s)

P
s0,r p(s0, r|s, ⇡(s))

⇥
r + �V (s0)

⇤

� max(�, |v � V (s)|)
until � < ✓ (a small positive number)

3. Policy Improvement
policy-stable true
For each s 2 S:

a ⇡(s)
⇡(s) arg maxa

P
s0,r p(s0, r|s, a)

⇥
r + �V (s0)

⇤

If a 6= ⇡(s), then policy-stable false
If policy-stable, then stop and return V and ⇡; else go to 2

Figure 4.3: Policy iteration (using iterative policy evaluation) for v⇤. This
algorithm has a subtle bug, in that it may never terminate if the policy con-
tinually switches between two or more policies that are equally good. The bug
can be fixed by adding additional flags, but it makes the pseudocode so ugly
that it is not worth it. :-)

15

Value Iteration

Recall the full policy-evaluation backup:

Here is the full value-iteration backup:

v0 ! v1 ! · · · ! vk ! vk+1 ! · · · ! v⇡

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0
)

i

vk+1(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �vk(s

0
)

i
8s 2 S

v⇡(s) = E⇡[Gt | St = s] = E⇡

" 1X

k=0

�kRt+k+1

����� St = s

#

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=

X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0
)

i
, (2)

v⇤(s) = max

a
q⇡⇤(s, a)

= max

a
E[Rt+1 + �v⇤(St+1) | St=s,At=a] (3)

= max

a

X

s0,r

p(s0, r|s, a)
⇥
r + �v⇤(s

0
)

⇤
. (4)

i

v0 ! v1 ! · · · ! vk ! vk+1 ! · · · ! v⇡

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0
)

i

vk+1(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �vk(s

0
)

i
8s 2 S

vk+1(s) = max

a

X

s0,r

p(s0, r|s, a)
h
r + �vk(s

0
)

i
8s 2 S

v⇡(s) = E⇡[Gt | St = s] = E⇡

" 1X

k=0

�kRt+k+1

����� St = s

#

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=

X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0
)

i
, (2)

v⇤(s) = max

a
q⇡⇤(s, a)

= max

a
E[Rt+1 + �v⇤(St+1) | St=s,At=a] (3)

= max

a

X

s0,r

p(s0, r|s, a)
⇥
r + �v⇤(s

0
)

⇤
. (4)

i

16

Value Iteration – One array version
96 CHAPTER 4. DYNAMIC PROGRAMMING

Initialize array V arbitrarily (e.g., V (s) = 0 for all s 2 S+)

Repeat
� 0
For each s 2 S:

v V (s)
V (s) maxa

P
s0,r p(s0, r|s, a)

⇥
r + �V (s0)

⇤

� max(�, |v � V (s)|)
until � < ✓ (a small positive number)

Output a deterministic policy, ⇡, such that
⇡(s) = arg maxa

P
s0,r p(s0, r|s, a)

⇥
r + �V (s0)

⇤

Figure 4.5: Value iteration.

by only a small amount in a sweep. Figure 4.5 gives a complete value iteration
algorithm with this kind of termination condition.

Value iteration e↵ectively combines, in each of its sweeps, one sweep of
policy evaluation and one sweep of policy improvement. Faster convergence is
often achieved by interposing multiple policy evaluation sweeps between each
policy improvement sweep. In general, the entire class of truncated policy
iteration algorithms can be thought of as sequences of sweeps, some of which
use policy evaluation backups and some of which use value iteration backups.
Since the max operation in (4.10) is the only di↵erence between these backups,
this just means that the max operation is added to some sweeps of policy
evaluation. All of these algorithms converge to an optimal policy for discounted
finite MDPs.

Example 4.3: Gambler’s Problem A gambler has the opportunity to
make bets on the outcomes of a sequence of coin flips. If the coin comes up
heads, he wins as many dollars as he has staked on that flip; if it is tails, he
loses his stake. The game ends when the gambler wins by reaching his goal
of $100, or loses by running out of money. On each flip, the gambler must
decide what portion of his capital to stake, in integer numbers of dollars. This
problem can be formulated as an undiscounted, episodic, finite MDP. The
state is the gambler’s capital, s 2 {1, 2, . . . , 99} and the actions are stakes,
a 2 {0, 1, . . . , min(s, 100 � s)}. The reward is zero on all transitions except
those on which the gambler reaches his goal, when it is +1. The state-value
function then gives the probability of winning from each state. A policy is a
mapping from levels of capital to stakes. The optimal policy maximizes the
probability of reaching the goal. Let ph denote the probability of the coin

17

Gambler’s Problem

❐ Gambler can repeatedly bet $ on a coin flip
❐ Heads he wins his stake, tails he loses it
❐ Initial capital ∈ {$1, $2, … $99}
❐ Gambler wins if his capital becomes $100  

loses if it becomes $0
❐ Coin is unfair

! Heads (gambler wins) with probability p = .4

❐ States, Actions, Rewards? Discounting?

19

Gambler’s Problem Solution

22

Generalized Policy Iteration

Generalized Policy Iteration (GPI):
any interaction of policy evaluation and policy improvement,
independent of their granularity.

A geometric metaphor for
convergence of GPI:

evaluation

improvement

⇡ greedy(V)

V⇡

V v⇡

v⇤⇡⇤

v⇤,⇡⇤

V0,⇡0

V = v⇡

⇡ = greed
y(V)

21

Asynchronous DP

❐ All the DP methods described so far require exhaustive
sweeps of the entire state set.

