Machine Learning CS 4900/5900

Linear Regression

Razvan C. Bunescu

School of Electrical Engineering and Computer Science

bunescu@ohio.edu

Supervised Learning

- Task = learn an (unknown) function $t : X \to T$ that maps input instances $x \in X$ to output targets $t(x) \in T$:
 - Classification:
 - The output $t(\mathbf{x}) \in T$ is one of a finite set of discrete categories.
 - Regression:
 - The output $t(\mathbf{x}) \in T$ is continuous, or has a continuous component.
- Target function t(x) is known (only) through (noisy) set of training examples:

$$(\mathbf{x}_1, \mathbf{t}_1), (\mathbf{x}_2, \mathbf{t}_2), \dots (\mathbf{x}_n, \mathbf{t}_n)$$

Supervised Learning

- Task = learn an (unknown) function $t : X \to T$ that maps input instances $x \in X$ to output targets $t(x) \in T$:
 - function t is known (only) through (noisy) set of training examples:
 - Training/Test data: $(\mathbf{x}_1, \mathbf{t}_1), (\mathbf{x}_2, \mathbf{t}_2), \dots (\mathbf{x}_n, \mathbf{t}_n)$
- Task = build a function h(x) such that:
 - h matches t well on the training data:
 - => h is able to fit data that it has seen.
 - h also matches target t well on test data:
 - \Rightarrow h is able to generalize to unseen data.

Parametric Approaches to Supervised Learning

- Task = build a function $h(\mathbf{x})$ such that:
 - h matches t well on the training data:
 - => h is able to fit data that it has seen.
 - h also matches t well on test data:
 - \Rightarrow h is able to generalize to unseen data.
- **Task** = choose *h* from a "nice" *class of functions* that depend on a vector of parameters **w**:
 - $-h(\mathbf{x}) \equiv h_{\mathbf{w}}(\mathbf{x}) \equiv h(\mathbf{w}, \mathbf{x})$
 - what classes of functions are "nice"?

Linear Regression

- 1. (Simple) Linear Regression
 - House price prediction
- 2. Linear Regression with Polynomial Features
 - Polynomial curve fitting
 - Regularization
 - Ridge regression
- 3. Multiple Linear Regression
 - House price prediction
 - Normal equations

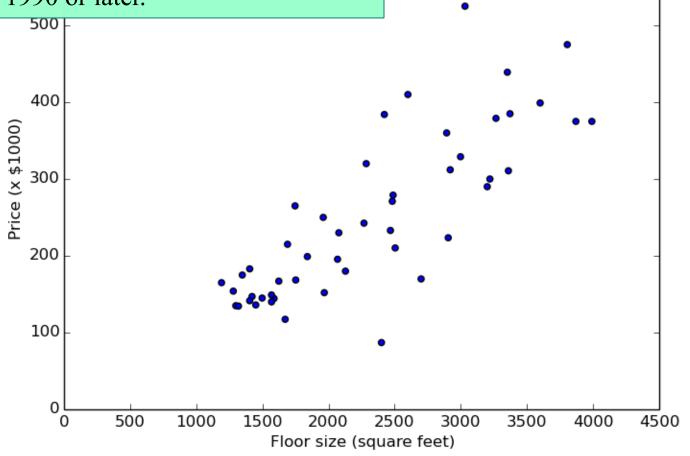
House Price Prediction

- Given the floor size in square feet, predict the selling price:
 - -x is the size, t is the price
 - Need to learn a function h such that $h(x) \approx t(x)$.
- Is this classification or regression?
 - Regression, because price is real valued.
 - and there are many possible prices.
 - (Simple) linear regression, because one input value.
 - Would a problem with only two labels $t_1 = 0.5$ and $t_2 = 1.0$ still be regression?

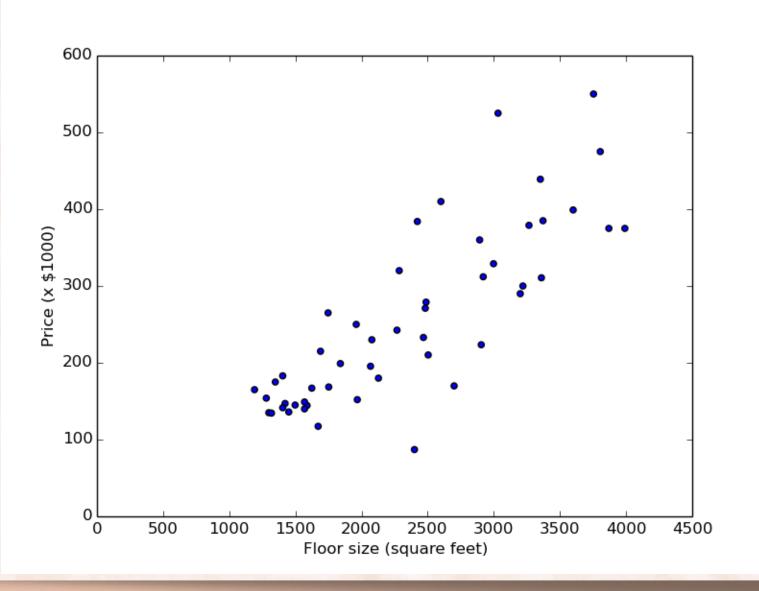
House Prices in Athens

50 houses, randomly selected from the 106 houses or townhomes:

- sold recently in Athens, OH.
- built 1990 or later.



