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McCulloch-Pitts Neuron Function
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• Algebraic interpretation:
– The output of the neuron is a linear combination of  inputs from other neurons, 

rescaled by the synaptic weights.
• weights wi correspond to the synaptic weights (activating or inhibiting).
• summation corresponds to combination of signals in the soma.

– It is often transformed through a monotonic activation function.
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Activation/Output Functions
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Perceptron

Logistic Regression
Linear Regression
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Perceptron

• Assume classes T = {c1, c2} = {1, -1}.
• Training set is (x1,t1), (x2,t2), … (xn,tn).

x = [1, x1, x2, ..., xk]T

h(x) = step(wTx)
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Perceptron Learning

• Learning = finding the “right” parameters wT = [w0, w1, … , wk ]
– Find w that minimizes an error function  E(w) which measures the 

misfit between h(xn,w) and tn.
– Expect that h(x,w) performing well on training examples xn Þ h(x,w) 

will perform well on arbitrary test examples x Î X.

• Least Squares error function?

E(w) = 1
2

{h(xn,w)− tn}
2

n=1

N

∑
# of mistakes
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Least Squares vs. Perceptron Criterion

• Least Squares => cost is # of misclassified patterns:
– Piecewise constant function of w with discontinuities.
– Cannot find closed form solution for w that minimizes cost.
– Cannot use gradient methods (gradient zero almost everywhere).

• Perceptron Criterion:
– Set labels to be +1 and − 1. Want wTxn > 0 for tn = 1, and wTxn < 0 

for tn = − 1.
Þ would like to have wTxntn > 0 for all patterns.
Þ want to minimize −wTxntn for all missclassified patterns M.

Þ minimize 𝐸" 𝐰 = −∑'∈)𝐰*𝐱'𝑡'
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Stochastic Gradient Descent

• Perceptron Criterion:

• Update parameters w sequentially after each mistake:

• The magnitude of w is inconsequential => set h = 1.

w(τ+1) =w(τ ) −η∇EP (w
(τ ),xn )

= 𝐰(.) + 𝜂𝐱'𝑡'

minimize 𝐸" 𝐰 = −∑'∈)𝐰*𝐱'𝑡'

𝐰(.23) = 𝐰(.) + 𝐱'𝑡'
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The Perceptron Algorithm: Two Classes

1. initialize parameters w = 0
2. for n = 1 … N
3. hn = sgn(wTxn)
4. if hn ¹ tn then
5. w = w + tnxn

Repeat:
a) until convergence.
b) for a number of epochs E.

Theorem [Rosenblatt, 1962]:
If the training dataset is linearly separable, the perceptron learning 
algorithm is guaranteed to find a solution in a finite number of steps.
• see Theorem 1 (Block, Novikoff)  in [Freund & Schapire, 1999].
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Averaged Perceptron: Two Classes

1. initialize parameters w = 0, t = 1, 
2. for n = 1 … N
3. hn = sgn(wTxn)
4. if hn ¹ tn then
5. w = w + tnxn

6.
7. t = t + 1
8. return

During testing: h(𝐱) = 𝑠𝑔𝑛( 8𝐰*𝐱)
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Repeat:
a) until convergence.
b) for a number of epochs E.
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Linear vs. Non-linear Decision Boundaries

And Or Xor
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Deep Learning class

How to Find Non-linear Decision Boundaries

1) Logistic Regression with manually engineered features:
– Quadratic features.

2) Kernel methods (e.g. SVMs) with non-linear kernels:
– Quadratic kernels, Gaussian kernels.

3) Unsupervised feature learning (e.g. auto-encoders):
– Plug learned features in any linear classifier.

4) Neural Networks with one or more hidden layers:
– Automatically learned features.
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Non-Linear Classification: XOR Dataset

x = [x1, x2]
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1) Manually Engineered Features: Add x1x2

x = [x1, x2, x1x2]
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Logistic Regression with Manually 
Engineered Features

x = [x1, x2, x1x2]
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Perceptron with Manually Engineered Features

Project x = [x1, x2, x1x2] and decision hyperplane back to x = [x1, x2]

15



2) Kernel Methods with Non-Linear Kernels

• Perceptrons, SVMs can be ‘kernelized’:
1. Re-write the algorithm such that during training and testing 

feature vectors x, y appear only in dot-products xTy.

2. Replace dot-products xTy with non-linear kernels K(x, y):

• K is a kernel if and only if ∃𝜑 such that K(x, y) = 𝜑(x)T 𝜑(y)

– 𝜑 can be in a much higher dimensional space.

» e.g. combinations of up to k original features 

– 𝜑(x)T 𝜑(y) can be computed efficiently without 
enumerating 𝜑(x) or 𝜑(y).
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The Perceptron Algorithm: Two Classes

1. initialize parameters w = 0
2. for n = 1 … N
3. hn = sgn(wTxn)
4. if hn ¹ tn then
5. w = w + tnxn
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Repeat:
a) until convergence.
b) for a number of epochs E.