❐ Asynchronous DP does not use sweeps. Instead it works like
this:
! Repeat until convergence criterion is met:

– Pick a state at random and apply the appropriate
backup

❐ Still need lots of computation, but does not get locked into
hopelessly long sweeps

❐ Can you select states to backup intelligently? YES: an agent’s
experience can act as a guide.

23

Efficiency of DP

❐ To find an optimal policy is polynomial in the number of
states…

❐ BUT, the number of states is often astronomical, e.g., often
growing exponentially with the number of state variables
(what Bellman called “the curse of dimensionality”).

❐ In practice, classical DP can be applied to problems with a
few millions of states.

❐ Asynchronous DP can be applied to larger problems, and is
appropriate for parallel computation.

❐ It is surprisingly easy to come up with MDPs for which DP
methods are not practical.

24

Summary

❐ Policy evaluation: backups without a max (prediction)
❐ Policy improvement: form a greedy policy, if only locally
❐ Policy iteration: alternate the above two processes (control)
❐ Value iteration: backups with a max (control)

❐ Full backups (to be contrasted later with sample backups)
❐ Generalized Policy Iteration (GPI)
❐ Asynchronous DP: a way to avoid exhaustive sweeps
❐ Bootstrapping: updating estimates based on other

estimates
❐ Biggest limitation of DP is that it requires a probability

model (as opposed to a generative or simulation model)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Chapter 6: Temporal Difference Learning

Introduce Temporal Difference (TD) learning
Focus first on policy evaluation, or prediction, methods
Then extend to control methods

Objectives of this chapter:

TD methods bootstrap and
sample

‣ Bootstrapping: update involves an estimate of the
value function

• TD and DP methods bootstrap
‣ Sampling: update does not involve an expected value

• TD methods sample
• Classical DP does not sample

A⇤
t
.
= argmax

a
Qt(a)

The Exploration/Exploitation Dilemma
• Suppose you form estimates

• Define the greedy action at time t as

• If then you are exploiting 
If then you are exploring

• You can’t do both, but you need to do both

• You can never stop exploring, but maybe you should explore
less with time. Or maybe not.

Qt(a) ⇡ q⇤(a), 8a action-value estimates

At = A⇤
t

At 6= A⇤
t

ε-Greedy Action Selection

• In greedy action selection, you always exploit

• In 𝜀-greedy, you are usually greedy, but with probability 𝜀 you
instead pick an action at random (possibly the greedy action
again)

• This is perhaps the simplest way to balance exploration and
exploitation

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

TD Prediction

Policy Evaluation (the prediction problem):
 for a given policy π, compute the state-value function vπ

target: an estimate of the return

Chapter 6

Temporal-Di↵erence Learning

If one had to identify one idea as central and novel to reinforcement learning, it would
undoubtedly be temporal-di↵erence (TD) learning. TD learning is a combination
of Monte Carlo ideas and dynamic programming (DP) ideas. Like Monte Carlo
methods, TD methods can learn directly from raw experience without a model of
the environment’s dynamics. Like DP, TD methods update estimates based in part
on other learned estimates, without waiting for a final outcome (they bootstrap).
The relationship between TD, DP, and Monte Carlo methods is a recurring theme in
the theory of reinforcement learning. This chapter is the beginning of our exploration
of it. Before we are done, we will see that these ideas and methods blend into each
other and can be combined in many ways. In particular, in Chapter 7 we introduce
the TD(�) algorithm, which seamlessly integrates TD and Monte Carlo methods.

As usual, we start by focusing on the policy evaluation or prediction problem, that
of estimating the value function v⇡ for a given policy ⇡. For the control problem
(finding an optimal policy), DP, TD, and Monte Carlo methods all use some variation
of generalized policy iteration (GPI). The di↵erences in the methods are primarily
di↵erences in their approaches to the prediction problem.

6.1 TD Prediction

Both TD and Monte Carlo methods use experience to solve the prediction problem.
Given some experience following a policy ⇡, both methods update their estimate v
of v⇡ for the nonterminal states St occurring in that experience. Roughly speaking,
Monte Carlo methods wait until the return following the visit is known, then use
that return as a target for V (St). A simple every-visit Monte Carlo method suitable
for nonstationary environments is

(6.1)

where Gt is the actual return following time t, and ↵ is a constant step-size parameter
(c.f., Equation 2.4). Let us call this method constant-↵ MC. Whereas Monte Carlo
methods must wait until the end of the episode to determine the increment to V (St)

127

The simplest temporal-difference method TD(0):

128 CHAPTER 6. TEMPORAL-DIFFERENCE LEARNING

(only then is Gt known), TD methods need wait only until the next time step. At
time t + 1 they immediately form a target and make a useful update using the
observed reward Rt+1 and the estimate V (St+1). The simplest TD method, known
as TD(0), is

V (St) V (St) + ↵
h
Rt+1 + �V (St+1)� V (St)

i
. (6.2)

In e↵ect, the target for the Monte Carlo update is Gt, whereas the target for the TD
update is Rt+1 + �V (St+1).

