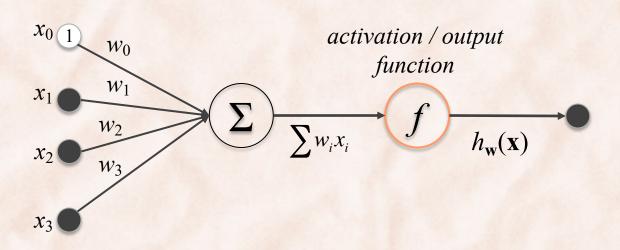
CS 4900/5900: Machine Learning

The Perceptron Algorithm The Kernel Trick

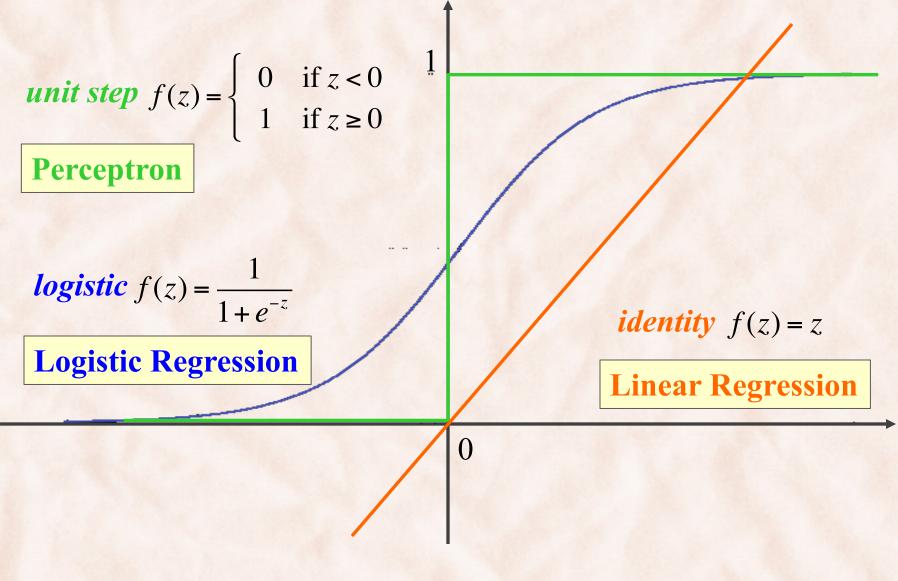
Razvan C. Bunescu School of Electrical Engineering and Computer Science *bunescu@ohio.edu*

McCulloch-Pitts Neuron Function

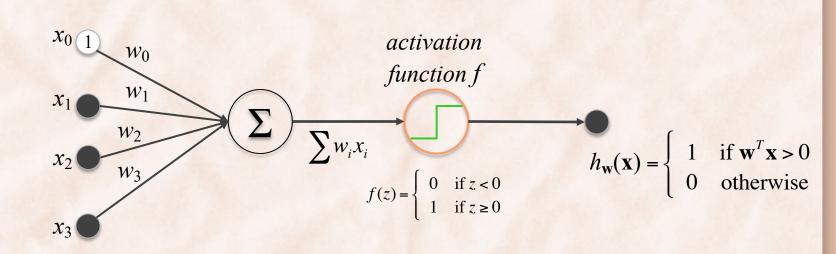


- Algebraic interpretation:
 - The output of the neuron is a linear combination of inputs from other neurons, rescaled by the synaptic weights.
 - weights w_i correspond to the synaptic weights (activating or inhibiting).
 - summation corresponds to combination of signals in the soma.
 - It is often transformed through a monotonic activation function.

