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Supervised Learning

• Task = learn an (unkown) function t : X ® T that maps input 
instances x Î X to output targets t(x) Î T:
– Classification:

• The output t(x) Î T is one of a finite set of discrete categories.
– Regression:

• The output t(x) Î T is continuous, or has a continuous component.

• Target function t(x) is known (only) through (noisy) set of 
training examples:

(x1,t1), (x2,t2), … (xn,tn)



Supervised Learning

Training Examples
(xk, tk)

Test Examples
(x, t)

Learning 
Algorithm Model h

Model h

Training

Testing

Generalization 
Performance



Parametric Approaches to Supervised 
Learning 

• Task = build a function h(x) such that:
– h matches t well on the training data:

=> h is able to fit data that it has seen.
– h also matches t well on test data:

=> h is able to generalize to unseen data.

• Task = choose h from a “nice” class of functions that 
depend on a vector of parameters w:
– h(x) º hw(x) º h(w,x)
– what classes of functions are “nice”?



Neurons

Soma is the central part of the neuron:
• where the input signals are combined.

Dendrites are cellular extensions:
• where majority of the input occurs.

Axon is a fine, long projection:
• carries nerve signals to other neurons.

Synapses are molecular structures between 
axon terminals and other neurons:
• where the communication takes place.



Neuron Models
https://www.research.ibm.com/software/IBMResearch/multimedia/IJCNN2013.neuron-
model.pdf



Spiking/LIF Neuron Function 
http://ee.princeton.edu/research/prucnal/sites/default/files/06497478.pdf



Neuron Models
https://www.research.ibm.com/software/IBMResearch/multimedia/IJCNN2013.neuron-
model.pdf



McCulloch-Pitts Neuron Function

Σ f

1x0

x1

x2

x3

wixi∑ hw(x)

activation / output
function

w0

w1

w2

w3

• Algebraic interpretation:
– The output of the neuron is a linear combination of  inputs from other neurons, 

rescaled by the synaptic weights.
• weights wi correspond to the synaptic weights (activating or inhibiting).
• summation corresponds to combination of signals in the soma.

– It is often transformed through an activation / output function.
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Linear Regression

• Polynomial curve fitting is Linear Regression:
x = φ(x) = [1, x, x2, ..., xM]T

h(x) = wTx
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McCulloch-Pitts Neuron Function
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• Algebraic interpretation:
– The output of the neuron is a linear combination of  inputs from other neurons, 

rescaled by the synaptic weights.
• weights wi correspond to the synaptic weights (activating or inhibiting).
• summation corresponds to combination of signals in the soma.

– It is often transformed through a monotonic activation / output function.



Logistic Regression

• Training set is (x1,t1), (x2,t2), … (xn,tn).
x = [1, x1, x2, ..., xk]T

h(x) = σ(wTx)
• Can be used for both classification and regression:

• Classification: T = {C1, C2} = {1, 0}.
• Regression: T = [0, 1] (i.e. output needs to be normalized).
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Logistic Regression for Binary Classification

• Model output can be interpreted as posterior class 
probabilities:

• How do we train a logistic regression model?
– What error/cost function to minimize?

p(C1 | x) =σ (w
Tx) = 1

1+ exp(−wTx))

p(C2 | x) =1−σ (w
Tx) = exp(−wTx)

1+ exp(−wTx)



Logistic Regression Learning

• Learning = finding the “right” parameters wT = [w0, w1, … , wk ]
– Find w that minimizes an error function  E(w) which measures the 

misfit between h(xn,w) and tn.
– Expect that h(x,w) performing well on training examples xn Þ

h(x,w) will perform well on arbitrary test examples x Î X.

• Least Squares error function?

E(w) = 1
2

{h(xn,w)− tn}
2

n=1

N

∑

– Differentiable => can use gradient descent ✓
– Non-convex => not guaranteed to find the global optimum  ✗



Maximum Likelihood

Training set is D = {áxn, tnñ | tnÎ {0,1}, n Î 1…N}

Let

Maximum Likelihood (ML) principle: find parameters that 
maximize the likelihood of the labels.

• The likelihood function is

• The negative log-likelihood (cross entropy) error function:

p(t |w) = hn
tn (1− hn )

(1−tn )

n=1

N

∏

hn = p(C1 | xn )⇔ hn = p(tn =1| xn ) =σ (w
Txn )

E(w) = − ln p(t | x) = − tn lnhn + (1− tn )ln(1− hn ){ }
n=1

N

∑



Maximum Likelihood Learning
for Logistic Regression

• The ML solution is:

• ML solution is given by ÑE(w) = 0.
– Cannot solve analytically => solve numerically with gradient 

based methods: (stochastic) gradient descent, conjugate gradient, 
L-BFGS, etc.