Because the TD method bases its update in part on an existing estimate, we say
that it is a bootstrapping method, like DP. We know from Chapter 3 that

v⇡(s)
.
= E⇡[Gt | St =s] (6.3)

= E⇡

" 1X

k=0

�kRt+k+1

����� St =s

#

= E⇡

"
Rt+1 + �

1X

k=0

�kRt+k+2

����� St =s

#

= E⇡[Rt+1 + �v⇡(St+1) | St =s] . (6.4)

Roughly speaking, Monte Carlo methods use an estimate of (6.3) as a target, whereas
DP methods use an estimate of (6.4) as a target. The Monte Carlo target is an
estimate because the expected value in (6.3) is not known; a sample return is used
in place of the real expected return. The DP target is an estimate not because of
the expected values, which are assumed to be completely provided by a model of the
environment, but because v⇡(St+1) is not known and the current estimate, V (St+1),
is used instead. The TD target is an estimate for both reasons: it samples the
expected values in (6.4) and it uses the current estimate V instead of the true v⇡.
Thus, TD methods combine the sampling of Monte Carlo with the bootstrapping of
DP. As we shall see, with care and imagination this can take us a long way toward
obtaining the advantages of both Monte Carlo and DP methods.

Figure 6.1 specifies TD(0) completely in procedural form.

Input: the policy ⇡ to be evaluated
Initialize V (s) arbitrarily (e.g., V (s) = 0, 8s 2 S+)
Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

A action given by ⇡ for S
Take action A; observe reward, R, and next state, S0

V (S) V (S) + ↵
⇥
R + �V (S0)� V (S)

⇤

S S0

until S is terminal

Figure 6.1: Tabular TD(0) for estimating v⇡.

=

TD target for prediction

‣ The TD target:
• it is an estimate like MC target because it samples

the expected value
• it is an estimate like the DP target because it uses

the current estimate of V instead of

Rt+1 + �v⇡(St+1)

v⇡

98 CHAPTER 6. TEMPORAL-DIFFERENCE LEARNING

one-step TD, because it is a special case of the TD(�) and n-step TD methods developed in Chapter 12
and Chapter 7. The box below specifies TD(0) completely in procedural form.

Tabular TD(0) for estimating v⇡

Input: the policy ⇡ to be evaluated
Initialize V (s) arbitrarily (e.g., V (s) = 0, for all s 2 S+)
Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

A action given by ⇡ for S
Take action A, observe R, S0

V (S) V (S) + ↵
⇥
R + �V (S0)� V (S)

⇤

S S0

until S is terminal

Because the TD(0) bases its update in part on an existing estimate, we say that it is a bootstrapping
method, like DP. We know from Chapter 3 that

v⇡(s)
.
= E⇡[Gt | St =s] (6.3)

= E⇡[Rt+1 + �Gt+1 | St =s] (from (3.8))

= E⇡[Rt+1 + �v⇡(St+1) | St =s] . (6.4)

Roughly speaking, Monte Carlo methods use an estimate of (6.3) as a target, whereas DP methods use
an estimate of (6.4) as a target. The Monte Carlo target is an estimate because the expected value
in (6.3) is not known; a sample return is used in place of the real expected return. The DP target
is an estimate not because of the expected values, which are assumed to be completely provided by a
model of the environment, but because v⇡(St+1) is not known and the current estimate, V (St+1), is
used instead. The TD target is an estimate for both reasons: it samples the expected values in (6.4)
and it uses the current estimate V instead of the true v⇡. Thus, TD methods combine the sampling of
Monte Carlo with the bootstrapping of DP. As we shall see, with care and imagination this can take us
a long way toward obtaining the advantages of both Monte Carlo and DP methods.

TD(0)

The diagram to the right is the update diagram for tabular TD(0). The value estimate
for the state node at the top of the update diagram is updated on the basis of the one
sample transition from it to the immediately following state. We refer to TD and Monte
Carlo updates as sample updates because they involve looking ahead to a sample successor
state (or state–action pair), using the value of the successor and the reward along the way
to compute a backed-up value, and then updating the value of the original state (or state–
action pair) accordingly. Sample updates di↵er from the expected updates of DP methods
in that they are based on a single sample successor rather than on a complete distribution
of all possible successors.

Finally, note that the quantity in brackets in the TD(0) update is a sort of error, measuring the
di↵erence between the estimated value of St and the better estimate Rt+1 + �V (St+1). This quantity,
called the TD error, arises in various forms throughout reinforcement learning:

�t
.
= Rt+1 + �V (St+1) V (St). (6.5)

Notice that the TD error at each time is the error in the estimate made at that time. Because the TD
error depends on the next state and next reward, it is not actually available until one time step later.
That is, �t is the error in V (St), available at time t + 1. Also note that if the array V does not change
during the episode (as it does not in Monte Carlo methods), then the Monte Carlo error can be written

Agent program
Environment program
Experiment program

Dynamic programing

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 2

cf. Dynamic Programming

T

T T TT

TT

T

TT

T

T

T

V (St)← Eπ Rt+1 + γV (St+1)[]
St

=
X

a

⇡(a|St)
X

s0,r

p(s0, r|St, a)[r + �V (s0)]

r
a

s0

Simplest TD method

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 4

Simplest TD Method

T T T TT

T T T T TTTTTT

T T T T T

V (St)←V (St)+α Rt+1 + γV (St+1)−V (St)[]
St

Rt+1St+1

Example: Driving Home

‣ Consider driving home:
• each day you drive home
• your goal is to try and predict how long it will take

at particular stages
• when you leave office you note the time, day, &

other relevant info
‣ Consider the policy evaluation or prediction task

Driving Home

6.1. TD PREDICTION 127

TD(0)

