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Supervised Learning

• Task = learn an (unkown) function t : X ® T that maps input 
instances x Î X to output targets t(x) Î T:
– Classification:

• The output t(x) Î T is one of a finite set of discrete categories.
– Regression:

• The output t(x) Î T is continuous, or has a continuous component.

• Target function t(x) is known (only) through (noisy) set of 
training examples:

(x1,t1), (x2,t2), … (xn,tn)
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Three Parametric Approaches to 
Classification

1) Discriminant Functions: construct f : X ® T that directly 
assigns a vector x to a specific class Ck.
– Inference and decision combined into a single learning 

problem.
– Linear Discriminant: the decision surface is a 

hyperplane in X:
• Fisher ‘s Linear Discriminant
• Perceptron
• Support Vector Machines
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Three Parametric Approaches to 
Classification

2) Probabilistic Discriminative Models: directly model the 
posterior class probabilities p(Ck | x).
– Inference and decision are separate.
– Less data needed to estimate p(Ck | x) than p(x |Ck).
– Can accommodate many overlapping features.

• Logistic Regression
• Conditional Random Fields
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Three Parametric Approaches to 
Classification

3) Probabilistic Generative Models: 
– Model class-conditional p(x |Ck) as well as the priors 

p(Ck), then use Bayes’s theorem to find p(Ck | x).
• or model p(x,Ck) directly, then marginalize to obtain the 

posterior probabilities p(Ck | x).

– Inference and decision are separate.
– Can use p(x) for outlier or novelty detection.
– Need to model dependencies between features.

• Naïve Bayes.
• Hidden Markov Models.
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Generative vs. Discriminative
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Left-hand mode has no effect on posterior class probabilities.



Linear Discriminant Functions: 
Two classes (K = 2)

• Use a linear function of the input vector:

• Decision:
x Î C1 if  y(x) ³ 0, otherwise x Î C2.
Þ decision boundary is hyperplane y(x) = 0.

• Properties:
– w is orthogonal to vectors lying within the decision surface.
– w0 controls the location of the decision hyperplane.
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Linear Discriminant Functions:
Two Classes (K = 2)
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Linear Discriminant Functions:
Multiple Classes (K > 2)

1) Train K or K-1 one-versus-the-rest classifiers.
2) Train K(K-1)/2 one-versus-one classifiers.

3) Train K linear functions:

• Decision:
x Î Ck if  yk(x) > yj(x), for all j ¹ k.
Þdecision boundary between classes Ck and Cj is hyperplane defined 

by  yk(x) = yj(x) i.e. 
Þ same geometrical properties as in binary case.
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Linear Discriminant Functions:
Multiple Classes (K > 2)

4) More general ranking approach:

• It subsumes the approach with K separate linear functions. 

• Useful when T is very large (e.g. exponential in the size 
of input x), assuming inference can be done efficiently.
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Linear Discriminant Functions:
Two Classes (K = 2)

• What algorithms can be used to learn y(x) = wTj(x) + w0?
Assume a training dataset of N = N1 + N2 examples in C1 and C2.

– Fisher’s Linear Discriminant
– Perceptron:

• Voted/Averaged Perceptron
• Kernel Perceptron

– Support Vector Machines:
• Linear
• Kernel
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Fisher’s Linear Discriminant

• Discriminant function y(x) = wTx + w0 can be interpreted 
as follows:
1. Project D-dimensional x down to one dimension Þ wTx
2. Use a threshold -w0 to classify x Þ

xÎC1, if wTx ³ - w0

xÎC2, otherwise.

• Fisher’s idea:
– Maximize the between-class separation of projected dataset.
– Minimize the within-class variance of projected dataset.
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Fisher’s Linear Discriminant
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Line joining the class means vs. Line inferred with Fisher’s criterion.



Fisher’s Linear Discriminant

1) Measure of the separation between the classes is the 
between class variance:
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Fisher’s Linear Discriminant

2) Measure of the within-class variance: 
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Fisher’s Linear Discriminant

• Maximize the between-class separation and minimize the 
within-class variance Þ Fisher’s criterion:

• The objective function can be rewritten as:

where
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Fisher’s Linear Discriminant

• Optimization formulation:

• Solution:

• If SW is nonsingular:
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Fisher’s Linear Discriminant

• No need to solve the eigenvalue problem:
is a vector in the direction (m2 – m1)

• The norm of w is immaterial, only its direction is important.
Þ can take

• How to find w0:
– Assume p(wTx|C1) and p(wTx|C2) are Gaussians.
– Estimate means and variances using maximum likelihood.
– Use decision theory to find w0 i.e. p(-w0|C1) = p(-w0|C2)
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Supplementary Reading

• PRML Section 1.4 (The Curse of Dimensionality).
• PRML Section 1.5 (Decision Theory).
• PRML Section 4 (Linear Models for Classification):

– 4.1.1 to 4.1.4.
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