Machine Learning
CS 4900/5900

Gradient Descent

Razvan C. Bunescu

School of Electrical Engineering and Computer Science

bunescu@ohio.edu

Machine Learning is Optimization

[

e Parametric ML involves minimizing an objective function
J(w):

— Also called cost function, loss function, or error function.

— Want to find W = argmin J (w)
w

e Numerical optimization procedure:

Start with some guess for w?, set 7 = 0.

Update w* to w**! such that J(w™!) < J(w?).

et

Increnietsr = 7l
Repeat from 2 until J cannot be improved anymore.

Gradient-based Optimization

[

« How toupdate w* to w**! such that J(w*!) < J(w?)?

 Move w 1n the direction of steepest descent:
WT+1 =w? + ng

— | g 1s the direction of steepest descent, 1.e. direction along which J
decreases the most.

- 1 1s the learning rate and controls the magnitude of the change.

Gradient-based Optimization

[

 Move w in the direction of steepest descent:

WT+1:wT s ng

 What is the direction of steepest descent of J(w) at w*?
— The gradient VJ(w) is in the direction of steepest ascent.

— Set g = —V.J(w) => the gradient descent update:

WT+1 =w? — UV](WT)

Gradient Descent Algorithm

=

e Want to minimize a function J: R" — R.

— J 1s differentiable and convex.
— compute gradient of J i.e. direction of steepest increase:

o] d] aj

, , [N} ’_
dwy dw, owy,

Vj(w) =

Set learning rate n = 0.001 (or other small value).
Start with some guess for w?, set 7 = 0.
Repeat for epochs E or until J does not improve:
T=1+ 1.
WT+1 —w? — T)V](WT)

e YN =

Gradient Descent: Large Updates

Start
d here

Performance
surface

Gradient

vectors

|
|
|
w(0) ... w* Low(l) W
—- -
move this way by 1VJ(0) move this way by nVJ(1)

Gradient Descent: Small Updates

Cost

Learning step

Minimum

' B>
Random 6

initial value A

https.//'www.safaribooksonline.com/library/view/hands-on-machine-learning

The Learning Rate

=

1. Setlearning rate n = 0.001 (or other small value).
2. Start with some guess for w', set 7= 0.

3. Repeat for epochs E or until J does not improve:

% T=1+ 1.

5. witl =w? —glJ(w?)

= How big should the learning rate be?
o If learning rate too small => slow convergence.

o If learning rate too big => oscillating behavior => may not even
converge.

Learning Rate too Small

Learning Rate too Large

Learning Rates vs. GD Behavior

Descending with step coefficient 0.005 {iteration 50) Descending with step coefficient 0.05 {iteration 50)

30 30
fx) = %2 * sin(x) fx) = %2 * sin(x)
20t . 20t
107 Start (2.5,3.7) 1 10} Start (2.53.7)

30 .. . End(49.237), a0 .., EndB4227)
" 2 3 4 5 B 7 8 1 2 3 4 5 B 7 8

http://scs.ryerson.ca/~aharley/neural-networks/

The Learning Rate

How big should the learning rate be?
— If learning rate too big => oscillating behavior.

— If learning rate too small => hinders convergence.

Use line search (backtracking line search, conjugate gradient, ...).
Use second order methods (Newton’s method, L-BFGS, ...).
* Requires computing or estimating the Hessian.
Use a simple learning rate annealing schedule:
— Start with a relatively large value for the learning rate.

— Decrease the learning rate as a function of the number of epochs or
as a function of the improvement in the objective.

Use adaptive learning rates:

» Adagrad, Adadelta, RMSProp, Adam.

12
e

Gradient Descent: Nonconvex Objective

Cost

Saddle point

Plateau

. Global
Local minimum .
minimum

Convex Multivariate Objective

Gradient Step and Contour Lines

Gradient Descent: Nonconvex Objectives

Gradient Descent & Plateaus

//'

‘ " \\\\‘\\ ff/// , . ‘s\

\\\\\\\ S l////, l’ ‘s‘ -
0‘9‘

. ‘\\0 & AN
“ \Q\ I/,

(Gradient Descent & Saddle Points

+ 42
— 34
T+ 27
-~ 19
N
- 3
L.
* 12

(Gradient Descent & Ravines

10419

10019

: AMARARRRRRRRNNN

R

(Gradient Descent & Ravines

 Ravines are areas where the surface curves much more
steeply 1n one dimension than another.
— Common around local optima.

— GD oscillates across the slopes of the ravines, making slow progress
towards the local optimum along the bottom.

e Use momentum to help accelerate GD 1n the relevant
directions and dampen oscillations:
— Add a fraction of the past update vector to the current update vector.

e The momentum term increases for dimensions whose previous
gradients point in the same direction.

» It reduces updates for dimensions whose gradients change sign.
 Also reduces the risk of getting stuck in local minima.

20
.

Gradient Descent & Momentum

Vanilla Gradient Descent:
Vit =g (wh)

w'l’+1 =w? — V‘c+1

W=

Gradient Descent w/ Momentum:
vitl =)/VT + nV](WT)

w'l’+1 =w? — Vr+1

=

y is usually set to 0.9 or similar.

Momentum & Nesterov Accelerated Gradient

[

GD with Momentum: Nesterov Accelerated Gradient:

vitl =yv® + (Wb vt =yvT + V] (WT— yv?P)

WT+1 =w? — VT+1 WT+1 =w? — VT+1

L

Nesterov update (Source: G. Hinton’s lecture 6¢)

By making an anticipatory update, NAGs prevents GD from going too fast

=> significant improvements when training RNNs.
22
e

Gradient Descent Optimization Algorithms

* Momentum.
* Nesterov Accelerated Gradient (NAG).
e Adaptive learning rates methods:

— Idea 1s to perform larger updates for infrequent params and smaller
updates for frequent params, by accumulating previous gradient
values for each parameter.