The diagram to the right is the backup diagram for tabular TD(0). The
value estimate for the state node at the top of the backup diagram is up-
dated on the basis of the one sample transition from it to the immediately
following state. We refer to TD and Monte Carlo updates as sample back-
ups because they involve looking ahead to a sample successor state (or
state–action pair), using the value of the successor and the reward along
the way to compute a backed-up value, and then changing the value of the
original state (or state–action pair) accordingly. Sample backups di↵er from the full
backups of DP methods in that they are based on a single sample successor rather
than on a complete distribution of all possible successors.

Example 6.1: Driving Home Each day as you drive home from work, you try to
predict how long it will take to get home. When you leave your o�ce, you note the
time, the day of week, and anything else that might be relevant. Say on this Friday
you are leaving at exactly 6 o’clock, and you estimate that it will take 30 minutes
to get home. As you reach your car it is 6:05, and you notice it is starting to rain.
Tra�c is often slower in the rain, so you reestimate that it will take 35 minutes from
then, or a total of 40 minutes. Fifteen minutes later you have completed the highway
portion of your journey in good time. As you exit onto a secondary road you cut
your estimate of total travel time to 35 minutes. Unfortunately, at this point you get
stuck behind a slow truck, and the road is too narrow to pass. You end up having
to follow the truck until you turn onto the side street where you live at 6:40. Three
minutes later you are home. The sequence of states, times, and predictions is thus
as follows:

Elapsed Time Predicted Predicted
State (minutes) Time to Go Total Time
leaving o�ce, friday at 6 0 30 30
reach car, raining 5 35 40
exiting highway 20 15 35
2ndary road, behind truck 30 10 40
entering home street 40 3 43
arrive home 43 0 43

The rewards in this example are the elapsed times on each leg of the journey.1 We
are not discounting (� = 1), and thus the return for each state is the actual time to
go from that state. The value of each state is the expected time to go. The second
column of numbers gives the current estimated value for each state encountered.

A simple way to view the operation of Monte Carlo methods is to plot the predicted
total time (the last column) over the sequence, as in Figure 6.2 (left). The arrows
show the changes in predictions recommended by the constant-↵ MC method (6.1),
for ↵ = 1. These are exactly the errors between the estimated value (predicted time
to go) in each state and the actual return (actual time to go). For example, when
you exited the highway you thought it would take only 15 minutes more to get home,

1
If this were a control problem with the objective of minimizing travel time, then we would of

course make the rewards the negative of the elapsed time. But since we are concerned here only

with prediction (policy evaluation), we can keep things simple by using positive numbers.

Driving home as an RL
problem

‣ Rewards = 1 per step (if we were minimizing travel
time what would reward be?)

‣ γ = 1
‣ Gt = time to go from state St

‣ V(St) = expected time to get home from St

Updating our predictions

‣ Goal: update the prediction of total time leaving from
office, while driving home

Driving home

‣ Task: update the value function as we go, based on
observed elapsed time—Reward column

6.1. TD PREDICTION 127

TD(0)

The diagram to the right is the backup diagram for tabular TD(0). The
value estimate for the state node at the top of the backup diagram is up-
dated on the basis of the one sample transition from it to the immediately
following state. We refer to TD and Monte Carlo updates as sample back-
ups because they involve looking ahead to a sample successor state (or
state–action pair), using the value of the successor and the reward along
the way to compute a backed-up value, and then changing the value of the
original state (or state–action pair) accordingly. Sample backups di↵er from the full
backups of DP methods in that they are based on a single sample successor rather
than on a complete distribution of all possible successors.

Example 6.1: Driving Home Each day as you drive home from work, you try to
predict how long it will take to get home. When you leave your o�ce, you note the
time, the day of week, and anything else that might be relevant. Say on this Friday
you are leaving at exactly 6 o’clock, and you estimate that it will take 30 minutes
to get home. As you reach your car it is 6:05, and you notice it is starting to rain.
Tra�c is often slower in the rain, so you reestimate that it will take 35 minutes from
then, or a total of 40 minutes. Fifteen minutes later you have completed the highway
portion of your journey in good time. As you exit onto a secondary road you cut
your estimate of total travel time to 35 minutes. Unfortunately, at this point you get
stuck behind a slow truck, and the road is too narrow to pass. You end up having
to follow the truck until you turn onto the side street where you live at 6:40. Three
minutes later you are home. The sequence of states, times, and predictions is thus
as follows:

Elapsed Time Predicted Predicted
State (minutes) Time to Go Total Time
leaving o�ce, friday at 6 0 30 30
reach car, raining 5 35 40
exiting highway 20 15 35
2ndary road, behind truck 30 10 40
entering home street 40 3 43
arrive home 43 0 43

The rewards in this example are the elapsed times on each leg of the journey.1 We
are not discounting (� = 1), and thus the return for each state is the actual time to
go from that state. The value of each state is the expected time to go. The second
column of numbers gives the current estimated value for each state encountered.