Activation/Output Functions



Perceptron



- Assume classes $T = \{c_1, c_2\} = \{1, -1\}.$
- Training set is $(\mathbf{x}_1, t_1), (\mathbf{x}_2, t_2), \dots (\mathbf{x}_n, t_n)$. $\mathbf{x} = [1, x_1, x_2, \dots, x_k]^T$ $h(\mathbf{x}) = step(\mathbf{w}^T \mathbf{x})$

Perceptron Learning

- Learning = finding the "right" parameters $\mathbf{w}^{\mathrm{T}} = [w_0, w_1, \dots, w_k]$
 - Find w that minimizes an *error function* $E(\mathbf{w})$ which measures the misfit between $h(\mathbf{x}_n, \mathbf{w})$ and t_n .
 - Expect that $h(\mathbf{x}, \mathbf{w})$ performing well on training examples $x_n \Rightarrow h(x, \mathbf{w})$ will perform well on arbitrary test examples $\mathbf{x} \in \mathbf{X}$.
- Least Squares error function?

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{h(\mathbf{x}_n, \mathbf{w}) - t_n\}^2 + \frac{1}{4} \text{ of mistakes}$$

Least Squares vs. Perceptron Criterion

- Least Squares => cost is # of misclassified patterns:
 - Piecewise constant function of w with discontinuities.
 - Cannot find closed form solution for w that minimizes cost.
 - Cannot use gradient methods (gradient zero almost everywhere).
- Perceptron Criterion:
 - Set labels to be +1 and -1. Want $\mathbf{w}^T \mathbf{x}_n > 0$ for $t_n = 1$, and $\mathbf{w}^T \mathbf{x}_n < 0$ for $t_n = -1$.

 \Rightarrow would like to have $\mathbf{w}^{\mathrm{T}}\mathbf{x}_{n}t_{n} > 0$ for all patterns.

 \Rightarrow want to minimize $-\mathbf{w}^{T}\mathbf{x}_{n}t_{n}$ for all missclassified patterns M.

 \Rightarrow minimize $E_p(\mathbf{w}) = -\sum_{n \in M} \mathbf{w}^T \mathbf{x}_n t_n$

Stochastic Gradient Descent

• Perceptron Criterion:

minimize
$$E_p(\mathbf{w}) = -\sum_{n \in M} \mathbf{w}^T \mathbf{x}_n t_n$$

- Update parameters w sequentially after each mistake: $\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E_P(\mathbf{w}^{(\tau)}, \mathbf{x}_n)$ $= \mathbf{w}^{(\tau)} + \eta \mathbf{x}_n t_n$
- The magnitude of **w** is inconsequential => set $\eta = 1$. $\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} + \mathbf{x}_n t_n$

The Perceptron Algorithm: Two Classes

- 1. initialize parameters w = 0
- 2. **for** $n = 1 \dots N$
- 3. $h_n = sgn(\mathbf{w}^{\mathrm{T}}\mathbf{x}_n)$
- 4. **if** $h_n \neq t_n$ **then**

5. $\mathbf{w} = \mathbf{w} + t_n \mathbf{x}_n$

Repeat:

- a) until convergence.
 - b) for a number of epochs E.

Theorem [Rosenblatt, 1962]:

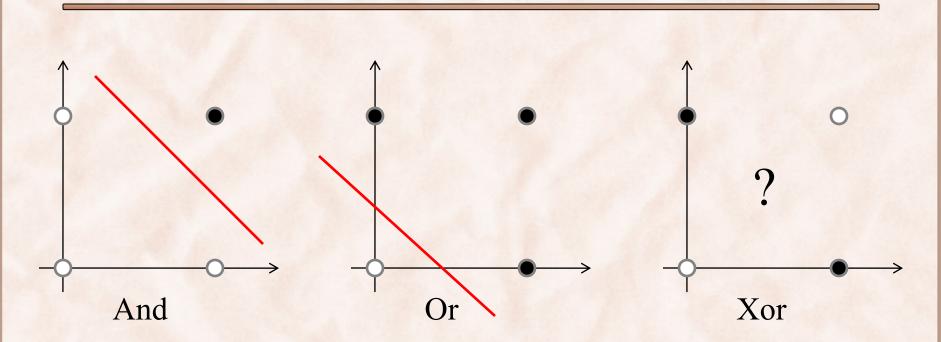
If the training dataset is linearly separable, the perceptron learning algorithm is guaranteed to find a solution in a finite number of steps.

