CS 4900/5900: Machine Learning

Logistic Regression

Razvan C. Bunescu

School of Electrical Engineering and Computer Science

bunescu@ohio.edu




Supervised Learning

Task = learn an (unkown) function 7 : X — T that maps mput
instances X € X to output targets #x) € T:
— Classification:
* The output #(x) € T is one of a finite set of discrete categories.
— Regression:
» The output #x) e T is continuous, or has a continuous component.

Target function #x) 1s known (only) through (noisy) set of
training examples:

(Xlatl)a (X29t2)9 g O (Xnatn)




Supervised Learning

=

Training

Training Examples ME:) Leamlng I::> Model A
(X, 1) Algorithm

4

Testing

@H — [ Model / } — Generalization
(x, t) Performance




Parametric Approaches to Supervised
Learning

Task = build a function A4(x) such that:

— h matches ¢ well on the training data:
=> } 1s able to fit data that 1t has seen.
— h also matches ¢ well on test data:
=> J1 1s able to generalize to unseen data.

Task = choose £ from a ““nice” class of functions that
depend on a vector of parameters w:

— h(X) = hy(Xx) = h(w,X)

— what classes of functions are “nice”?




Neurons

Soma is the central part of the neuron:
* where the input signals are combined.

Dendrites are cellular extensions:
* where majority of the input occurs.

Axon i1s a fine, long projection:
* carries nerve signals to other neurons.

Synapses are molecular structures between
axon terminals and other neurons:
* where the communication takes place.




Neuron Models
https://www.research.ibm.com/software/IBMResearch/multimedia/IJCNN2013.neuron-
model.pdf year  Model Name Reference

1907 Integrate and fire [13]
1943  McCulloch and Pitts [11]
1952  Hodgkin-Huxley [12]
1958  Perceptron [14]
1961  Fitzhugh-Nagumo [15]
1965 Leaky integrate-and-fire [16] |
1981 Morris-Lecar [17]
1986  Quadratic integrate-and-fire [18]
1989 Hindmarsh-Rose [19]
1998  Time-varying integrate-and-fire model [20]
1999  Wilson Polynomial [21]
2000 Integrate-and-fire or burst [22]
2001  Resonate-and-fire [23]
2003  Izhikevich [24]
2003  Exponential integrate-and-fire [25]
2004  Generalized integrate-and-fire [26]
2005  Adaptive exponential integrate-and-fire [27]
2009  Mihalas-Neibur [28]




Spiking/LIF Neuron Function

http://ee.princeton.edu/research/prucnal/sites/default/files/06497478.pdf

xl(t)\

w,,T,

x(t)

W;,T;

» [ o

Wy, TN

x(t)”

(b)

Fig. 2. (a) lllustration and (b) functional description of a leaky integrate-and-
fire neuron. Weighted and delayed input signals are summed into the input
current I,,;,, (), which travel to the soma and perturb the internal state variable,
the voltage V. Since V' is hysteric, the soma performs integration and then
applies a threshold to make a spike or no-spike decision. After a spike is
released, the voltage V' is reset to a value Vi.s.¢. The resulting spike is sent to
other neurons in the network.




Neuron Models
https://www.research.ibm.com/software/IBMResearch/multimedia/IJCNN2013.neuron-
model.pdf year  Model Name Reference

1907 Integrate and fire [13]
1943  McCulloch and Pitts [11]
1952  Hodgkin-Huxley [12]
1958  Perceptron [14]
1961  Fitzhugh-Nagumo [15]
1965 Leaky integrate-and-fire [16]
1981 Morris-Lecar [17]
1986  Quadratic integrate-and-fire [18]
1989 Hindmarsh-Rose [19]
1998  Time-varying integrate-and-fire model [20]
1999  Wilson Polynomial [21]
2000 Integrate-and-fire or burst [22]
2001  Resonate-and-fire [23]
2003  Izhikevich [24]
2003  Exponential integrate-and-fire [25]
2004  Generalized integrate-and-fire [26]
2005  Adaptive exponential integrate-and-fire [27]
2009  Mihalas-Neibur [28]




McCulloch-Pitts Neuron Function

X0(1 activation | output
function

X1 ‘
y ; .®
x, @ = 2 o f hy(X)

Algebraic interpretation:

— The output of the neuron is a linear combination of inputs from other neurons,
rescaled by the synaptic weights.

« weights w; correspond to the synaptic weights (activating or inhibiting).
e summation corresponds to combination of signals in the soma.

— It is often transformed through an activation / output function.