A simple way to view the operation of Monte Carlo methods is to plot the predicted
total time (the last column) over the sequence, as in Figure 6.2 (left). The arrows
show the changes in predictions recommended by the constant-↵ MC method (6.1),
for ↵ = 1. These are exactly the errors between the estimated value (predicted time
to go) in each state and the actual return (actual time to go). For example, when
you exited the highway you thought it would take only 15 minutes more to get home,

1
If this were a control problem with the objective of minimizing travel time, then we would of

course make the rewards the negative of the elapsed time. But since we are concerned here only

with prediction (policy evaluation), we can keep things simple by using positive numbers.

V(s)

R
5

15
10
10
3

V(office)

Driving home

‣ update V(office) with ! = 1?
• V(s) = V(s) + ![Rt+1 + "V(s’) - V(s)]
• V(office) = V(office) + ![Rt+1 + "V(car) - V(office)]
• new V(office) = 40; # = +10

‣ update V(car)?
• V(car) = 30; # = -5

‣ update V(exit)?
• V(exit) = 20; # = +5

6.1. TD PREDICTION 127

TD(0)

The diagram to the right is the backup diagram for tabular TD(0). The
value estimate for the state node at the top of the backup diagram is up-
dated on the basis of the one sample transition from it to the immediately
following state. We refer to TD and Monte Carlo updates as sample back-
ups because they involve looking ahead to a sample successor state (or
state–action pair), using the value of the successor and the reward along
the way to compute a backed-up value, and then changing the value of the
original state (or state–action pair) accordingly. Sample backups di↵er from the full
backups of DP methods in that they are based on a single sample successor rather
than on a complete distribution of all possible successors.

Example 6.1: Driving Home Each day as you drive home from work, you try to
predict how long it will take to get home. When you leave your o�ce, you note the
time, the day of week, and anything else that might be relevant. Say on this Friday
you are leaving at exactly 6 o’clock, and you estimate that it will take 30 minutes
to get home. As you reach your car it is 6:05, and you notice it is starting to rain.
Tra�c is often slower in the rain, so you reestimate that it will take 35 minutes from
then, or a total of 40 minutes. Fifteen minutes later you have completed the highway
portion of your journey in good time. As you exit onto a secondary road you cut
your estimate of total travel time to 35 minutes. Unfortunately, at this point you get
stuck behind a slow truck, and the road is too narrow to pass. You end up having
to follow the truck until you turn onto the side street where you live at 6:40. Three
minutes later you are home. The sequence of states, times, and predictions is thus
as follows:

Elapsed Time Predicted Predicted
State (minutes) Time to Go Total Time
leaving o�ce, friday at 6 0 30 30
reach car, raining 5 35 40
exiting highway 20 15 35
2ndary road, behind truck 30 10 40
entering home street 40 3 43
arrive home 43 0 43

The rewards in this example are the elapsed times on each leg of the journey.1 We
are not discounting (� = 1), and thus the return for each state is the actual time to
go from that state. The value of each state is the expected time to go. The second
column of numbers gives the current estimated value for each state encountered.

A simple way to view the operation of Monte Carlo methods is to plot the predicted
total time (the last column) over the sequence, as in Figure 6.2 (left). The arrows
show the changes in predictions recommended by the constant-↵ MC method (6.1),
for ↵ = 1. These are exactly the errors between the estimated value (predicted time
to go) in each state and the actual return (actual time to go). For example, when
you exited the highway you thought it would take only 15 minutes more to get home,

1
If this were a control problem with the objective of minimizing travel time, then we would of

course make the rewards the negative of the elapsed time. But since we are concerned here only

with prediction (policy evaluation), we can keep things simple by using positive numbers.

V(s)
R

5
15
10
10
3

V(office)

Changes recommended by TD
methods (! = 1)128 CHAPTER 6. TEMPORAL-DIFFERENCE LEARNING

road

30

35

40

45

Predicted
total

travel
time

leaving

office
exiting

highway

2ndary home arrive

Situation

actual outcome

reach
car street home

actual
outcome

Situation

30

35

40

45

Predicted
total
travel
time

road
leaving

office
exiting

highway

2ndary home arrivereach
car street home

Figure 6.2: Changes recommended in the driving home example by Monte Carlo methods
(left) and TD methods (right).

but in fact it took 23 minutes. Equation 6.1 applies at this point and determines
an increment in the estimate of time to go after exiting the highway. The error,
Gt �V (St), at this time is eight minutes. Suppose the step-size parameter, ↵, is 1/2.
Then the predicted time to go after exiting the highway would be revised upward by
four minutes as a result of this experience. This is probably too large a change in
this case; the truck was probably just an unlucky break. In any event, the change
can only be made o↵-line, that is, after you have reached home. Only at this point
do you know any of the actual returns.

Is it necessary to wait until the final outcome is known before learning can begin?
Suppose on another day you again estimate when leaving your o�ce that it will
take 30 minutes to drive home, but then you become stuck in a massive tra�c jam.
Twenty-five minutes after leaving the o�ce you are still bumper-to-bumper on the
highway. You now estimate that it will take another 25 minutes to get home, for
a total of 50 minutes. As you wait in tra�c, you already know that your initial
estimate of 30 minutes was too optimistic. Must you wait until you get home before
increasing your estimate for the initial state? According to the Monte Carlo approach
you must, because you don’t yet know the true return.