• see Theorem 1 (Block, Novikoff) in [Freund & Schapire, 1999].

Averaged Perceptron: Two Classes

initialize parameters $\mathbf{w} = 0, \tau = 1, \overline{\mathbf{w}} = 0$ 1. for *n* = 1 ... N 2. $h_n = sgn(\mathbf{w}^{\mathrm{T}}\mathbf{x}_n)$ 3. Repeat: a) until convergence. 4. **if** $h_n \neq t_n$ **then** b) for a number of epochs E. 5. $\mathbf{w} = \mathbf{w} + t_n \mathbf{X}_n$ 6. $\overline{\mathbf{w}} = \overline{\mathbf{w}} + \mathbf{w}$ 7. $\tau = \tau + 1$ 8. return $\overline{\mathbf{w}}/\tau$ During testing: $h(\mathbf{x}) = sgn(\overline{\mathbf{w}}^T \mathbf{x})$

Linear vs. Non-linear Decision Boundaries



$$\varphi(\mathbf{x}) = [1, x_1, x_2]^T \\ \mathbf{w} = [w_0, w_1, w_2]^T$$
 => $\mathbf{w}^T \varphi(\mathbf{x}) = [w_1, w_2]^T [x_1, x_2] + w_0$

How to Find Non-linear Decision Boundaries

Logistic Regression with manually engineered features:
 Quadratic features.

2) Kernel methods (e.g. SVMs) with non-linear kernels:

- Quadratic kernels, Gaussian kernels.

Deep Learning class

3) Unsupervised feature learning (e.g. auto-encoders):

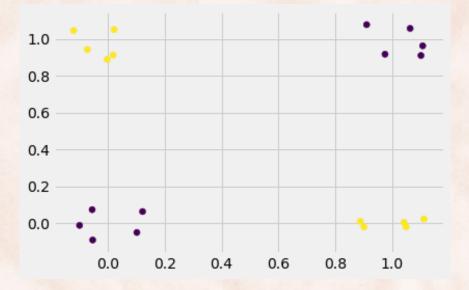
– Plug learned features in any linear classifier.

4) Neural Networks with one or more hidden layers:

– Automatically learned features.

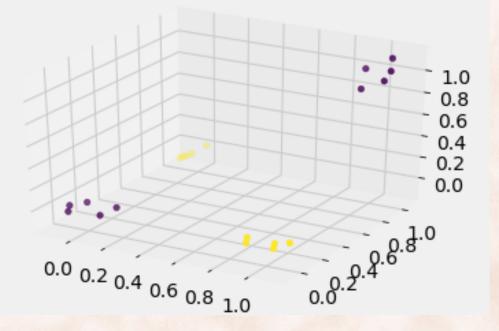
Non-Linear Classification: XOR Dataset

$$\mathbf{x} = [x_1, x_2]$$



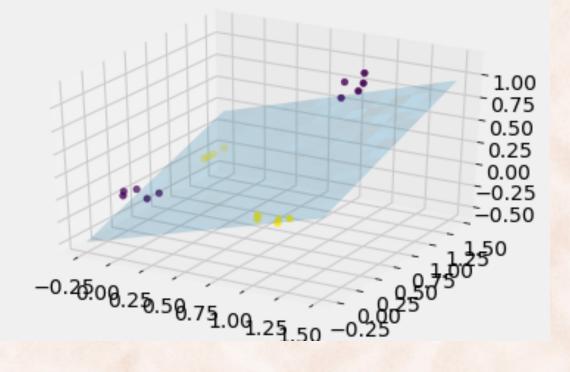
1) Manually Engineered Features: Add x_1x_2

$\mathbf{x} = [x_1, x_2, x_1 x_2]$



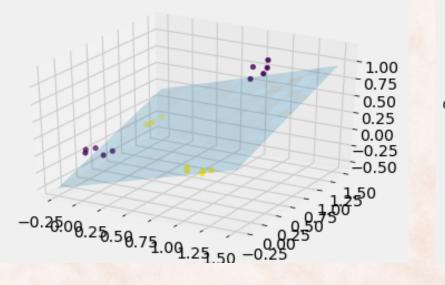
Logistic Regression with Manually Engineered Features