Activation Functions

: 0 1fz<0
unit ste 7) =
™ { 1 ifz=0
Perceptron
o 1
logistic f(z) =
l+e™*

Logistic Regression

1

A

identity f(2)=z

Linear Regression




Linear Regression

activation / output
function

L f -®
Ewi'xt ]’l (X) L E oy
f(@)=z i Y

* Polynomial curve fitting 1s Linear Regression:
X = () MER -, “NEh ]

h(x) =w'x




McCulloch-Pitts Neuron Function

X0(1 activation / output
function

X1 ‘
y ; .®
x, @ = 2 o f hy(X)

Algebraic interpretation:

— The output of the neuron is a linear combination of inputs from other neurons,
rescaled by the synaptic weights.

« weights w; correspond to the synaptic weights (activating or inhibiting).
e summation corresponds to combination of signals in the soma.

— It is often transformed through a monotonic activation / output function.




Logistic Regression

X011 . activation
0

function

1@ Wi a

i 2 EW 3 > =)
X2 . W3 A 1 hW(X) v 1 -
f(2)= 1+exp(-w x)
1+exp(-2z)
X3

e Training set 1s (X;,t;), (X5,1), ... (Xp.t,).
xe= [ 1,565, x,, oy, |
h(x) = o(W'x)
» (Can be used for both classification and regression:
e C(lassification: T = {C;, C,} = {1, 0}.

e Regression: T = [0, 1] (i.e. output needs to be normalized).




Logistic Regression for Binary Classification

=

e Model output can be interpreted as posterior class
probabilities:

1

PERISe (TS 1+exp(-w' X))

p(C,1xX)=1-0(W'x) = exp(-w'X)

1+exp(-w'x)

 How do we train a logistic regression model?

— What error/cost function to minimize?




Logistic Regression Learning

=

* Learning = finding the “right” parameters w™ = [w,, w;, ..., w; ]

— Find w that minimizes an error function E(w) which measures the
misfit between A(x,,w) and #,.

— Expect that #(x,w) performing well on training examples x, =
h(x,w) will perform well on arbitrary test examples x € X.

« Least Squares error function?
1% )
E(w)=— h(x ,w)—t
(W) ZZ{ (X, W)=1,}

— Differentiable => can use gradient descent v

— Non-convex => not guaranteed to find the global optimum X




Maximum Likelihood

=

Traiming*scils D =KX, 1. Eieie {00 1" <1 . AN
Let h =p(C,1x )< h =p(t, =11x)=0(W'x )

Maximum Likelihood (ML) principle: find parameters that
maximize the likelithood of the labels.

N
» The likelihood function is p(tIw)=| [Ard-h,)"
n=1

* The negative log-likelihood (cross entropy) error function:
N

E(w)=-Inp(tIx)= —E{tn Inf, +(1-1,)In(1-h,)}

n=1




Maximum Likelihood Learning

for Logistic Regression

[

e The ML solution is:

w,, =argmax p(t|w)=argmin|E(W) e

e ML solution 1s given by VE(w) = 0.

-1 convex in w

— Cannot solve analytically => solve numerically with gradient
based methods: (stochastic) gradient descent, conjugate gradient,

L-BFGS, etc.
— GQradient 1s (prove it):

VE(W)= Y (h,~1,)X;




Regularized Logistic Regression

e Use a Gaussian prior over the parameters:

W [W07 Wisses, WM]T

(M+1)/2
p(W)=N(0,a'T) = (ﬂj exp{— A WTW}
270 2

* Bayes’ Theorem:
p(t{w)p(w)
p(t)

 MAP solution:

p(w|t)= o p(t|w)p(w)

W, » =argmax p(w|t)




Regularized Logistic Regression

 MAP solution:
W, » =argmax p(w|t) =argmax p(t|w)p(w)
~ argmin-In p(t| w)p(w)
=argmin—In p(t| w) —In p(w)
= arg m:inE (W) —1n p(w)

=argmin £, (W) + %WTW =argminE,(w)+ E_(w)

data term

\

E, (W)= ﬁ:{t Iny +(1—¢)In(1-y )}

E_ (W)= =W W > regularization term




Regularized Logistic Regression

MAP solution:

W, =argmmk, (w)+E, (W)

-
-
—
-
-
D
-
-
P2
-
-
-

ML solution 1s given by VE(w)

= (8

still convex in w

VE(W) = VEp(W)+ VEy(w) = ¥ (b, =1,)X] +aw’

where h, = o(W'x )

Cannot solve analytically => solve numerically:

— (stochastic) gradient descent [PRML 3.1.3], Newton Raphson
iterative optimization [PRML 4.3.3], conjugate gradient, LBFGS.