According to a TD approach, on the other hand, you would learn immediately,
shifting your initial estimate from 30 minutes toward 50. In fact, each estimate would
be shifted toward the estimate that immediately follows it. Returning to our first
day of driving, Figure 6.2 (right) shows the changes in the predictions recommended
by the TD rule (6.2) (these are the changes made by the rule if ↵ = 1). Each error
is proportional to the change over time of the prediction, that is, to the temporal
di↵erences in predictions.

Besides giving you something to do while waiting in tra�c, there are several com-
putational reasons why it is advantageous to learn based on your current predictions
rather than waiting until termination when you know the actual return. We briefly
discuss some of these next.

128 CHAPTER 6. TEMPORAL-DIFFERENCE LEARNING

road

30

35

40

45

Predicted
total

travel
time

leaving

office
exiting

highway

2ndary home arrive

Situation

actual outcome

reach
car street home

actual
outcome

Situation

30

35

40

45

Predicted
total
travel
time

road
leaving

office
exiting

highway

2ndary home arrivereach
car street home

Figure 6.2: Changes recommended in the driving home example by Monte Carlo methods
(left) and TD methods (right).

but in fact it took 23 minutes. Equation 6.1 applies at this point and determines
an increment in the estimate of time to go after exiting the highway. The error,
Gt �V (St), at this time is eight minutes. Suppose the step-size parameter, ↵, is 1/2.
Then the predicted time to go after exiting the highway would be revised upward by
four minutes as a result of this experience. This is probably too large a change in
this case; the truck was probably just an unlucky break. In any event, the change
can only be made o↵-line, that is, after you have reached home. Only at this point
do you know any of the actual returns.

Is it necessary to wait until the final outcome is known before learning can begin?
Suppose on another day you again estimate when leaving your o�ce that it will
take 30 minutes to drive home, but then you become stuck in a massive tra�c jam.
Twenty-five minutes after leaving the o�ce you are still bumper-to-bumper on the
highway. You now estimate that it will take another 25 minutes to get home, for
a total of 50 minutes. As you wait in tra�c, you already know that your initial
estimate of 30 minutes was too optimistic. Must you wait until you get home before
increasing your estimate for the initial state? According to the Monte Carlo approach
you must, because you don’t yet know the true return.

According to a TD approach, on the other hand, you would learn immediately,
shifting your initial estimate from 30 minutes toward 50. In fact, each estimate would
be shifted toward the estimate that immediately follows it. Returning to our first
day of driving, Figure 6.2 (right) shows the changes in the predictions recommended
by the TD rule (6.2) (these are the changes made by the rule if ↵ = 1). Each error
is proportional to the change over time of the prediction, that is, to the temporal
di↵erences in predictions.

Besides giving you something to do while waiting in tra�c, there are several com-
putational reasons why it is advantageous to learn based on your current predictions
rather than waiting until termination when you know the actual return. We briefly
discuss some of these next.

V(office)

Advantages of TD learning
‣ TD methods do not require a model of the environment,

only experience
‣ TD methods can be fully incremental

‣ Make updates before knowing the final outcome
‣ Requires less memory
‣ Requires less peak computation

‣ You can learn without the final outcome, from incomplete
sequences

Optimality of TD(0)
‣ TD(0) achieves a special type of optimality

• This is correct for the maximum likelihood estimate of the
Markov model generating the data

• i.e., if we do a best fit Markov model, and assume it is
exactly correct, and then compute the predictions

• This is called the certainty-equivalence estimate

Advantages of TD

‣ If the process is Markov, then we expect the TD
estimate to produce lower error on future data

‣ This helps explain why TD methods converge more
quickly than MC in the batch setting

‣ TD(0) makes progress towards the certainty-
equivalence estimate without explicitly building the
model!

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Summary so far

Introduced one-step tabular model-free TD methods
These methods bootstrap and sample, combining aspects of DP
and MC methods
TD methods are computationally congenial
If the world is truly Markov, then TD methods will learn faster
than MC methods

width
of update

depth
(length)

of update

Temporal-
difference

learning

Dynamic
programming

Monte
Carlo

...

Exhaustive
search

29

Unified View

Multi-step
bootstrapping

Off-policy methods

❐ Learn the value of the target policy π from experience due
to behavior policy b

❐ For example, π is the greedy policy (and ultimately the
optimal policy) while " is exploratory (e.g., #-soft)

❐ In general, we only require coverage, i.e., that b generates
behavior that covers, or includes, π

❐ Idea: importance sampling
– Weight each return by the ratio of the probabilities

of the trajectory under the two policies

17

110 CHAPTER 5. MONTE CARLO METHODS

that ⇡(a|s) > 0 implies µ(a|s) > 0. This is called the assumption of coverage. It
follows from coverage that µ must be stochastic in states where it is not identical
to ⇡. The target policy ⇡, on the other hand, may be deterministic, and, in fact,
this is a case of particular interest in control problems. In control, the target policy
is typically the deterministic greedy policy with respect to the current action-value
function estimate. This policy becomes a deterministic optimal policy while the
behavior policy remains stochastic and more exploratory, for example, an "-greedy
policy. In this section, however, we consider the prediction problem, in which ⇡ is
unchanging and given.