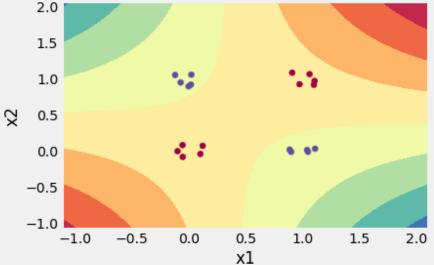
 $\mathbf{x} = [x_1, x_2, x_1 x_2]$



Perceptron with Manually Engineered Features

Project $\mathbf{x} = [x_1, x_2, x_1x_2]$ and decision hyperplane back to $\mathbf{x} = [x_1, x_2]$





2) Kernel Methods with Non-Linear Kernels

- Perceptrons, SVMs can be 'kernelized':
 - 1. Re-write the algorithm such that during training and testing feature vectors \mathbf{x} , \mathbf{y} appear only in dot-products $\mathbf{x}^{T}\mathbf{y}$.
 - 2. Replace dot-products $\mathbf{x}^{\mathrm{T}}\mathbf{y}$ with *non-linear kernels* K(\mathbf{x}, \mathbf{y}):
 - K is a kernel if and only if $\exists \varphi$ such that $K(\mathbf{x}, \mathbf{y}) = \varphi(\mathbf{x})^T \varphi(\mathbf{y})$
 - $-\varphi$ can be in a much higher dimensional space.

» e.g. combinations of up to k original features

- $\varphi(\mathbf{x})^{\mathrm{T}} \varphi(\mathbf{y})$ can be computed efficiently without enumerating $\varphi(\mathbf{x})$ or $\varphi(\mathbf{y})$.

The Perceptron Algorithm: Two Classes

1. **initialize** parameters $\mathbf{w} = 0$ 2. **for** $n = 1 \dots N$ 3. $h_n = sgn(\mathbf{w}^T \mathbf{x}_n)$ 4. **if** $h_n \neq t_n$ **then** 5. $\mathbf{w} = \mathbf{w} + t_n \mathbf{x}_n$

Repeat:

- a) until convergence.
 - b) for a number of epochs E.

Loop invariant: w is a weighted sum of training vectors:

$$\mathbf{w} = \sum_{n} \alpha_{n} t_{n} \mathbf{x}_{n} \implies \mathbf{w}^{T} \mathbf{x} = \sum_{n} \alpha_{n} t_{n} \mathbf{x}_{n}^{T} \mathbf{x}$$

Kernel Perceptron: Two Classes

1. **define**
$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} = \sum_n \alpha_n t_n \mathbf{x}_n^T \mathbf{x} = \sum_n \alpha_n t_n K(\mathbf{x}_n, \mathbf{x})$$

2. **initialize** dual parameters $\alpha_n = 0$
3. **for** $n = 1 \dots N$
4. $h_n = sgn f(\mathbf{x}_n)$
5. **if** $h_n \neq t_n$ **then**
6. $\alpha_n = \alpha_n + 1$

During testing: $h(\mathbf{x}) = sgn f(\mathbf{x})$

Kernel Perceptron: Two Classes

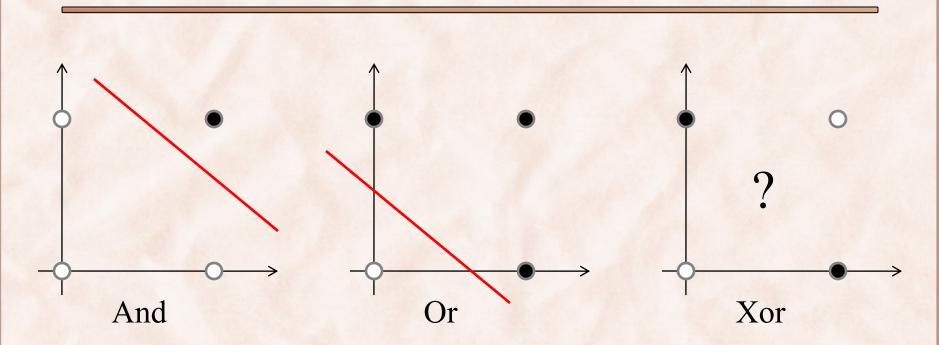
1. **define**
$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} = \sum_n \alpha_n \mathbf{x}_n^T \mathbf{x} = \sum_n \alpha_n K(\mathbf{x}_n, \mathbf{x})$$