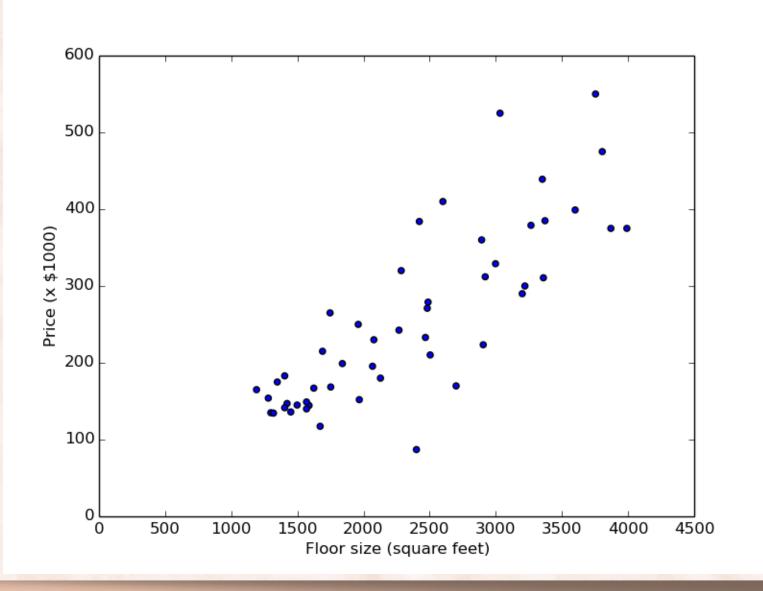
House Prices in Athens



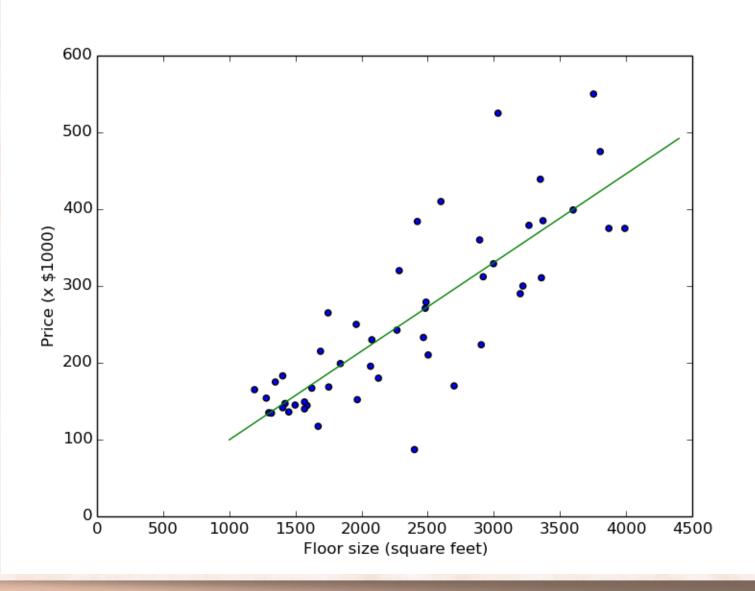
Parametric Approaches to Supervised Learning

- Task = build a function $h(\mathbf{x})$ such that:
 - h matches t well on the training data:
 - => h is able to fit data that it has seen.
 - h also matches t well on test data:
 - \Rightarrow h is able to generalize to unseen data.
- **Task** = choose *h* from a "nice" *class of functions* that depend on a vector of parameters **w**:
 - $-h(\mathbf{x}) \equiv h_{\mathbf{w}}(\mathbf{x}) \equiv h(\mathbf{w}, \mathbf{x})$
 - what classes of functions are "nice"?

House Prices in Athens



House Prices in Athens



Linear Regression

• Use a linear function approximation:

$$-h_{\mathbf{w}}(\mathbf{x}) = \mathbf{w}^{\mathsf{T}}\mathbf{x} = [w_0, w_1]^{\mathsf{T}}[1, x] = w_1 x + w_0.$$

- w_0 is the intercept (or the bias term).
- w_1 controls the slope.
- Learning = optimization:
 - Find w that obtains the best fit on the training data, i.e. find w that minimizes the sum of square errors:

$$J(\mathbf{w}) = \frac{1}{2N} \sum_{n=1}^{N} (h_{\mathbf{w}}(\mathbf{x}_n) - t_n)^2$$

$$\widehat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmin}} J(\mathbf{w})$$

Univariate Linear Regression

- Learning = finding the "right" parameters $\mathbf{w}^T = [w_0, w_1]$
 - Find w that minimizes an *error function* $E(\mathbf{w}) = J(\mathbf{w})$ which measures the misfit between $h(\mathbf{x}_n, \mathbf{w})$ and t_n .
 - Expect that $h(\mathbf{x}, \mathbf{w})$ performing well on training examples $\mathbf{x}_n \Rightarrow h(\mathbf{x}, \mathbf{w})$ will perform well on arbitrary test examples $\mathbf{x} \in X$.

Inductive Learning Hyphotesis

Sum-of-Squares error function:

$$J(\mathbf{w}) = \frac{1}{2N} \sum_{n=1}^{N} (h_{\mathbf{w}}(\mathbf{x}_n) - t_n)^2$$

Minimizing Sum-of-Squares Error

Sum-of-Squares error function:

$$J(\mathbf{w}) = \frac{1}{2N} \sum_{n=1}^{N} (h_{\mathbf{w}}(\mathbf{x}_n) - t_n)^2$$
 why squared?

