
Razvan C. Bunescu

School of Electrical Engineering and Computer Science

bunescu@ohio.edu

Logistic Regression

CS 4900/5900: Machine Learning

Supervised Learning

• Task = learn an (unkown) function t : X ® T that maps input
instances x Î X to output targets t(x) Î T:
– Classification:

• The output t(x) Î T is one of a finite set of discrete categories.
– Regression:

• The output t(x) Î T is continuous, or has a continuous component.

• Target function t(x) is known (only) through (noisy) set of
training examples:

(x1,t1), (x2,t2), … (xn,tn)

Supervised Learning

Training Examples
(xk, tk)

Test Examples
(x, t)

Learning
Algorithm Model h

Model h

Training

Testing

Generalization
Performance

Parametric Approaches to Supervised
Learning

• Task = build a function h(x) such that:
– h matches t well on the training data:

=> h is able to fit data that it has seen.
– h also matches t well on test data:

=> h is able to generalize to unseen data.

• Task = choose h from a “nice” class of functions that
depend on a vector of parameters w:
– h(x) º hw(x) º h(w,x)
– what classes of functions are “nice”?

Neurons

Soma is the central part of the neuron:
• where the input signals are combined.

Dendrites are cellular extensions:
• where majority of the input occurs.

Axon is a fine, long projection:
• carries nerve signals to other neurons.

Synapses are molecular structures between
axon terminals and other neurons:
• where the communication takes place.

Neuron Models
https://www.research.ibm.com/software/IBMResearch/multimedia/IJCNN2013.neuron-
model.pdf

Spiking/LIF Neuron Function
http://ee.princeton.edu/research/prucnal/sites/default/files/06497478.pdf

Neuron Models
https://www.research.ibm.com/software/IBMResearch/multimedia/IJCNN2013.neuron-
model.pdf

McCulloch-Pitts Neuron Function

Σ f

1x0

x1

x2

x3

wixi∑ hw(x)

activation / output
function

w0

w1

w2

w3

• Algebraic interpretation:
– The output of the neuron is a linear combination of inputs from other neurons,

rescaled by the synaptic weights.
• weights wi correspond to the synaptic weights (activating or inhibiting).
• summation corresponds to combination of signals in the soma.

– It is often transformed through an activation / output function.

Activation Functions

1

0

f (z) = 1
1+ e−z

logistic

f (z) = 0 if z < 0
1 if z ≥ 0

"
#
$

%$
unit step

f (z) = zidentity

Perceptron

Logistic Regression
Linear Regression

Linear Regression

• Polynomial curve fitting is Linear Regression:
x = φ(x) = [1, x, x2, ..., xM]T

h(x) = wTx

Σ f

1x0

x1

x2

x3

wixi∑ hw(x) =

activation / output
function

w0

w1

w2

w3 f (z) = z wixi∑

McCulloch-Pitts Neuron Function

Σ f

1x0

x1

x2

x3

wixi∑ hw(x)

activation / output
function

w0

w1

w2

w3

• Algebraic interpretation:
– The output of the neuron is a linear combination of inputs from other neurons,

rescaled by the synaptic weights.
• weights wi correspond to the synaptic weights (activating or inhibiting).
• summation corresponds to combination of signals in the soma.

– It is often transformed through a monotonic activation / output function.

Logistic Regression

• Training set is (x1,t1), (x2,t2), … (xn,tn).
x = [1, x1, x2, ..., xk]T

h(x) = σ(wTx)
• Can be used for both classification and regression:

• Classification: T = {C1, C2} = {1, 0}.
• Regression: T = [0, 1] (i.e. output needs to be normalized).

Σ

1x0

x1

x2

x3

wixi∑ hw(x)

activation
function f

w0

w1

w2

w3
=

1
1+ exp(−wTx)f (z) = 1

1+ exp(−z)

Logistic Regression for Binary Classification

• Model output can be interpreted as posterior class
probabilities:

• How do we train a logistic regression model?
– What error/cost function to minimize?

p(C1 | x) =σ (w
Tx) = 1

1+ exp(−wTx))

p(C2 | x) =1−σ (w
Tx) = exp(−wTx)

1+ exp(−wTx)

Logistic Regression Learning

• Learning = finding the “right” parameters wT = [w0, w1, … , wk]
– Find w that minimizes an error function E(w) which measures the

misfit between h(xn,w) and tn.
– Expect that h(x,w) performing well on training examples xn Þ

h(x,w) will perform well on arbitrary test examples x Î X.

• Least Squares error function?