2. **initialize** dual parameters $\alpha_n = 0$

- 3. **for** $n = 1 \dots N$
- 4. $h_n = sgn f(\mathbf{x}_n)$
- 5. **if** $h_n \neq t_n$ **then**
- $6. \qquad \alpha_n = \alpha_n + t_n$

During testing: $h(\mathbf{x}) = sgn f(\mathbf{x})$

The Perceptron vs. Boolean Functions



$$\varphi(\mathbf{x}) = [1, x_1, x_2]^T \\ \mathbf{w} = [w_0, w_1, w_2]^T$$
 => $\mathbf{w}^T \varphi(\mathbf{x}) = [w_1, w_2]^T [x_1, x_2] + w_0$

Perceptron with Quadratic Kernel

• Discriminant function:

$$f(\mathbf{x}) = \sum_{i} \alpha_{i} t_{i} \varphi(\mathbf{x}_{i})^{T} \varphi(\mathbf{x}) = \sum_{i} \alpha_{i} t_{i} K(\mathbf{x}_{i}, \mathbf{x})$$

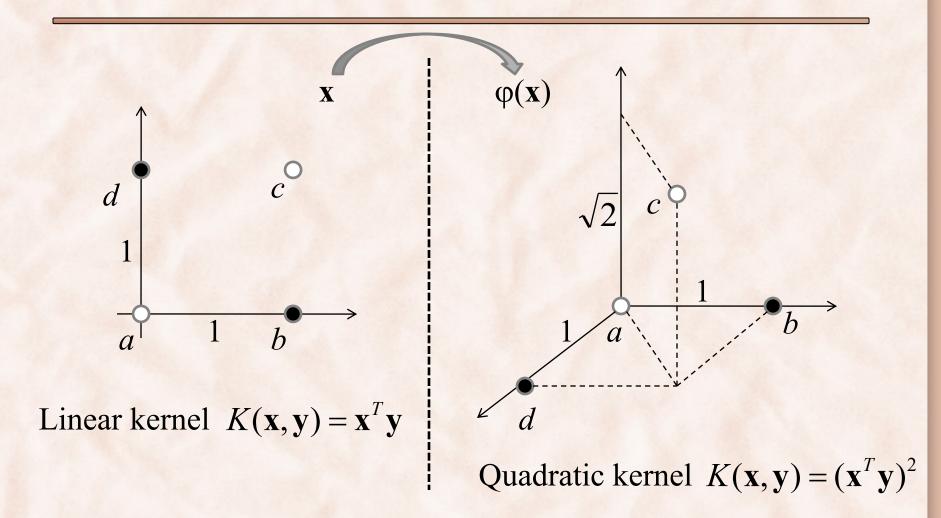
• Quadratic kernel:

$$K(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^T \mathbf{y})^2 = (x_1 y_1 + x_2 y_2)^2$$

