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Supervised Learning

Task = learn an (unknown) function 7 : X — T that maps
input instances x € X to output targets #x) € T:
— Classification:
* The output #(x) € T is one of a finite set of discrete categories.
— Regression:

» The output #x) e T is continuous, or has a continuous
component.

Target function #x) 1s known (only) through (noisy) set of
training examples:
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Supervised Learning

Task = learn an (unknown) function 7 : X — T that maps
input instances x € X to output targets #x) € T:

— function ¢ 1s known (only) through (noisy) set of training examples:
* Training/Test data: (x;,t)), (X5,t,), ... (X,.t,)

Task = build a function 4(x) such that:
— h matches ¢ well on the training data:
=> }1 1s able to fit data that 1t has seen.
— h also matches target r well on test data:

=> h 1s able to generalize to unseen data.




Parametric Approaches to Supervised
Learning

Task = build a function A4(x) such that:

— h matches ¢ well on the training data:
=> } 1s able to fit data that 1t has seen.
— h also matches ¢ well on test data:
=> J1 1s able to generalize to unseen data.

Task = choose £ from a ““nice” class of functions that
depend on a vector of parameters w:

— h(X) = hy(Xx) = h(w,X)

— what classes of functions are “nice”?




Linear Regression

1. (Simple) Linear Regression

—  House price prediction

2. Linear Regression with Polynomial Features
—  Polynomial curve fitting
— Regularization

— Ridge regression

3. Multiple Linear Regression
—  House price prediction

—  Normal equations




House Price Prediction

* Given the floor size 1n square feet, predict the selling price:
— x 1s the size, ¢ is the price
— Need to learn a function 4 such that A(x) = #(x).

 Is this classification or regression?
— Regression, because price is real valued.
 and there are many possible prices.
— (Simple) linear regression, because one input value.

— Would a problem with only two labels ¢, = 0.5 and ¢, = 1.0 still be
regression?




House Prices in Athens

50 houses, randomly selected from the 106
houses or townhomes:

* sold recently in Athens, OH.

* built 1990 or later. *
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House Prices in Athens
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Parametric Approaches to Supervised
Learning

Task = build a function A4(x) such that:

— h matches ¢ well on the training data:
=> } 1s able to fit data that 1t has seen.
— h also matches ¢ well on test data:
=> J1 1s able to generalize to unseen data.

Task = choose £ from a ““nice” class of functions that
depend on a vector of parameters w:

— h(X) = hy(Xx) = h(w,X)

— what classes of functions are “nice”?
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House Prices in Athens
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Linear Regression

e Use a linear function approximation:
— hy(X) =wWIx = [wy, w(][1, x] = wixtw,.
* W, 1s the intercept (or the bias term).

« w, controls the slope.

— Learning = optimization:
* Find w that obtains the best fit on the training data, i.e. find w
that minimizes the sum of square errors:

N
1
JW) =2 (%) = )’
n=1

W = argmin J(w)
w




Univariate Linear Regression

=

* Learning = finding the “right” parameters w' = [wy, w,]

— Find w that minimizes an error function E(w) = J(w) which
measures the misfit between A(x,,w) and ¢,

— Expect that #(x,w) performing well on training examples x,, =
h(x,w) will perform well on arbitrary test examples xe X.
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Inductive Learning Hyphotesis

* Sum-of-Squares error function:

N
1
JW) == )" (hy(%,) = £,)?
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Minimizing Sum-of-Squares Error

Sum-of-Squares error function:

why squared?
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How do we find w* that minimizes E(w)?

W = arg min J(w)
w

Least Square solution is found by solving a system of 2 linear equations:

N N
W0N+lexn=2tn
n=1 n=1

N N N
n=1 n=1 n=1




Polynomial Basis Functions

O: What if the raw feature 1s insufficient for good
performance?

— Example: non-linear dependency between label and raw feature.

A: Engineer [CS 4900] /Learn [CS 6890] higher-level features,
as functions of the raw feature.

Polynomial curve fitting:

— Add new features, as polynomials of the original feature.




Regression: Curve Fitting

target ¢

e Training: Build a function /(x), based on (noisy) training
examples (x,t)), (x2,1), ... (ontn)
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Regression: Curve Fitting

learned A
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target ¢

e Training: Build a function /(x), based on (noisy) training
examples (x;,t)), (X2,t5), --. (¥ntn)




Regression: Curve Fitting

learned A

target ¢

« Testing: for arbitrary (unseen) instance x € X , compute
target output /(x); want it to be close to #(x).