Almost all o↵-policy methods utilize importance sampling, a general technique for
estimating expected values under one distribution given samples from another. We
apply importance sampling to o↵-policy learning by weighting returns according to
the relative probability of their trajectories occurring under the target and behavior
policies, called the importance-sampling ratio. Given a starting state St, the prob-
ability of the subsequent state–action trajectory, At, St+1, At+1, . . . , ST , occurring
under any policy ⇡ is

T�1Y

k=t

⇡(Ak|Sk)p(Sk+1|Sk, Ak),

where p here is the state-transition probability function defined by (3.8). Thus,
the relative probability of the trajectory under the target and behavior policies (the
importance-sampling ratio) is

⇢T
t

.
=

QT�1
k=t ⇡(Ak|Sk)p(Sk+1|Sk, Ak)QT�1
k=t µ(Ak|Sk)p(Sk+1|Sk, Ak)

=
T�1Y

k=t

⇡(Ak|Sk)

µ(Ak|Sk)
. (5.3)

Note that although the trajectory probabilities depend on the MDP’s transition
probabilities, which are generally unknown, all the transition probabilities cancel.
The importance sampling ratio ends up depending only on the two policies and not
at all on the MDP.

Now we are ready to give a Monte Carlo algorithm that uses a batch of observed
episodes following policy µ to estimate v⇡(s). It is convenient here to number time
steps in a way that increases across episode boundaries. That is, if the first episode
of the batch ends in a terminal state at time 100, then the next episode begins at
time t = 101. This enables us to use time-step numbers to refer to particular steps in
particular episodes. In particular, we can define the set of all time steps in which state
s is visited, denoted T(s). This is for an every-visit method; for a first-visit method,
T(s) would only include time steps that were first visits to s within their episodes.
Also, let T (t) denote the first time of termination following time t, and Gt denote the
return after t up through T (t). Then {Gt}t2T(s) are the returns that pertain to state

s, and {⇢T (t)
t }t2T(s) are the corresponding importance-sampling ratios. To estimate

v⇡(s), we simply scale the returns by the ratios and average the results:

V (s)
.
=

P
t2T(s) ⇢T (t)

t Gt

|T(s)| . (5.4)

for every s,a at which b(a|s) > 0

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 30

Learning An Action-Value Function

Estimate qπ for the current policy π

St,At

Rt+1St St+1, At+1

Rt+2St+1
Rt+3St+2 St+3.

St+2, At+2 St+3, At+3

After every transition from a nonterminal state, St , do this:
Q(St ,At)←Q(St ,At)+α Rt+1 + γQ(St+1,At+1)−Q(St ,At)[]
If St+1 is terminal, then define Q(St+1,At+1) = 0

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 31

Sarsa: On-Policy TD Control

Turn this into a control method by always updating the
policy to be greedy with respect to the current estimate: 142 CHAPTER 6. TEMPORAL-DIFFERENCE LEARNING

Initialize Q(s, a), 8s 2 S, a 2 A(s), arbitrarily, and Q(terminal-state, ·) = 0

Repeat (for each episode):

Initialize S
Choose A from S using policy derived from Q (e.g., "-greedy)
Repeat (for each step of episode):

Take action A, observe R, S0

Choose A0
from S0

using policy derived from Q (e.g., "-greedy)
Q(S,A) Q(S,A) + ↵[R+ �Q(S0, A0

)�Q(S,A)]
S S0

; A A0
;

until S is terminal

Figure 6.9: Sarsa: An on-policy TD control algorithm.

long as all state–action pairs are visited an infinite number of times and the
policy converges in the limit to the greedy policy (which can be arranged, for
example, with "-greedy policies by setting " = 1/t), but this result has not yet
been published in the literature.

Example 6.5: Windy Gridworld Figure 6.10 shows a standard gridworld,
with start and goal states, but with one di↵erence: there is a crosswind upward
through the middle of the grid. The actions are the standard four—up, down,
right, and left—but in the middle region the resultant next states are shifted
upward by a “wind,” the strength of which varies from column to column. The
strength of the wind is given below each column, in number of cells shifted
upward. For example, if you are one cell to the right of the goal, then the
action left takes you to the cell just above the goal. Let us treat this as an
undiscounted episodic task, with constant rewards of �1 until the goal state
is reached. Figure 6.11 shows the result of applying "-greedy Sarsa to this
task, with " = 0.1, ↵ = 0.5, and the initial values Q(s, a) = 0 for all s, a. The
increasing slope of the graph shows that the goal is reached more and more
quickly over time. By 8000 time steps, the greedy policy (shown inset) was
long since optimal; continued "-greedy exploration kept the average episode
length at about 17 steps, two more than the minimum of 15. Note that Monte
Carlo methods cannot easily be used on this task because termination is not
guaranteed for all policies. If a policy was ever found that caused the agent to
stay in the same state, then the next episode would never end. Step-by-step
learning methods such as Sarsa do not have this problem because they quickly
learn during the episode that such policies are poor, and switch to something
else.

Exercise 6.6: Windy Gridworld with King’s Moves Re-solve the
windy gridworld task assuming eight possible actions, including the diagonal
moves, rather than the usual four. How much better can you do with the extra

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 32

Windy Gridworld

undiscounted, episodic, reward = –1 until goal

Wind:

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 33

Results of Sarsa on the Windy Gridworld

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 34

Q-Learning: Off-Policy TD Control

6.5. Q-LEARNING: OFF-POLICY TD CONTROL 145

Initialize Q(s, a), 8s 2 S, a 2 A(s), arbitrarily, and Q(terminal-state, ·) = 0

Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

Choose A from S using policy derived from Q (e.g., "-greedy)
Take action A, observe R, S0

Q(S,A) Q(S,A) + ↵[R+ �maxaQ(S0, a)�Q(S,A)]
S S0

;

until S is terminal

Figure 6.12: Q-learning: An o↵-policy TD control algorithm.