– Gradient is (prove it):

∇E(w) = (hn − tn )xn
T

n=1

N

∑

wML = argmaxw p(t |w) = argmin
w
E(w)

convex in w



Regularized Logistic Regression

• Use a Gaussian prior over the parameters:
w = [w0, w1, … , wM]T

• Bayes’ Theorem:

• MAP solution:
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Regularized Logistic Regression

• MAP solution:
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Regularized Logistic Regression

• MAP solution:

• ML solution is given by ÑE(w) = 0.

ÑE(w) =  ÑED(w) + ÑEw(w)

• Cannot solve analytically => solve numerically:
– (stochastic) gradient descent [PRML 3.1.3], Newton Raphson 

iterative optimization [PRML 4.3.3], conjugate gradient, LBFGS.

)()(minarg www ww
EEDMAP +=

= (hn − tn )xn
T +αwT

n=1

N

∑

still convex in w

where hn =σ (w
Txn )



Softmax Regression = Logistic Regression
for Multiclass Classification

• Multiclass classification:
T = {C1, C2, ..., CK} = {1, 2, ..., K}.

• Training set is (x1,t1), (x2,t2), … (xn,tn).
x = [1, x1, x2, ..., xM]
t1, t2, … tn Î {1, 2, ..., K}

• One weight vector per class [PRML 4.3.4]:

p(Ck | x) =
exp(wk

Tx))
exp(w j

Tx)
j∑



Softmax Regression (K ³ 2)

• Inference:

• Training using:
– Maximum Likelihood (ML)
– Maximum A Posteriori (MAP) with a Gaussian prior on w.

)|(maxarg* xkC
CpC

k

=

= argmax
Ck
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exp(w j
Tx)
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Z(x) a normalization 
constant

= argmax
Ck
exp(wk
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Softmax Regression

• The negative log-likelihood error function is:

• The Maximum Likelihood solution is:

• The gradient is (prove it):

ED (w) = −
1
N
ln p(tn | xn )

n=1
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∏
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Regularized Softmax Regression

• The new cost function is:

• The new gradient is (prove it):

E(w) = ED (w)+Ew (w)

∇wk
E(w) = − 1

N
δk (tn )− p(Ck | xn )( )xnT

n=1

N

∑ +αwk
T
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Softmax Regression

• ML solution is given by ÑED(w) = 0 .
– Cannot solve analytically.

– Solve numerically, by pluging [cost, gradient] = [E(w), ÑE(w)] 
values into general convex solvers:

• L-BFGS
• Newton methods
• conjugate gradient
• (stochastic / minibatch) gradient-based methods.

– gradient descent (with / without momentum).
– AdaGrad, AdaDelta
– RMSProp
– ADAM, ...



Implementation 

• Need to compute [cost, gradient]:

§ cost

§ gradientk

=> need to compute, for k = 1, ..., K: 

§ output

= −
1
N

δk (tn )ln p(Ck | xn )
k=1

K

∑
n=1

N

∑ +
α
2
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T

k=1

K

∑ wk

= −
1
N

δk (tn )− p(Ck | xn )( )xnT
n=1

N

∑ +αwk
T

p(Ck | xn ) =
exp(wk

Txn ))
exp(w j

Txn )j∑ Overflow when wk
Txn

are too large.



Implementation: Preventing Overflows

• Subtract from each product wk
Txn the maximum product:

c =max
1≤k≤K

wk
Txn

p(Ck | xn ) =
exp(wk

Txn − c))
exp(w j

Txn − c)j∑

n

n

n



Implementation: Gradient Checking

• Want to minimize J(θ), where θ is a scalar.

• Mathematical definition of derivative:

• Numerical approximation of derivative:

d
dθ

J(θ ) ≈ J(θ +ε)− J(θ −ε)
2ε

where ε = 0.0001

𝑑
𝑑𝜃 𝐽 𝜃 = lim

>→@

𝐽 𝜃 + 𝜀 − 𝐽(𝜃 − 𝜀)
2𝜀



Implementation: Gradient Checking

• If θ is a vector of parameters θi, 
– Compute numerical derivative with respect to each θi.

• Create a vector v that is ε in position i and 0 everywhere else:
– How do you do this without a for loop in NumPy?

• Compute Gnum(θi) = (J(θ +v) − J(θ − v)) / 2ε
– Aggregate all derivatives into numerical gradient Gnum(θ).

• Compare numerical gradient Gnum(θ) with implementation 
of gradient Gimp(θ):

Gnum (θ)−Gimp(θ)
Gnum (θ)+Gimp(θ)

≤10−6



Implementation: Vectorization of LR

• Version 1: Compute gradient component-wise.