E(w) = 1
2

{h(xn,w)− tn}
2

n=1

N

∑

– Differentiable => can use gradient descent ✓
– Non-convex => not guaranteed to find the global optimum ✗

Maximum Likelihood

Training set is D = {áxn, tnñ | tnÎ {0,1}, n Î 1…N}

Let

Maximum Likelihood (ML) principle: find parameters that
maximize the likelihood of the labels.

• The likelihood function is

• The negative log-likelihood (cross entropy) error function:

p(t |w) = hn
tn (1− hn)

(1−tn)

n=1

N

∏

hn = p(C1 | xn)⇔ hn = p(tn =1| xn) =σ (w
Txn)

E(w) = − ln p(t | x) = − tn lnhn + (1− tn)ln(1− hn){ }
n=1

N

∑

Maximum Likelihood Learning
for Logistic Regression

• The ML solution is:

• ML solution is given by ÑE(w) = 0.
– Cannot solve analytically => solve numerically with gradient

based methods: (stochastic) gradient descent, conjugate gradient,
L-BFGS, etc.

– Gradient is (prove it):

∇E(w) = (hn − tn)xn
T

n=1

N

∑

wML = argmaxw p(t |w) = argmin
w
E(w)

convex in w

Regularized Logistic Regression

• Use a Gaussian prior over the parameters:
w = [w0, w1, … , wM]T

• Bayes’ Theorem:

• MAP solution:

þ
ý
ü

î
í
ì-÷

ø
ö

ç
è
æ==

+
- wwI0w T

M

Νp
2

exp
2

),()(
2/)1(

1 a
p
aa

)()|(
)(

)()|()|(wwt
t
wwttw pp

p
ppp µ=

)|(maxarg tww
w
pMAP =

Regularized Logistic Regression

• MAP solution:
)|(maxarg tww

w
pMAP =)()|(maxarg wwt

w
pp=

)()|(lnminarg wwt
w

pp-=

)(ln)|(lnminarg wwt
w

pp --=

)(ln)(minarg ww
w

pED -=

www
w

T
DE 2

)(minarg a
+=)()(minarg ww ww

EED +=

{ }å
=

--+-=
N

n
nnnnD ytytE

1
)1ln()1(ln)(w

wwww
TE

2
)(a
=

data term

regularization term

Regularized Logistic Regression

• MAP solution:

• ML solution is given by ÑE(w) = 0.

ÑE(w) = ÑED(w) + ÑEw(w)

• Cannot solve analytically => solve numerically:
– (stochastic) gradient descent [PRML 3.1.3], Newton Raphson

iterative optimization [PRML 4.3.3], conjugate gradient, LBFGS.

)()(minarg www ww
EEDMAP +=

= (hn − tn)xn
T +αwT

n=1

N

∑

still convex in w

where hn =σ (w
Txn)

Softmax Regression = Logistic Regression
for Multiclass Classification

• Multiclass classification:
T = {C1, C2, ..., CK} = {1, 2, ..., K}.

• Training set is (x1,t1), (x2,t2), … (xn,tn).
x = [1, x1, x2, ..., xM]
t1, t2, … tn Î {1, 2, ..., K}

• One weight vector per class [PRML 4.3.4]:

p(Ck | x) =
exp(wk

Tx))
exp(w j

Tx)
j∑

Softmax Regression (K ³ 2)

• Inference:

• Training using:
– Maximum Likelihood (ML)
– Maximum A Posteriori (MAP) with a Gaussian prior on w.

)|(maxarg* xkC
CpC

k

=

= argmax
Ck

exp(wk
Tx)

exp(w j
Tx)

j∑
Z(x) a normalization
constant

= argmax
Ck
exp(wk

Tx)

= argmax
Ck
wk

Tx

Softmax Regression

• The negative log-likelihood error function is:

• The Maximum Likelihood solution is:

• The gradient is (prove it):

ED (w) = −
1
N
ln p(tn | xn)

n=1

N

∏
convex in w

= −
1
N

ln
exp(wtn

T xn)
Z(xn)n=1

N

∑

î
í
ì

¹
=

=
tx
tx

xt 0
1

)(dwhere is the Kronecker delta function.

)(minarg ww
w DML E=

∇wk
ED (w) = −

1
N

δk (tn)− p(Ck | xn)()
n=1

N

∑ xn

Regularized Softmax Regression

• The new cost function is:

• The new gradient is (prove it):

E(w) = ED (w)+Ew (w)

∇wk
E(w) = − 1

N
δk (tn)− p(Ck | xn)()xnT

n=1

N

∑ +αwk
T

= −
1
𝑁
%
&'(

)

ln
exp 𝐰01

2 𝐱&
𝑍 𝐱&

+
𝛼
2
𝐰 8

Softmax Regression

• ML solution is given by ÑED(w) = 0 .
– Cannot solve analytically.