How do we find \mathbf{w}^* that minimizes $E(\mathbf{w})$?

$$\hat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{arg min}} J(\mathbf{w})$$

Least Square solution is found by solving a system of 2 linear equations:

$$w_0 N + w_1 \sum_{n=1}^{N} x_n = \sum_{n=1}^{N} t_n$$

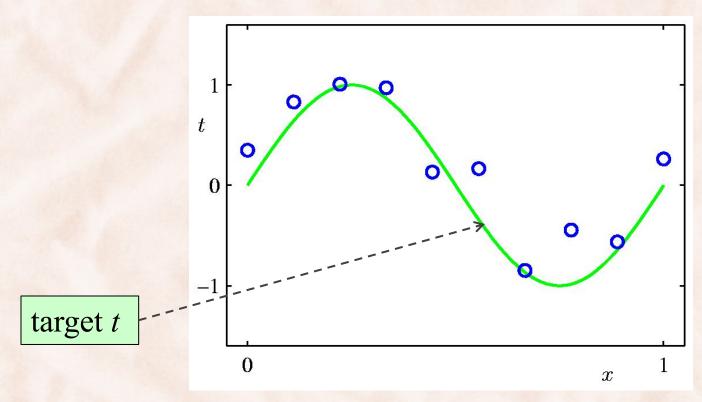
$$w_0 N + w_1 \sum_{n=1}^{N} x_n = \sum_{n=1}^{N} t_n$$

$$w_0 \sum_{n=1}^{N} x_n + w_1 \sum_{n=1}^{N} x_n^2 = \sum_{n=1}^{N} t_n x_n$$

Polynomial Basis Functions

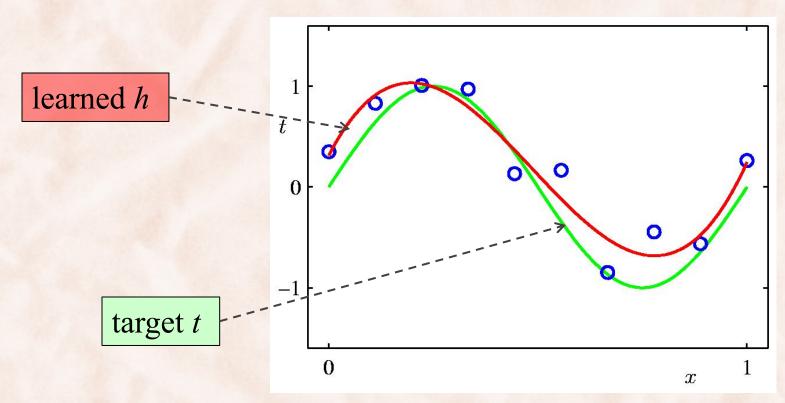
- Q: What if the raw feature is insufficient for good performance?
 - Example: non-linear dependency between label and raw feature.
- A: Engineer [CS 4900] /Learn [CS 6890] higher-level features, as functions of the raw feature.
- Polynomial curve fitting:
 - Add new features, as polynomials of the original feature.

Regression: Curve Fitting



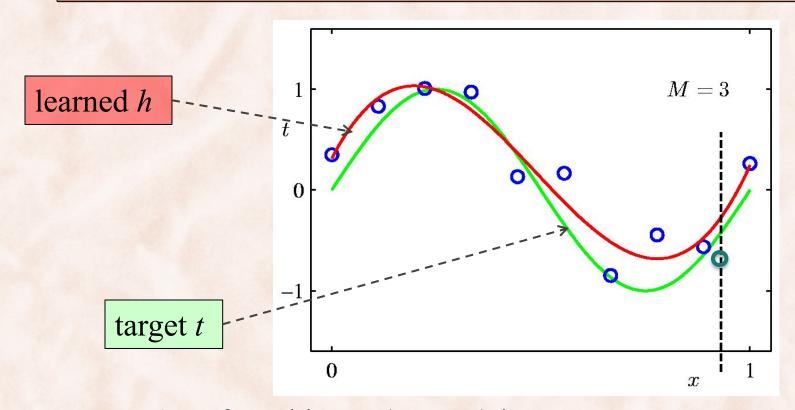
• Training: Build a function h(x), based on (noisy) training examples $(x_1,t_1), (x_2,t_2), \dots (x_N,t_N)$

Regression: Curve Fitting



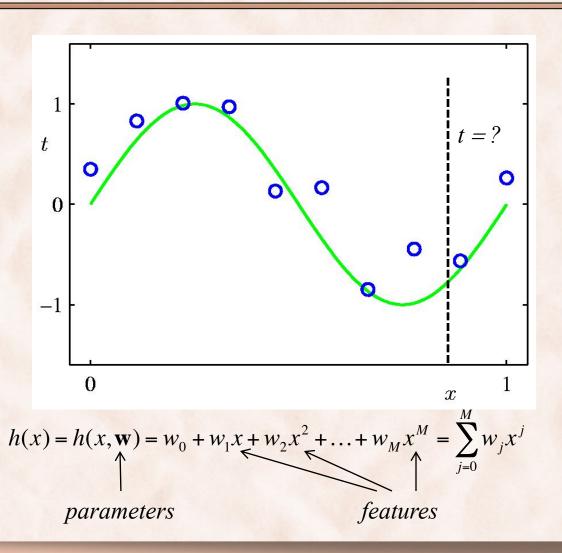
• **Training**: Build a function h(x), based on (noisy) training examples $(x_1,t_1), (x_2,t_2), \dots (x_N,t_N)$

Regression: Curve Fitting



• **Testing**: for arbitrary (unseen) instance $x \in X$, compute target output h(x); want it to be close to t(x).