Þ𝐰 =;
'

𝛼'𝑡'𝐱' 𝐰*𝐱 =;
'

𝛼'𝑡'𝐱'*𝐱

Loop invariant: w is a weighted sum of training vectors:



Kernel Perceptron: Two Classes

1. define 

2. initialize dual parameters an = 0

3. for n = 1 … N
4. hn = sgn f(xn)
5. if hn ¹ tn then
6. an = an + 1

During testing: h(x) = sgn f(x)
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𝑓 𝐱 = 𝐰*𝐱 =;
'

𝛼'𝑡'𝐱'*𝐱 =;
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Kernel Perceptron: Two Classes

1. define 

2. initialize dual parameters an = 0

3. for n = 1 … N
4. hn = sgn f(xn)
5. if hn ¹ tn then
6. an = an + tn

During testing: h(x) = sgn f(x)
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The Perceptron vs. Boolean Functions
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Perceptron with Quadratic Kernel

• Discriminant function: 

• Quadratic kernel:

Þ corresponding feature space j(x) = ?
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Perceptron with Quadratic Kernel
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Quadratic Kernels

• Circles, hyperbolas, and ellipses as separating surfaces:
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Quadratic Kernels
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Explicit Features vs. Kernels

• Explicitly enumerating features can be prohibitive:
– 1,000 basic features for xTy =>               quadratic features for (xTy)2

– Much worse for higher order features.

• Solution:
– Do not compute the feature vectors, compute kernels instead (i.e. 

compute dot products between implicit feature vectors).
• (xTy)2 takes 1001 multiplications.
• j(x)T j(y) in feature space takes 500,500 multiplications.
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Kernel Functions

• Definition:
A function k : X ´ X ® R is a kernel function if there 
exists a feature mapping j : X ® Rn such that:

k(x,y) = j(x)Tj(y)

• Theorem:
k : X ´ X ® R is a valid kernel Û the Gram matrix K 
whose elements are given by k(xn,xm) is positive 
semidefinite for all possible choices of the set {xn}.
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Kernel Examples

• Linear kernel:

• Quadratic kernel:
– contains constant, linear terms and terms of order two (c > 0).

• Polynomial kernel:
– contains all terms up to degree M (c > 0).

• Gaussian kernel:
– corresponding feature space has infinite dimensionality.
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Techniques for Constructing Kernels
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Kernels over Discrete Structures

• Subsequence Kernels [Lodhi et al., JMLR 2002]:
– S is a finite alphabet (set of symbols).
– x,yÎS* are two sequences of symbols with lengths |x| and |y|
– k(x,y) is defined as the number of common substrings of length n.
– k(x,y) can be computed in O(n|x||y|) time complexity.

• Tree Kernels [Collins and Duffy, NIPS 2001]:
– T1 and T2 are two trees with N1 and N2 nodes respectively.
– k(T1, T2) is defined as the number of common subtrees.
– k(T1, T2) can be computed in O(N1N2) time complexity.
– in practice, time is linear in the size of the trees.
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Supplementary Reading

• PRML Chapter 6:
– Section 6.1 on dual representations for linear regression 

models.
– Section 6.2 on techniques for constructing new kernels.
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The Perceptron Algorithm: K classes

1. initialize parameters w = 0
2. for i = 1 … n
3. yi =
4. if yi ¹ ti then
5. w = w + j(xi,ti) - j(xi,yi)

During testing:
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Repeat:
a) until convergence.
b) for a number of epochs E.

t* = argmax
t∈T
wTφ(x, t)



Averaged Perceptron: K classes

1. initialize parameters w = 0, t = 1, 
2. for i = 1 … n
3. yi =
4. if yi ¹ ti then
5. w = w + j(xi,ti) - j(xi,yi)
6.
7. t = t + 1
8. return

During testing:

33

Repeat:
a) until convergence.
b) for a number of epochs E.
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The Perceptron Algorithm: K classes

1. initialize parameters w = 0
2. for i = 1 … n
3. cj =
4. if cj ¹ ti then
5. w = w + j(xi,ti) - j(xi, cj)

Loop invariant: w is a weighted sum of training vectors:
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Repeat:
a) until convergence.
b) for a number of epochs E.

w = αij (φ(xi,
i, j
∑  ti )−φ(xi,cj ))

wTφ(x, t) = αij (φ(xi,
i, j
∑  ti )

Tφ(x, t)−φ(xi,cj )
Tφ(x, t))Þ



Kernel Perceptron: K classes

1. define 

2. initialize dual parameters aij = 0

3. for i = 1 … n
4. cj =
5. if yi ¹ ti then
6. aij = aij + 1

During testing:
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Repeat:
a) until convergence.
b) for a number of epochs E.



Kernel Perceptron: K classes

• Discriminant function:

where:
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