Softmax Regression = Logistic Regression
for Multiclass Classification

[

 Multiclass classification:
T={@%, Co8, Crhi=+4d..2; ... ./ K},

e Training set 1s (X;,t;), (X5,1), ... (Xp.t,).
X = [1, x1, X3, «eey Xpql
tl, tz, tn = {1, 2, coey K}

* One weight vector per class [PRML 4.3 .4]:
T
ey, 2L

Ejexp(W]T.x)




Softmax Regression (K > 2)

Inference:

C.=arg max p(C, |x)

fi:
= arg max %)

G |y exp(Wix)

————
-
-
-
———
-
-
-

= arg max exp(W, X)
C

k

T
= argmax w, X
Ck

Training using:

Maximum Likelihood (ML)

Z(X) a normalization
constant

Maximum A Posteriori (MAP) with a Gaussian prior on w.




Softmax Regression

The negative log-likelihood error function is:

71 convex in ' w

1 a exp(w | 2
ED(w)=-N1n];[p(tn X ) _-_21 .

The Maximum Likelihood solution is:

w,, =argminE,(w)

The gradient 1s (prove it):

V., Ep(w)= —%z(ék(tn) -p(C,1x,))X,

K=l

1
where J,(x) = {O t 1s the Kronecker delta function.
X+




Regularized Softmax Regression

[

e The new cost function 1s:

Ew)=E,(W)+E_(W)

L ¥ lnexp(wg;lxn) A

# 2
m Z(x,) > |wl]

 The new gradient 1s (prove it):

V., E(W)= —%E(ék(tn)—p(ck 1X,))xX, +aw,

n=1




Softmax Regression

ML solution 1s given by VE,(w) =0 .
— Cannot solve analytically.

— Solve numerically, by pluging [cost, gradient] = [E(w), VE(W)]
values into general convex solvers:

L-BFGS
Newton methods

conjugate gradient

(stochastic / minibatch) gradient-based methods.
— gradient descent (with / without momentum).
— AdaGrad, AdaDelta
— RMSProp
— ADAM, ...




Implementation

=

* Need to compute [cost, gradient]:

N K

 cost === 3 38, p(C, 1x,)+ Ewkwk

n=1 k=1

. B
" gradient, = NZ (8,(z,)- p(C, 1X,))X, +aw,

=> need to compute, for k=1, ..., K:

= output p(C,1x )=

exp(W, X, ))

Y exp(wix,)
J

Overflow when w,'x,
are too large.




Implementation: Preventing Overflows

 Subtract from each product w,'x, the maximum product:

T
C=Maxw, X
& 1<k<K e




Implementation: Gradient Checking

Want to minimize J(6), where 6 1s a scalar.

Mathematical definition of derivative:

J(9" I 8) = J(OE=te)
2&

d :
=

Numerical approximation of derivative:

ij(@)z JO+¢e)-J(O-¢)
do 2¢€

where € = 0.0001




Implementation: Gradient Checking

=

* If 0 1s a vector of parameters 0,
— Compute numerical derivative with respect to each 0..
» Create a vector v that is € in position i and 0 everywhere else:
— How do you do this without a for loop in NumPy?
e Compute G,,,(0,) = (J(0 +v) —J(0 —V))/2¢

— Aggregate all derivatives into numerical gradient G,,,(0).

e Compare numerical gradient G,,,(0) with implementation
of gradient Gy;,,(0):

G (8)- G, (0)] _
(6)+G,,,(0)

<10°

|6

num




Implementation: Vectorization of LR

[

e Version 1: Compute gradient component-wise.

VE(W)= Y (h,~1,)x;

— Assume example x,, 1s stored in column X[:,n] in data matrix X.

grad = np.zeros(K)
for n in range(N):
h = sigmoid(w.dot(X[:,n])
temp = h — t[n]
for k in range(K):
grad[k] = grad[k] + temp * X[k,n]

def sigmoid(x):
return 1 / (1 + np.exp(—x))




Implementation: Vectorization of LR

[

* Version 2: Compute gradient, partially vectorized.
N
VE(W)= Y (h,~1,)X,
n=1

grad = np.zeros(K)
for n in range(N):
grad = grad + (sigmoid(w.dot(X[:,n])) — t[n]) * X[:,n]

def sigmoid(x):
return 1 / (1 + np.exp(—x))




Implementation: Vectorization of LR

* Version 3: Compute gradient, vectorized.
N
VE(W)= Y (h,~1,)X,
n=1

grad = X.dot(sigmoid(w.dot(X)) — t)

def sigmoid(x):
return 1 / (1 + np.exp(—x))




Vectorization of Softmax

[

* Need to compute [cost, gradient]:

1 N K K
= cost =—— ¥ ¥ 8,(t,)Inp(C, 1x,)+ 2 > wiw,
Nn=1k=1 2k=1
1 N
= oradient, =—— (6,(t.)-p(C, I1x))x' +aw’
g K NZ(M P(C, 1X,))x, +aw,

=> compute ground truth matrix G such that G[k,n] = 6,(z,)
from scipy.sparse import coo_matrix
groundTruth = coo _matrix((np.ones(N, dtype = np.uint§),

(labels, np.arange(N)))).toarray()




Vectorization of Softmax

[

1 N K a K 4
« Compute cost=—ﬁ225k(tn)lnp(CkIxn)+agwkwk

n=1 k=1

— Compute matrix of W/ x,,.