Regression: Polynomial Curve Fitting



Polynomial Curve Fitting

Parametric model:

$$h(x) = h(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

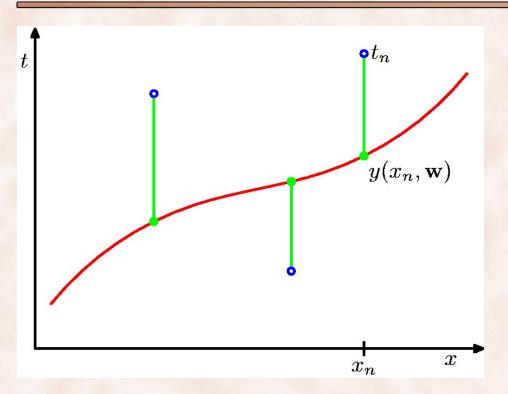
• Polynomial curve fitting is (Multiple) Linear Regression:

$$\mathbf{x} = [1, x, x^2, ..., x^{\mathrm{M}}]^{\mathrm{T}}$$
$$h(x) = h(\mathbf{x}, \mathbf{w}) = \mathbf{w}^{\mathrm{T}} \mathbf{x}$$

• Learning = minimize the Sum-of-Squares error function:

$$\widehat{\mathbf{w}} = \arg\min_{\mathbf{w}} J(\mathbf{w})$$
 $J(\mathbf{w}) = \frac{1}{2N} \sum_{n=1}^{N} (h_{\mathbf{w}}(\mathbf{x}_n) - t_n)^2$

Sum-of-Squares Error Function



$$y(x_n, \mathbf{w}) \qquad J(\mathbf{w}) = \frac{1}{2N} \sum_{n=1}^{N} (h_{\mathbf{w}}(\mathbf{x}_n) - t_n)^2$$

- How to find \mathbf{w}^* that minimizes $E(\mathbf{w})$, i.e. $\mathbf{w}^* = \arg\min_{\mathbf{w}} E(\mathbf{w})$
- Solve $\nabla J(\mathbf{w}) = 0$.

Polynomial Curve Fitting

• Least Square solution is found by solving a set of M + 1 linear equations:

$$Aw = T$$

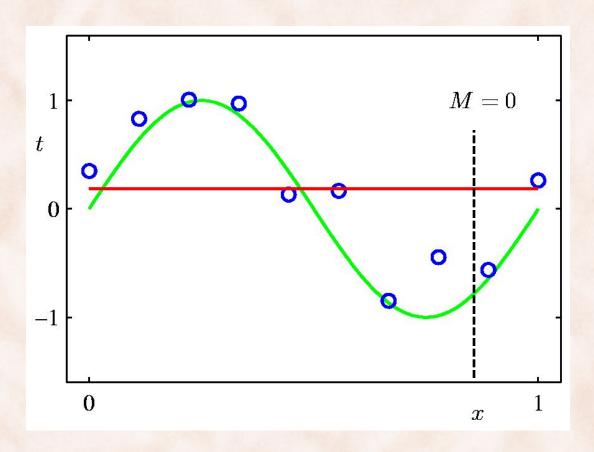
$$\sum_{j=0}^{M} A_{ij} w_j = T_i, \text{ where } A_{ij} = \sum_{n=1}^{N} x_n^{i+j}, \text{ and } T_i = \sum_{n=1}^{N} t_n x_n^i$$

• Prove it.

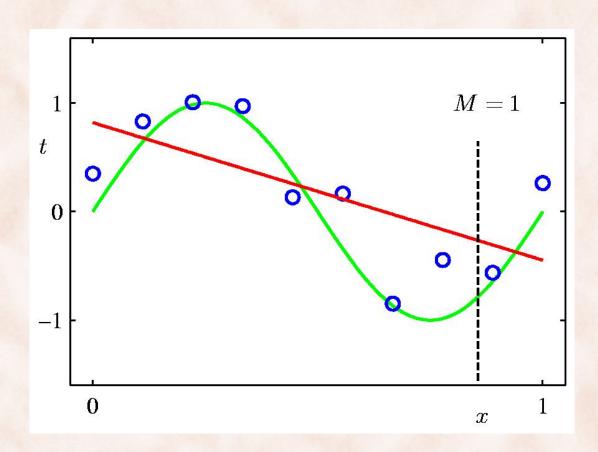
Polynomial Curve Fitting

- Generalization = how well the parameterized $h(x, \mathbf{w})$ performs on arbitrary (unseen) test instances $x \in X$.
- Generalization performance depends on the value of M.