Regression: Polynomial Curve Fitting

0 1

h(x)=h(x,w)= w0+w1x+w2x Tt Wi A wx

\\T

parameters features
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Polynomial Curve Fitting

Parametric model:

h(x)=h(x,W)=w, +wx+w,x" +...+w, x" = ijxj

j=0

Polynomial curve fitting 1s (Multiple) Linear Regression:
X =B , . x2 M

h(x) = h(x,w) = w'x

Learning = minimize the Sum-of-Squares error function:

N
1
W = arg min J(w) J(w) = i Z (ha (X)) — t,)?
=l

w




Sum-of-Squares Error Function

N
1
vomw)  JW) =22 > (h(x) = £
n=1
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« How to find w* that minimizes E(w), i.e. W*=arg n%vinE (W)
* Solve VJ(w) =0.




Polynomial Curve Fitting

[

» Least Square solution 1s found by solving a set of M + 1
linear equations:

Aw =T

M N . . N .
Y Aw =T ,whered, =) x.”’,and T, =) 1,x,
j=0 n=l n=l

e Prove it.




Polynomial Curve Fitting

» Generalization = how well the parameterized A(x,w)
performs on arbitrary (unseen) test instances x € X.

e Generalization performance depends on the value of M.




0" Order Polynomial




15t Order Polynomial




31 Order Polynomial




9th Order Polynomial




Polynomial Curve Fitting

* Model Selection: choosing the order M of the polynomual.
— Best generalization obtained with M = 3.

— M =9 obtains poor generalization, even though it fits training
examples perfectly:

* But M =9 polynomials subsume M = 3 polynomials!

e Overfitting = good performance on training examples, poor
performance on test examples.




Overfitting

[

* Measure fit using the Root-Mean-Square (RMS) error:

Eys(W) = En(w;n _tn)

e Use 100 random test examples, generated in the same way:

—©— Training
—©— Test




Over-fitting and Parameter Values

M=0 M=1 M=3 M=09
e | MO9S Gis2 031 0.35
wk b 27 S99 232.37
wk -25.43 -5321.83
Wk 17.37  48568.31
Wi -231639.30
wi 640042.26
wi ~1061800.52
W 1042400.18
wi -557682.99
wi 125201.43




Overfitting vs. Data Set Size

0 ! 0
* More training data = less overfitting.

* What if we do not have more training data?
— Use regularization.




Regularization

Parameter norm penalties (term in the objective).
Limit parameter norm (constraint).

Dataset augmentation.

Dropout.

Ensembles.

Semi-supervised learning.

Early stopping.

Noise robustness.

Sparse representations.

Adversarial training.




Regularization

» Penalize large parameter values:

N
JW) =2 Y (k) — 62+ 5 Il
n=1 \ ,

regularizer

w* =argmin E(w)
w




9t Order Polynomial with Regularization




9t Order Polynomial with Regularization




Training & Test error vs. In A

Training
Test
o2]
205 ]
& /
0 / 1 1 N
-35 -30 -25 -20

In A

How do we find the optimal value of A?




Model Selection

« Put aside an independent validation set. |

» Sclect parameters giving best performance on validation set.

InA € {-40,-35,-30,-25,-20,-15} |

7 11

Validation Training
In A -40 -35 -30 25 -20 -15

Erms 1.05 0.30 0.25 0.27 0.52 0.55




K-fold Cross-Validation

https://scikit-learn.org/stable/modules/cross_validation.html

All Data

Training data Test data

Foldl || Fold2 || Fold3 || Fold4 | Fold5 |\

Splitl1 | Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Split2 | Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

> Finding Parameters
Split3 | Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Split4 | Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Split5 | Fold 1 Fold 2 Fold 3 Fold 4 Fold5 |/

Final evaluation { Test data

38



https://scikit-learn.org/stable/modules/cross_validation.html

K-fold Cross-Validation

[

« Split the training data into K folds and try a wide range of
tunning parameter values:
— split the data into K folds of roughly equal size
— 1iterate over a set of values for 4
* iterate over k=1,2,..., K
— use all folds except k for training
— validate (calculate test error) in the k-th fold
* error[A] = average error over the K folds

— choose the value of A that gives the smallest error.

https://scikit-learn.org/stable/modules/generated/sklearn.linear model.LassoCV.html




Model Evaluation

[

 K-fold evaluation

— randomly partition dataset in K equally sized subsets P, P,, ... P

— foreachfoldiin {1, 2, ..., k}:

e teston P, trainon P, U ... UP,

WEPL s gRP

— compute average error/accuracy across K folds.

run 1

run 2

run 3

__ 4-fold evaluation

run 4 _|




Multiple Linear Regression

e (): What 1f the raw feature 1s insufficient for good |
performance?