(Figure 3.7). Can you guess now what the diagram is? If so, please do make
a guess before turning to the answer in Figure 6.14.

Reward
per

epsiode

!100

!75

!50

!25

0 100 200 300 400 500

Episodes

Sarsa

Q-learning

S G

r = !100

T h e C l i f f

r = !1 safe path

optimal path

Figure 6.13: The cli↵-walking task. The results are from a single run, but
smoothed.

Example 6.6: Cli↵ Walking This gridworld example compares Sarsa
and Q-learning, highlighting the di↵erence between on-policy (Sarsa) and o↵-
policy (Q-learning) methods. Consider the gridworld shown in the upper part
of Figure 6.13. This is a standard undiscounted, episodic task, with start and
goal states, and the usual actions causing movement up, down, right, and left.
Reward is �1 on all transitions except those into the the region marked “The

6.5. Q-LEARNING: OFF-POLICY TD CONTROL 139

6.5 Q-learning: O↵-Policy TD Control

One of the most important breakthroughs in reinforcement learning was the devel-
opment of an o↵-policy TD control algorithm known as Q-learning (Watkins, 1989).
Its simplest form, one-step Q-learning , is defined by

Q(St, At) Q(St, At) + ↵
h
Rt+1 + � max

a
Q(St+1, a)�Q(St, At)

i
. (6.6)

In this case, the learned action-value function, Q, directly approximates q⇤, the op-
timal action-value function, independent of the policy being followed. This dramat-
ically simplifies the analysis of the algorithm and enabled early convergence proofs.
The policy still has an e↵ect in that it determines which state–action pairs are visited
and updated. However, all that is required for correct convergence is that all pairs
continue to be updated. As we observed in Chapter 5, this is a minimal requirement
in the sense that any method guaranteed to find optimal behavior in the general case
must require it. Under this assumption and a variant of the usual stochastic approx-
imation conditions on the sequence of step-size parameters, Q has been shown to
converge with probability 1 to q⇤. The Q-learning algorithm is shown in procedural
form in Figure 6.10.

What is the backup diagram for Q-learning? The rule (6.6) updates a state–action
pair, so the top node, the root of the backup, must be a small, filled action node.
The backup is also from action nodes, maximizing over all those actions possible in
the next state. Thus the bottom nodes of the backup diagram should be all these
action nodes. Finally, remember that we indicate taking the maximum of these “next
action” nodes with an arc across them (Figure 3.7). Can you guess now what the
diagram is? If so, please do make a guess before turning to the answer in Figure 6.12.

Initialize Q(s, a), 8s 2 S, a 2 A(s), arbitrarily, and Q(terminal-state, ·) = 0
Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

Choose A from S using policy derived from Q (e.g., ✏-greedy)
Take action A, observe R, S0

Q(S, A) Q(S, A) + ↵
⇥
R + � maxa Q(S0, a)�Q(S, A)

⇤

S S0;
until S is terminal

Figure 6.10: Q-learning: An o↵-policy TD control algorithm.

One-step Q-learning:

6.5. Q-LEARNING: OFF-POLICY TD CONTROL 143

Reward
per

epsiode

!100

!75

!50

!25

0 100 200 300 400 500

Episodes

Sarsa

Q-learning

S G

r = !100

T h e C l i f f

r = !1 safe path

optimal path

R

R

Sum of
rewards
during

episode

Figure 6.5: The cli↵-walking task. The results are from a single run, but smoothed by
averaging the reward sums from 10 successive episodes.

The lower part of Figure 6.5 shows the performance of the Sarsa and Q-learning
methods with "-greedy action selection, " = 0.1. After an initial transient, Q-learning
learns values for the optimal policy, that which travels right along the edge of the
cli↵. Unfortunately, this results in its occasionally falling o↵ the cli↵ because of
the "-greedy action selection. Sarsa, on the other hand, takes the action selection
into account and learns the longer but safer path through the upper part of the
grid. Although Q-learning actually learns the values of the optimal policy, its on-
line performance is worse than that of Sarsa, which learns the roundabout policy.
Of course, if " were gradually reduced, then both methods would asymptotically
converge to the optimal policy.

Exercise 6.9 Why is Q-learning considered an o↵-policy control method?

Q-learning Expected Sarsa

Figure 6.6: The backup diagrams for Q-learning and expected Sarsa.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 35

Cliffwalking

ε−greedy, ε = 0.1

R

R

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 45

Summary

Introduced one-step tabular model-free TD methods
These methods bootstrap and sample, combining aspects of
DP and MC methods
TD methods are computationally congenial
If the world is truly Markov, then TD methods will learn
faster than MC methods
MC methods have lower error on past data, but higher error
on future data
Extend prediction to control by employing some form of GPI

On-policy control: Sarsa, Expected Sarsa
Off-policy control: Q-learning, Expected Sarsa

Avoiding maximization bias with Double Q-learning

	CS5900-RL-Lecture1
	CS5900-RL-Lecture2