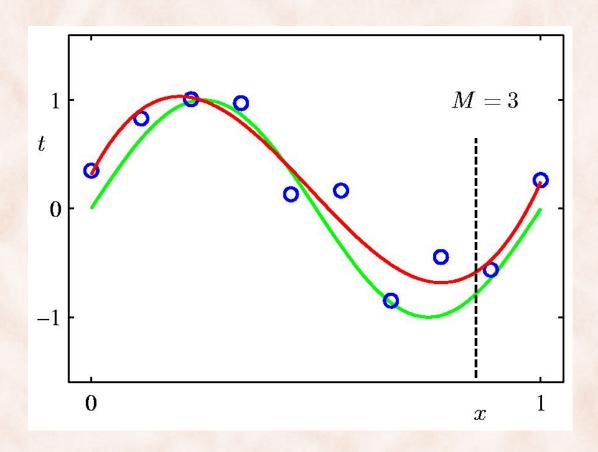
0th Order Polynomial



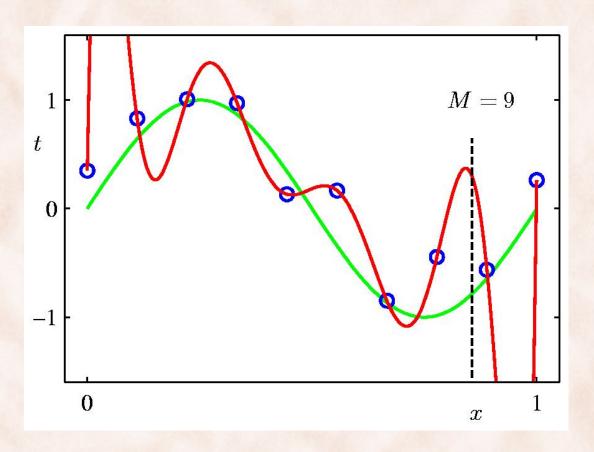
1st Order Polynomial



3rd Order Polynomial



9th Order Polynomial



Polynomial Curve Fitting

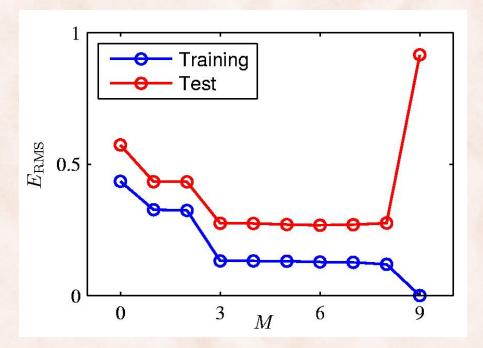
- Model Selection: choosing the order M of the polynomial.
 - Best generalization obtained with M = 3.
 - M = 9 obtains poor generalization, even though it fits training examples perfectly:
 - But M = 9 polynomials subsume M = 3 polynomials!
- Overfitting = good performance on training examples, poor performance on test examples.

Overfitting

Measure fit using the Root-Mean-Square (RMS) error:

$$E_{RMS}(\mathbf{w}) = \sqrt{\frac{\sum_{n} (\mathbf{w}^{T} \mathbf{x}_{n} - t_{n})^{2}}{N}}$$

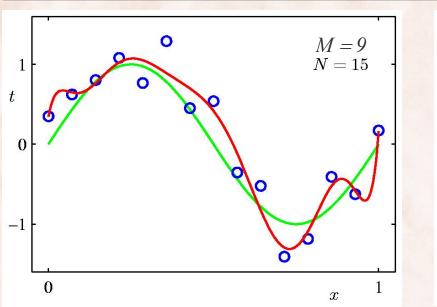
• Use 100 random test examples, generated in the same way:

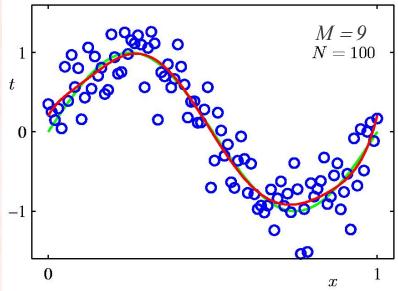


Over-fitting and Parameter Values

	M=0	M = 1	M = 3	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	$-5\overline{321.83}$
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w_9^{\star}				125201.43

Overfitting vs. Data Set Size





- More training data \Rightarrow less overfitting.
- What if we do not have more training data?
 - Use regularization.

Regularization

- Parameter norm penalties (term in the objective).
- Limit parameter norm (constraint).
- Dataset augmentation.
- Dropout.
- Ensembles.
- Semi-supervised learning.
- Early stopping.
- Noise robustness.
- Sparse representations.
- Adversarial training.

Regularization

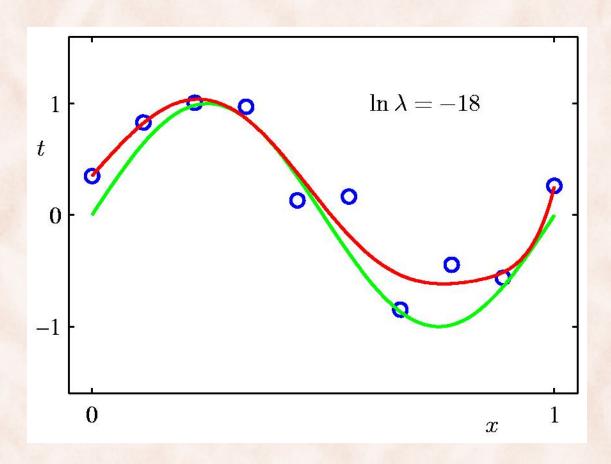
• Penalize large parameter values:

$$J(\mathbf{w}) = \frac{1}{2N} \sum_{n=1}^{N} (h_{\mathbf{w}}(\mathbf{x}_n) - t_n)^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