– Solve numerically, by pluging [cost, gradient] = [E(w), ÑE(w)]
values into general convex solvers:

• L-BFGS
• Newton methods
• conjugate gradient
• (stochastic / minibatch) gradient-based methods.

– gradient descent (with / without momentum).
– AdaGrad, AdaDelta
– RMSProp
– ADAM, ...

Implementation

• Need to compute [cost, gradient]:

§ cost

§ gradientk

=> need to compute, for k = 1, ..., K:

§ output

= −
1
N

δk (tn)ln p(Ck | xn)
k=1

K

∑
n=1

N

∑ +
α
2

wk
T

k=1

K

∑ wk

= −
1
N

δk (tn)− p(Ck | xn)()xnT
n=1

N

∑ +αwk
T

p(Ck | xn) =
exp(wk

Txn))
exp(w j

Txn)j∑ Overflow when wk
Txn

are too large.

Implementation: Preventing Overflows

• Subtract from each product wk
Txn the maximum product:

c =max
1≤k≤K

wk
Txn

p(Ck | xn) =
exp(wk

Txn − c))
exp(w j

Txn − c)j∑

n

n

n

Implementation: Gradient Checking

• Want to minimize J(θ), where θ is a scalar.

• Mathematical definition of derivative:

• Numerical approximation of derivative:

d
dθ

J(θ) ≈ J(θ +ε)− J(θ −ε)
2ε

where ε = 0.0001

𝑑
𝑑𝜃 𝐽 𝜃 = lim

>→@

𝐽 𝜃 + 𝜀 − 𝐽(𝜃 − 𝜀)
2𝜀

Implementation: Gradient Checking

• If θ is a vector of parameters θi,
– Compute numerical derivative with respect to each θi.

• Create a vector v that is ε in position i and 0 everywhere else:
– How do you do this without a for loop in NumPy?

• Compute Gnum(θi) = (J(θ +v) − J(θ − v)) / 2ε
– Aggregate all derivatives into numerical gradient Gnum(θ).

• Compare numerical gradient Gnum(θ) with implementation
of gradient Gimp(θ):

Gnum (θ)−Gimp(θ)
Gnum (θ)+Gimp(θ)

≤10−6

Implementation: Vectorization of LR

• Version 1: Compute gradient component-wise.

– Assume example xn is stored in column X[:,n] in data matrix X.

grad = np.zeros(K)
for n in range(N):

h = sigmoid(w.dot(X[:,n])
temp = h − t[n]
for k in range(K):
grad[k] = grad[k] + temp * X[k,n]

∇E(w) = (hn − tn)xn
T

n=1

N

∑

def sigmoid(x):
return 1 / (1 + np.exp(−x))

Implementation: Vectorization of LR

• Version 2: Compute gradient, partially vectorized.

grad = np.zeros(K)
for n in range(N):

grad = grad + (sigmoid(w.dot(X[:,n])) − t[n]) * X[:,n]

∇E(w) = (hn − tn)xn
T

n=1

N

∑

def sigmoid(x):
return 1 / (1 + np.exp(−x))

Implementation: Vectorization of LR

• Version 3: Compute gradient, vectorized.

grad = X.dot(sigmoid(w.dot(X)) − t)

∇E(w) = (hn − tn)xn
T

n=1

N

∑

def sigmoid(x):
return 1 / (1 + np.exp(−x))

Vectorization of Softmax

• Need to compute [cost, gradient]:

§ cost

§ gradientk

=> compute ground truth matrix G such that G[k,n] = 𝛿k(tn)

from scipy.sparse import coo_matrix
groundTruth = coo_matrix((np.ones(N, dtype = np.uint8),

(labels, np.arange(N)))).toarray()

= −
1
N

δk (tn)ln p(Ck | xn)
k=1

K

∑
n=1

N

∑ +
α
2

wk
T

k=1

K

∑ wk

= −
1
N

δk (tn)− p(Ck | xn)()xnT
n=1

N

∑ +αwk
T

Vectorization of Softmax

• Compute cost

– Compute matrix of 𝐰E2𝐱&.

– Compute matrix of 𝐰E2𝐱& − 𝑐&.

– Compute matrix of exp(𝐰E2𝐱& − 𝑐&).

– Compute matrix of ln 𝑝(𝐶E|𝐱&).

– Compute log-likelihood.