— Example: house prices depend not only on floor size, but also
number of bedrooms, age, location, ...

e A: Use Multiple Linear Regression.




Multivariate Linear Regression

Polynomial curve fitting:
X Al s, .. T

3 [x09 Xl eoes xM]T

h(x) = h(x,w) = w'x

Multiple linear regression:

X [x09 Xls eees xM]T

h(x) = h(x,w) = w'x

Training examples: (x(D,#,), (x®,8,), ... (x™,#)




Multiple Linear Regression

e Learning = minimize the Sum-of-Squares error function:

N
W = arg min J(w) J(w) = % 2 (R x®) — tn)z
n=1

w

e Computing the gradient VJ(w) and setting it to zero:
N
Z(WTXW —t,) x®W =0
n=1

* Solving for w yields w = (XTX)_let

— Prove it.




Normal Equations

e Solutionis w = (XTX)_lXTt

e X 1s the data matrix, or the design matrix:

(2o
(2

G

oo U G5 TP

kg

&

X(z) X1

(1)

s x,g,ﬂ\
(2) x(Z)

(N) (N)/

tn]! 1s the vector of labels.




Ridge Regression

e Multiple linear regression with L2 regularization:
1 ZN A
e, AN I - 2 = 2

W = arg min J(w)
w

e Solutionis w = (AN I+ XTX)_lXTt

— Prove it.




Regularization: Ridge vs. Lasso

[

* Ridge regression:

N M
1 A
v E ks 2 E 2
e J.asso:

N M
1 A
W) = 77 ), () = 6%+ 5}21 |

— If A is sufficiently large, some of the coefficients w; are driven to 0
=> sparse model.




Regularization: Ridge vs. Lasso

contours of RSS as
it move away from
the minlmum |

B. |

RSS (Least Square)
coefficients
The lasso coefliclents

The ridge regression
coefficients

B,

-

B,

The penalty term (budget)
shown as a constraint region




Regularization

* Regularization alleviates overfitting when using models
with high capacity (e.g. high degree polynomials):
— Want high capacity because we do not know how complicated the
data is.

* (: Can we achieve high capacity when doing curve fitting
without using high degree polynomials?

* A: Use piecewise polynomial curves.

— Example: Cubic spline smoothing.




Cubic Spline Smoothing

e Cubic spline smoothing 1s a regularized version of cubic
spline interpolation.

— Cubic spline interpolation: given z points {(x; , y;)}, connect
adjacent points using cubic functions §; , requiring that the spline
and its first and second derivative remain continuous at all points:

Si(x) = ai(x—z;)3+b;j(x—x;) 2 +ci(x—x5)+d;, Vo € [24, Ti41]

— Cubic spline smoothing: the spline S = {§;} is allowed to deviate
from the data points and has low curvature => constrained
optimization problem with objective:

n T
w; ) )\ " 7 2
L=§ — (Si(zi) — v S S (z)| dx
P Z( Z(lz) yl) + Ty — T1 /xl | (l)l L

s — C, if (z;,y;) is a significant local optima
1 1, otherwise 49




Cubic Spline Smoothing

http://ace.cs.ohio.edu/~razvan/papers/icmlall.pdf
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Fig. 3. Cubic spline smoothing with A = =29 and C' = 1000.




Polynomial Curve Fitting (Revisited)

0 1

y(x) = y(x, W) = w, + wxtF wx’ +...+w,x" = ijxj

N

parameters features

91




Generalization: Basis Functions as Features

Generally g

w; (X =w'o (%)

=0
where ¢;(x) are known as basis functions.

Typically @y(x) = 1, so that wy acts as a bias.

In the simplest case, use linear basis functions : @4(x) = x,.




Linear Basis Function Models (1)

* Polynomial basis functions:

OV — x7 .
* (@Global behavior:

— a small change in x affect all basis
functions.




Linear Basis Function Models (2)

* (Gaussian basis functions:

¢;(z) = exp {_ (= p;)° } ! \ \

9 2
3 0.75 |

 Local behavior: 0.5

— asmall change in x only |
affects nearby basis functions.  0.25

— 4 and s control location and
scale (width). 0




Linear Basis Function Models (3)

(s

» Sigmoidal basis functions:

¢j($>:0<x_w> 1

S

1 0.75
where o(a) = ;
1 + exp(—a)
0.5
e Local behavior:
0.25¢t

— asmall change in x only affect
nearby basis functions.

— ; and s control location and -1
scale (slope).