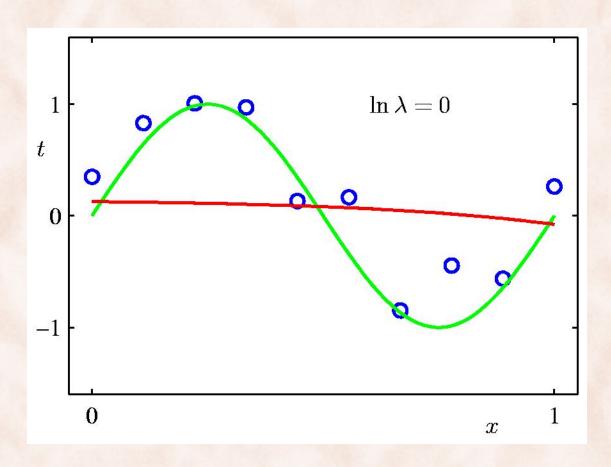
$$regularizer$$

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} E(\mathbf{w})$$

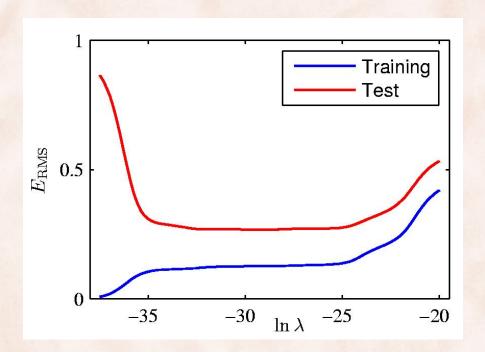
9th Order Polynomial with Regularization



9th Order Polynomial with Regularization



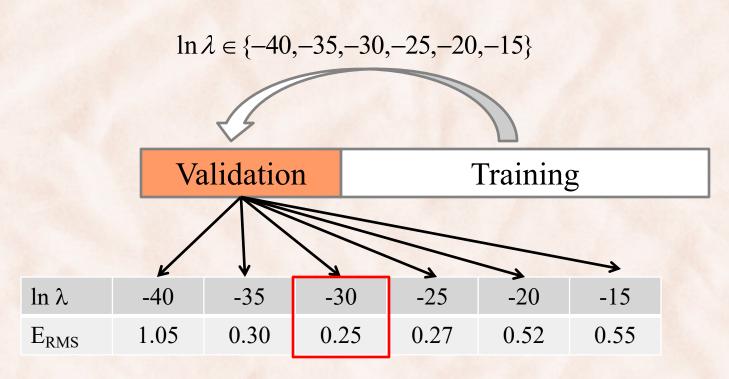
Training & Test error vs. $\ln \lambda$



How do we find the optimal value of λ ?

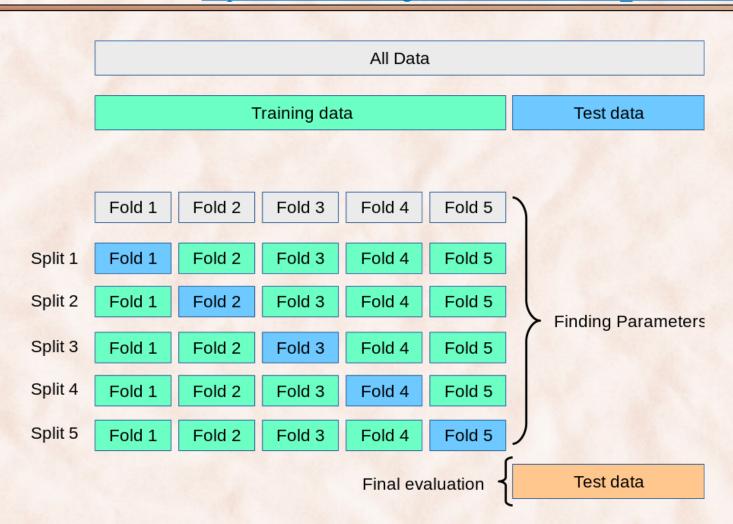
Model Selection

- Put aside an independent validation set.
- Select parameters giving best performance on validation set.



K-fold Cross-Validation

https://scikit-learn.org/stable/modules/cross validation.html



K-fold Cross-Validation

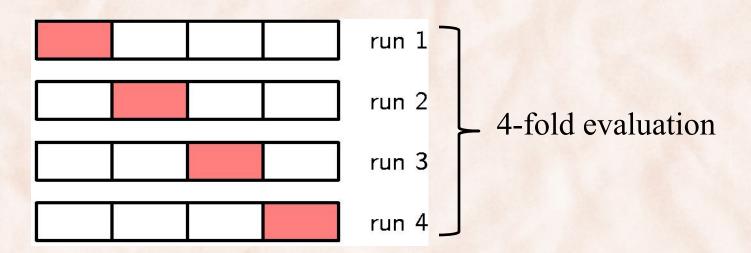
- Split the training data into K folds and try a wide range of tunning parameter values:
 - split the data into K folds of roughly equal size
 - iterate over a set of values for λ
 - iterate over k=1,2,..., K
 - use all folds except k for training
 - validate (calculate test error) in the k-th fold
 - error[λ] = average error over the K folds
 - choose the value of λ that gives the smallest error.

https://scikit-learn.org/stable/modules/generated/sklearn.linear model.LassoCV.html

Model Evaluation

K-fold evaluation

- randomly partition dataset in K equally sized subsets $P_1, P_2, \dots P_k$
- for each fold i in $\{1, 2, ..., k\}$:
 - test on P_i , train on $P_1 \cup ... \cup P_{i-1} \cup P_{i+1} \cup ... \cup P_k$
- compute average error/accuracy across K folds.



Multiple Linear Regression

- Q: What if the raw feature is insufficient for good performance?
 - Example: house prices depend not only on floor size, but also number of bedrooms, age, location, ...
- A: Use Multiple Linear Regression.