= −
1
N

δk (tn)ln p(Ck | xn)
k=1

K

∑
n=1

N

∑ +
α
2

wk
T

k=1

K

∑ wk

Vectorization of Softmax

• Compute gradk

§ Gradient = [grad1 | grad2 | … | gradK]

– Compute matrix of 𝑝(𝐶E|𝐱&).

– Compute matrix of gradient of data term.

– Compute matrix of gradient of regularization term.

= −
1
N

δk (tn)− p(Ck | xn)()xnT
n=1

N

∑ +αwk
T

Vectorization of Softmax

• Useful Numpy functions:
– np.dot()
– np.amax()
– np.argmax()
– np.exp()
– np.sum()
– np.log()
– np.mean()

import scipy

• scipy.sparse.coo_matrix()
groundTruth = coo_matrix((np.ones(numCases, dtype = np.uint8),

(labels, np.arange(numCases)))).toarray()
• scipy.optimize:

– scipy.optimize.fmin_l_bfgs_b()
theta, _, _ = fmin_l_bfgs_b(softmaxCost, theta,

args = (numClasses, inputSize, decay, images, labels),
maxiter = 100, disp = 1)

– scipy.optimize.fmin_cg()
– scipy.minimize
https://docs.scipy.org/doc/scipy-0.10.1/reference/tutorial/optimize.html

https://docs.scipy.org/doc/scipy-0.10.1/reference/tutorial/optimize.html

Multiclass Logistic Regression (K ³ 2)

1) Train one weight vector per class [PRML Chapter 4.3.4]:

2) More general approach:

- Inference:

å
=

j
T
j

T
k

kCp))(exp(
))(exp()|(
xw
xwx
j

j

å
=

j j
T

k
T

k C
CCp

)),(exp(
)),(exp()|(

xw
xwx
j

j

)|(maxarg* xkC
CpC

k

=

Logistic Regression (K ³ 2)

2) Inference in more general approach:

• Training using:
– Maximum Likelihood (ML)
– Maximum A Posteriori (MAP) with a Gaussian prior on w.

)|(maxarg* xkC
CpC

k

=

å
=

j j
T

k
T

C C
C

k)),(exp(
)),(exp(maxarg

xw
xw
j

j Z(x) the partition
function.

)),(exp(maxarg k
T

C
C

k

xw j=

),(maxarg k
T

C
C

k

xw j=

Logistic Regression (K ³ 2) with ML

• The negative log-likelihood error function is:

• The gradient is (prove it):

åÕ
==

-=-=
N

n n

nn
TN

n
nnD Z

ttpE
11)(

)),(exp(ln)|(ln)(
x
xwxw j

ú
û

ù
ê
ë

é
¶

¶
¶

¶
¶

¶
=Ñ

M

DDD
D w

E
w

E
w

EE)(,,)(,)()(
10

wwww !

),()|(),()(
1 11

kni

N

n

K

k
nk

N

n
nni

i

D CCpt
w

E xxxw jj ååå
= ==

+-=
¶

¶

)(minarg ww
w DML E=

convex in w

Logistic Regression (K ³ 2) with ML

• Set ÑED(w) = 0 Þ ML solution satisfies:

Þ for every feature ji, the observed value on D should be the same as
the expected value on D!

• Solve numerically:
– Stochastic gradient descent [chapter 3.1.3].
– Newton Raphson iterative optimization (large Hessian!).
– Limited memory Newton methods (e.g. L-BFGS).

),()|(),(
1 11

kni

N

n

K

k
nk

N

n
nni CCpt xxx jj ååå

= ==

=

The Maximum Entropy Principle

• Principle of Insufficient Reason
• Principle of Indifference

– can be traced back to Pierre Laplace and Jacob Bernoulli.

Ø A. L. Berger, S. A. Della Pietra, and V. J. Della Pietra. 1996.
A maximum entropy approach to natural language processing.
Computational Linguistics, 22(1).
– “model all that is known and assume nothing about that which is

unknown”.
– “given a collection of facts, choose a model consistent with all the

facts, but otherwise as uniform as possible”.

Maximum Likelihood Û Maximum Entropy

1) Maximize conditional likelihood:

ÕÕ
==

==
N

n n

nn
TN

n
nn Z

ttpp
11)(

)),(exp()|()|(
x
xwxwt w

j
)|(maxarg wtw

w
pML =

)(
)),(exp()|()|(

n

nn
T
ML

nnnnME Z
ttptp

ML x
xwxx w

j
==

2) Maximize conditional entropy:

subject to:
)|(log)|(maxarg

1 1
nk

N

n

K

k
nkpME CpCpp xxåå

= =

-=

),()|(),(
1 11

kn

N

n

K

k
nk

N

n
nn CCpt xxx jj ååå

= ==

=