* Adagrad:
— Divide update by sqrt of sum of squares of past gradients.

* Adadelta.
« RMSProp.
* Adaptive Moment Estimation (Adam)

AdaGrad

Optimized for problems with sparse features.

Per-parameter learning rate: make smaller updates for
params that are updated more frequently:

t,i
=w; —17 \/et_G“ where Gy ; = Y5 gzz-,i
0] (w)
9ti = OW:
l

Require less tuning of the learning rate compared with
SGD.

RMSProp

=

» Element-wise gradient: gi= V] (W)

e Gradientis g; = [gf, 95, covy gzt{]
« Element-wise square gradient: g2 = g, o g,

RMSProp:
Eclg?] = yEc—1lg8%] + (1 —y) 8f
_ n
Wiy, = We — \/Et[g2]+egt

y is usually set to 0.9, 1 1s set to 0.001

Adam: Adaptive Moment Estimation

[

« Maintain an exponentially decaying average of past
gradients (1%t m.) and past squared gradients (2"¢ m.):

) mg=pme 1+ (1—-p5)8:
2) Ve=P1 Ve +(1—By) 8¢

e Biased towards 0 during initial steps, use bias-corrected
first and second order estimates:
mg
1-;
. Ve
S

1) ﬁ\lt —

2) ¥

Adam: Adaptive Moment Estimation

* First and second moment:
m; =p;my_; + (11— (1) 8¢
V = By Veoq + (1 — By) 87

* Bias-correction:

A~ m A V.
m, = - t,:andvt=1 ;t
e 1 /-2
Adam:
_ /N
Wit1 = W — =~ 1I;

Visualization

* Adagrad, RMSprop, Adadelta, and Adam are very similar
algorithms that do well in similar circumstances.

— Insofar, Adam might be the best overall choice.

7/
Z# NNy — SGD - — SGD
=~ = 137 f— Momentum E —— Momentum
s = =

— ~—— NAG - — NAG
B ' 7 — Adagrad

Adagrad s v
Adadelta Adadelta

,,’,’,/,'l://”’lll”ll,'l

Rmsprop ,zf%%:{;%};’;i;,@"/l &% 4 Rmsprop

oy %

7 %

/"}t,'
5

S STITRTRIIS
QLTI
N
e o 0 0 0 0 0
A
SIS
KSR

Variants of Gradient Descent

WT+1 =w? — 77 V](W‘L’)

* Depending on how much data 1s used to compute the
gradient at each step:
— Batch gradient descent:
« Use all the training examples.
— Stochastic gradient descent (SGD).
« Use one training example, update after each.
— Minibatch gradient descent.

» Use a constant number of training examples (minibatch).

Batch Gradient Descent

« Sum-of-squares error:
N

JW) =52 Y (hx™) = t,)
n=

WT+1 . WT — 7 V](WT)

N
1
witl =w? — n N z (hw(x(n)) — tn) x (M)
n=1

Stochastic Gradient Descent

=

e Sum-of-squares error:
N

N
1 ~— 1 ~—
Jo0 = 557> (G = 6= 55

=1

witl =w? — n V](WT,X(n))

wtl=w?® — n(h,x™) — ¢,) x™

] (WT’ X(n))

« Update parameters w after each example, sequentially:

=> the least-mean-square (LMS) algorithm.

Batch GD vs. Stochastic GD

* Accuracy:

* Time complexity:

* Memory complexity:

* Online learning:

Batch GD vs. Stochastic GD

~ Gradient Descent

—

Pre-processing Features

« Features may have very different scales, e.g. x; = rooms
VS. X, = size 1n sq ft.
— Right (different scales): GD goes first towards the bottom of the
bowl, then slowly along an almost flat valley.
— Left (scaled features): GD goes straight towards the minimum.

‘12

8,
A

Feature Scaling

[

" Scaline’ betweeni [0, 1] on&=15=+1:
— For each feature x;, compute min; and max; over the training

examples.

— Scale x(”)j as follows:

* Scaling to standard normal distribution:

— For each feature x;, compute sample ¢, and sample g; over the
training examples.

— Scale x(”)j as follows:

Implementation: Gradient Checking

Want to minimize J(6), where 6 1s a scalar.

Mathematical definition of derivative:

ij(8)=1im](6+g)_](g_€)
do S 2¢€

Numerical approximation of derivative:

ij(@)z JO+¢e)-J(O-¢)
do 2¢€

where € = 0.0001

Implementation: Gradient Checking

[

e If 0 1s a vector of parameters 0.,
— Compute numerical derivative with respect to each 0..

— Aggregate all derivatives into numerical gradient G,,,(0).

e Compare numerical gradient G,,,,(0) with implementation
of gradient Gy,,(0):

Goun® -G,] _ ot
0)+G,,,(0)]

num

Gradient Descent vs. Normal Equations

=

* Gradient Descent:
— Need to select learning rate 7.
— May need many iterations:
« Can do Early Stopping on validation data for regularization.
— Scalable when number of training examples N i1s large.

 Normal Equations:
— No iterations => easy to code.
— Computing (XTX)! has cubic time complexity => slow for large N.
~ XTX may be singular:
1. Redundant (linearly dependent) features.

2. #features > #examples => do feature selection or regularization.

38
R