Multivariate Linear Regression

Polynomial curve fitting:

$$\mathbf{x} = [1, x, x^2, ..., x^M]^T$$

= $[x_0, x_1, ..., x_M]^T$
 $h(x) = h(\mathbf{x}, \mathbf{w}) = \mathbf{w}^T \mathbf{x}$

• Multiple linear regression:

$$\mathbf{x} = [x_0, x_1, ..., x_M]^T$$
$$h(\mathbf{x}) = h(\mathbf{x}, \mathbf{w}) = \mathbf{w}^T \mathbf{x}$$

• Training examples: $(\mathbf{x}^{(1)}, t_1), (\mathbf{x}^{(2)}, t_2), \dots (\mathbf{x}^{(N)}, t_N)$

Multiple Linear Regression

• Learning = minimize the Sum-of-Squares error function:

$$\widehat{\mathbf{w}} = \arg\min_{\mathbf{w}} J(\mathbf{w})$$
 $J(\mathbf{w}) = \frac{1}{2N} \sum_{n=1}^{N} (h_{\mathbf{w}}(\mathbf{x}^{(n)}) - t_n)^2$

• Computing the gradient $\nabla J(\mathbf{w})$ and setting it to zero:

$$\sum_{n=1}^{N} (\mathbf{w}^{\mathrm{T}} \mathbf{x}^{(n)} - t_n) \mathbf{x}^{(n)} = 0$$

- Solving for w yields $\mathbf{w} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{t}$
 - Prove it.

Normal Equations

- Solution is $\mathbf{w} = (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{t}$
- X is the data matrix, or the design matrix:

$$X = \begin{pmatrix} \mathbf{x}^{(1)^{\mathrm{T}}} \\ \mathbf{x}^{(2)^{\mathrm{T}}} \\ \dots \\ \mathbf{x}^{(N)^{\mathrm{T}}} \end{pmatrix} = \begin{pmatrix} x_0^{(1)} & x_1^{(1)} & \dots & x_M^{(1)} \\ x_0^{(2)} & x_1^{(2)} & \dots & x_M^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ x_0^{(N)} & x_1^{(N)} & \dots & x_M^{(N)} \end{pmatrix}$$

• $\mathbf{t} = [t_1, t_2, ..., t_N]^T$ is the vector of labels.

Ridge Regression

• Multiple linear regression with L2 regularization:

$$J(\mathbf{w}) = \frac{1}{2N} \sum_{n=1}^{N} (h_{\mathbf{w}}(\mathbf{x}_n) - t_n)^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$
$$\widehat{\mathbf{w}} = \arg\min_{\mathbf{w}} J(\mathbf{w})$$

- Solution is $\mathbf{w} = (\lambda N\mathbf{I} + \mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{t}$
 - Prove it.

Regularization: Ridge vs. Lasso

• Ridge regression:

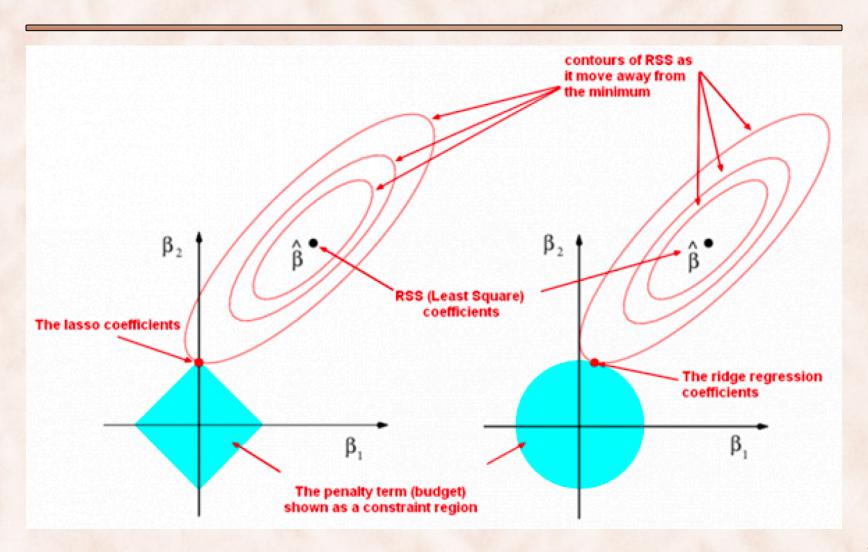
$$J(\mathbf{w}) = \frac{1}{2N} \sum_{n=1}^{N} (h_{\mathbf{w}}(\mathbf{x}_n) - t_n)^2 + \frac{\lambda}{2} \sum_{j=1}^{M} w_j^2$$

• Lasso:

$$J(\mathbf{w}) = \frac{1}{2N} \sum_{n=1}^{N} (h_{\mathbf{w}}(\mathbf{x}_n) - t_n)^2 + \frac{\lambda}{2} \sum_{j=1}^{M} |w_j|$$

- If λ is sufficiently large, some of the coefficients w_j are driven to 0 => sparse model.

Regularization: Ridge vs. Lasso



Regularization

- Regularization alleviates overfitting when using models with high capacity (e.g. high degree polynomials):
 - Want high capacity because we do not know how complicated the data is.
- Q: Can we achieve high capacity when doing curve fitting without using high degree polynomials?
- A: Use piecewise polynomial curves.
 - Example: Cubic spline smoothing.