— Compute matrix of Wi x,, — ¢,,.

— Compute matrix of exp(W. X, — ¢y).
— Compute matrix of In p(Cr |X,,).

— Compute log-likelihood.




Vectorization of Softmax

[

N
« Compute grad, = —%E(ék(tn) - p(C 1x))X, +aw,

n=1

= Gradient = [grad, | grad, | ... | gradg]

— Compute matrix of p(Cy|X;,).

— Compute matrix of gradient of data term.

— Compute matrix of gradient of regularization term.




Vectorization of Softmax

e Useful Numpy functions:
— np.dot()
— np.amax()
— np.argmax()
— np.exp()

— np.sum()

— np.log()
— np.mean()




Import scipy

e scipy.sparse.coo matrix()
groundTruth = coo matrix((np.ones(numCases, dtype = np.uint8),
(labels, np.arange(numCases)))).toarray()
e scipy.optimize:
— scipy.optimize.fmin | bfgs b()
theta, , =fmin 1 bfgs b(softmaxCost, theta,
args = (numClasses, inputSize, decay, images, labels),
maxiter = 100, disp=1)
— scipy.optimize.fmin cg()
— scipy.minimize
https://docs.scipy.org/doc/scipy-0.10.1/reference/tutorial/optimize.html



https://docs.scipy.org/doc/scipy-0.10.1/reference/tutorial/optimize.html

Multiclass Logistic Regression (K > 2)

1) Train one weight vector per class [PRML Chapter 4.3.4]: |

_ exp(w/p(x))
AL s > exp(wo(x)

2) More general approach:

_exp(w' o(x,C,))
p(Ck |X) 2 Zj CXp(WT(D(X,Cj))

— Inference:

C,=arg max p(C, |x) |




Logistic Regression (K > 2)

2) Inference in more general approach:

C,=arg max p(C, |x)

exp(w ¢(x,C,)) ) 4x) {he partition
"""""""""" function.

= arg max
G | exp(w o(x,C)))

= arg mcax exp(WT(D(X, C, )

= argmax w o(x,C,)

 Training using:
—  Maximum Likelthood (ML)

—  Maximum A Posteriori (MAP) with a Gaussian prior on w.




Logistic Regression (K > 2) with ML

=

* The negative log-likelihood error function 1s:

H Yo exp(w o(x,,t
Ey(w) =~ ] p(t, 1x,) =[-3 1n SR sl )
n=1 n=l \Z(Xn)

w,, =argminkE,(w)

N
N
N
N
N
N
.,
Xy
.,

convex in w

e The gradient is (prove it):
OE (W) OE, (W) 6ED(W)}

PR O

VE = !
(W) { B e o

oW _ 3 5,01+ 23 P(C, 13,)05,,C)

n=Rk=1

ow,

1




Logistic Regression (K > 2) with ML

[

e Set VE,(w) =0 = ML solution satisfies:

Z%(Xn,fn) ZZP(C |X,)0,(X,,C)

= =1

= for every feature @, the observed value on D should be the same as
the expected value on D!

e Solve numerically:
— Stochastic gradient descent [chapter 3.1.3].
— Newton Raphson iterative optimization (large Hessian!).
— Limited memory Newton methods (e.g. L-BFGS).




The Maximum Entropy Principle

e Principle of Insufficient Reason

* Principle of Indifference

— can be traced back to Pierre Laplace and Jacob Bernoulli.

»> A. L. Berger, S. A. Della Pietra, and V. J. Della Pietra. 1996.

A maximum entropy approach to natural language processing.

Computational Linguistics, 22(1).
— “model all that is known and assume nothing about that which is
unknown”.

— “given a collection of facts, choose a model consistent with all the
facts, but otherwise as uniform as possible”.




Maximum Likelihood < Maximum Entropy

=

1) Maximize conditional likelihood:

W,, =

argmax p(t|w)

pt|w)=]]p. |x,)

~exp(w' o(X,,1,))
[l Z(x,)

n=1

2)

Maximize conditional entropy:

Pue =

subject to:

D o(x

N K
argmax ) > — p(C; |x,)log p(C; |x,)

n=1 k=1

n’tn) — ZZP(Ck |Xn)¢(xnack)

n=1 k=1

pME(tn |Xn) = prL(tn

| X ) — eXp(WLL(D(XnD tn ))
’ Z(x,)