– Assume example xn is stored in column X[:,n] in data matrix X.

grad = np.zeros(K)
for n in range(N):

h = sigmoid(w.dot(X[:,n])
temp = h − t[n]
for k in range(K):
grad[k] = grad[k] + temp * X[k,n]

∇E(w) = (hn − tn )xn
T

n=1

N

∑

def sigmoid(x):
return 1 / (1 + np.exp(−x)) 



Implementation: Vectorization of LR

• Version 2: Compute gradient, partially vectorized.

grad = np.zeros(K)
for n in range(N):

grad = grad + (sigmoid(w.dot(X[:,n])) − t[n]) * X[:,n]

∇E(w) = (hn − tn )xn
T

n=1

N

∑

def sigmoid(x):
return 1 / (1 + np.exp(−x)) 



Implementation: Vectorization of LR

• Version 3: Compute gradient, vectorized.

grad = X.dot(sigmoid(w.dot(X)) − t)

∇E(w) = (hn − tn )xn
T

n=1

N

∑

def sigmoid(x):
return 1 / (1 + np.exp(−x)) 



Vectorization of Softmax

• Need to compute [cost, gradient]:

§ cost

§ gradientk

=> compute ground truth matrix G such that G[k,n] = 𝛿k(tn)

from scipy.sparse import coo_matrix
groundTruth = coo_matrix((np.ones(N, dtype = np.uint8),

(labels, np.arange(N)))).toarray()
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Vectorization of Softmax

• Compute cost

– Compute matrix of 𝐰E2𝐱&.

– Compute matrix of 𝐰E2𝐱& − 𝑐&.

– Compute matrix of exp(𝐰E2𝐱& − 𝑐&).

– Compute matrix of ln 𝑝(𝐶E|𝐱&).

– Compute log-likelihood.

= −
1
N
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α
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Vectorization of Softmax

• Compute gradk

§ Gradient = [grad1 | grad2 | … | gradK]

– Compute matrix of 𝑝(𝐶E|𝐱&).

– Compute matrix of gradient of data term.

– Compute matrix of gradient of regularization term.

= −
1
N

δk (tn )− p(Ck | xn )( )xnT
n=1

N

∑ +αwk
T



Vectorization of Softmax

• Useful Numpy functions:
– np.dot()
– np.amax()
– np.argmax()
– np.exp()
– np.sum()
– np.log()
– np.mean()



import scipy

• scipy.sparse.coo_matrix()
groundTruth = coo_matrix((np.ones(numCases, dtype = np.uint8),

(labels, np.arange(numCases)))).toarray()
• scipy.optimize:

– scipy.optimize.fmin_l_bfgs_b()
theta, _, _ = fmin_l_bfgs_b(softmaxCost, theta,

args = (numClasses, inputSize, decay, images, labels),
maxiter = 100, disp = 1)

– scipy.optimize.fmin_cg()
– scipy.minimize
https://docs.scipy.org/doc/scipy-0.10.1/reference/tutorial/optimize.html

https://docs.scipy.org/doc/scipy-0.10.1/reference/tutorial/optimize.html


Multiclass Logistic Regression (K ³ 2)

1) Train one weight vector per class [PRML Chapter 4.3.4]:

2) More general approach:

- Inference:
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Logistic Regression (K ³ 2)

2) Inference in more general approach:

• Training using:
– Maximum Likelihood (ML)
– Maximum A Posteriori (MAP) with a Gaussian prior on w.
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Logistic Regression (K ³ 2) with ML

• The negative log-likelihood error function is:

• The gradient is (prove it):
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Logistic Regression (K ³ 2) with ML

• Set ÑED(w) = 0 Þ ML solution satisfies:

Þ for every feature ji, the observed value on D should be the same as 
the expected value on D!

• Solve numerically:
– Stochastic gradient descent [chapter 3.1.3].
– Newton Raphson iterative optimization (large Hessian!).
– Limited memory Newton methods (e.g. L-BFGS).
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The Maximum Entropy Principle

• Principle of Insufficient Reason
• Principle of Indifference

– can be traced back to Pierre Laplace and Jacob Bernoulli.

Ø A. L. Berger, S. A. Della Pietra, and V. J. Della Pietra. 1996.
A maximum entropy approach to natural language processing.
Computational Linguistics, 22(1).
– “model all that is known and assume nothing about that which is 

unknown”.
– “given a collection of facts, choose a model consistent with all the 

facts, but otherwise as uniform as possible”.



Maximum Likelihood Û Maximum Entropy

1) Maximize conditional likelihood:
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