Cubic Spline Smoothing

- Cubic spline smoothing is a regularized version of cubic spline interpolation.
 - Cubic spline interpolation: given n points $\{(x_i, y_i)\}$, connect adjacent points using cubic functions S_i , requiring that the spline and its first and second derivative remain continuous at all points:

$$S_i(x) = a_i(x - x_i)^3 + b_i(x - x_i)^2 + c_i(x - x_i) + d_i, \forall x \in [x_i, x_{i+1}]$$

- Cubic spline smoothing: the spline $S = \{S_i\}$ is allowed to deviate from the data points and has low curvature => constrained optimization problem with objective:

$$L = \sum_{i=1}^{n} \frac{w_i}{Z} (S_i(x_i) - y_i)^2 + \frac{\lambda}{x_n - x_1} \int_{x_1}^{x_n} |S''(x)|^2 dx$$

 $w_i = \begin{cases} C, & \text{if } (x_i, y_i) \text{ is a significant local optima} \\ 1, & \text{otherwise} \end{cases}$

Cubic Spline Smoothing

http://ace.cs.ohio.edu/~razvan/papers/icmla11.pdf

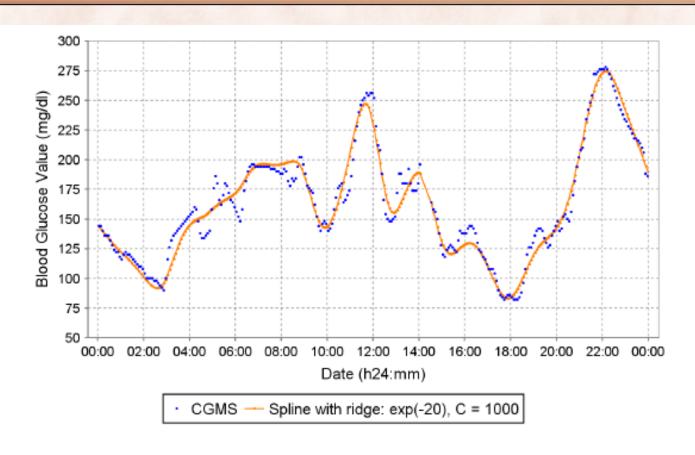
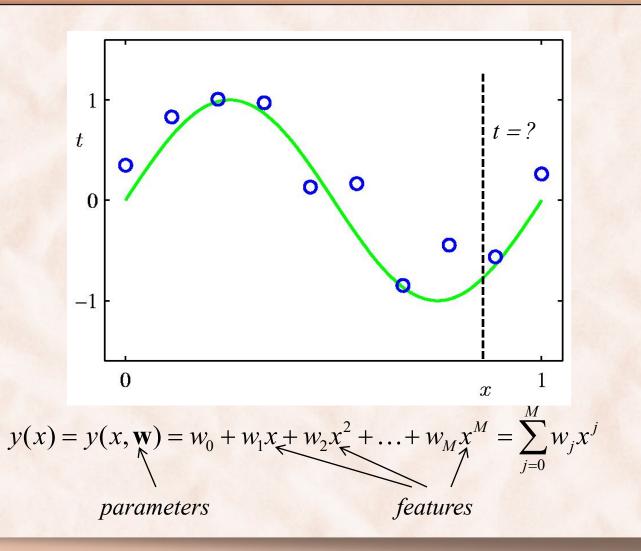


Fig. 3. Cubic spline smoothing with $\lambda = e^{-20}$ and C = 1000.

Polynomial Curve Fitting (Revisited)



Generalization: Basis Functions as Features

Generally

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})$$

where $\varphi_i(\mathbf{x})$ are known as basis functions.

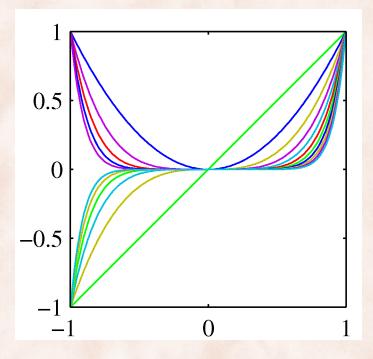
- Typically $\varphi_0(\mathbf{x}) = 1$, so that w_0 acts as a bias.
- In the simplest case, use linear basis functions : $\varphi_d(\mathbf{x}) = x_d$.

Linear Basis Function Models (1)

Polynomial basis functions:

$$\phi_j(x) = x^j$$
.

- Global behavior:
 - a small change in x affect all basis functions.



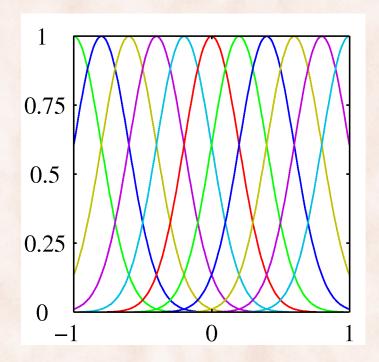
Linear Basis Function Models (2)

Gaussian basis functions:

$$\phi_j(x) = \exp\left\{-\frac{(x-\mu_j)^2}{2s^2}\right\}$$

Local behavior:

- a small change in x only
 affects nearby basis functions.
- μ_j and s control location and scale (width).



Linear Basis Function Models (3)

Sigmoidal basis functions:

$$\phi_j(x) = \sigma\left(\frac{x - \mu_j}{s}\right)$$
where $\sigma(a) = \frac{1}{1 + \exp(-a)}$.

- Local behavior:
 - a small change in x only affect nearby basis functions.
 - μ_j and s control location and scale (slope).