 \Rightarrow corresponding feature space $\varphi(\mathbf{x}) = ?$

conjunctions of two atomic features

Perceptron with Quadratic Kernel

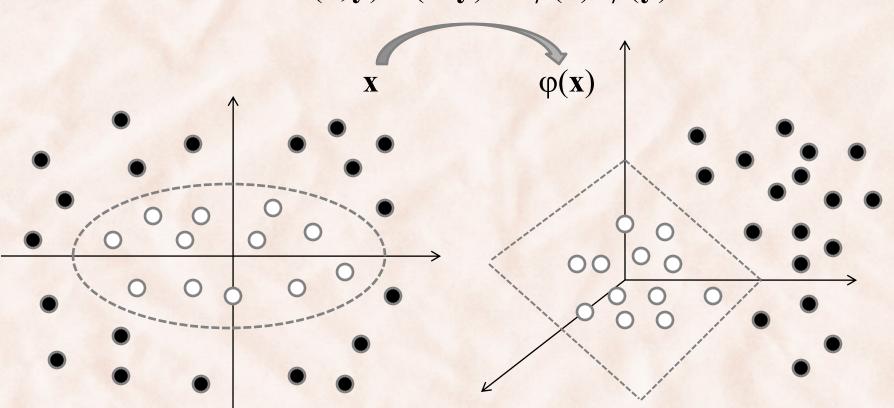


Quadratic Kernels

• Circles, hyperbolas, and ellipses as separating surfaces: $K(\mathbf{x}, \mathbf{y}) = (1 + \mathbf{x}^T \mathbf{y})^2 = \varphi(x)^T \varphi(y)$ $\varphi(x) = [1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, \sqrt{2}x_1x_2, x_2^2]^T$ $\uparrow x_2$ x_1

Quadratic Kernels

 $K(\mathbf{x},\mathbf{y}) = (\mathbf{x}^T \mathbf{y})^2 = \varphi(\mathbf{x})^T \varphi(\mathbf{y})$



Explicit Features vs. Kernels

- Explicitly enumerating features can be prohibitive:
 - 1,000 basic features for $\mathbf{x}^{\mathrm{T}}\mathbf{y} => 500,500$ quadratic features for $(\mathbf{x}^{\mathrm{T}}\mathbf{y})^2$
 - Much worse for higher order features.
- Solution:
 - Do not compute the feature vectors, compute kernels instead (i.e. compute dot products between implicit feature vectors).
 - $(\mathbf{x}^{\mathrm{T}}\mathbf{y})^2$ takes 1001 multiplications.
 - $\varphi(\mathbf{x})^{\mathrm{T}} \varphi(\mathbf{y})$ in feature space takes 500,500 multiplications.

Kernel Functions

• Definition:

A function $k : X \times X \to R$ is a kernel function if there exists a feature mapping $\varphi : X \to R^n$ such that: $k(\mathbf{x}, \mathbf{y}) = \varphi(\mathbf{x})^T \varphi(\mathbf{y})$

• Theorem:

 $k : X \times X \rightarrow R$ is a valid kernel \Leftrightarrow the Gram matrix K whose elements are given by $k(\mathbf{x}_n, \mathbf{x}_m)$ is *positive semidefinite* for all possible choices of the set $\{\mathbf{x}_n\}$.

Kernel Examples

- Linear kernel: $K(\mathbf{x}, \mathbf{y}) = \mathbf{x}^T \mathbf{y}$
- Quadratic kernel: $K(\mathbf{x}, \mathbf{y}) = (c + \mathbf{x}^T \mathbf{y})^2$

- contains constant, linear terms and terms of order two (c > 0).

- Polynomial kernel: $K(\mathbf{x}, \mathbf{y}) = (c + \mathbf{x}^T \mathbf{y})^M$ - contains all terms up to degree M (c > 0).
- Gaussian kernel: $K(\mathbf{x}, \mathbf{y}) = \exp(-\|\mathbf{x} \mathbf{y}\|^2 / 2\sigma^2)$

- corresponding feature space has infinite dimensionality.

Techniques for Constructing Kernels

Given valid kernels $k_1(\mathbf{x}, \mathbf{x'})$ and $k_2(\mathbf{x}, \mathbf{x'})$, the following new kernels will also be valid:

$$k(\mathbf{x}, \mathbf{x}') = ck_1(\mathbf{x}, \mathbf{x}') \tag{6.13}$$

$$k(\mathbf{x}, \mathbf{x}') = f(\mathbf{x})k_1(\mathbf{x}, \mathbf{x}')f(\mathbf{x}')$$
(6.14)

$$k(\mathbf{x}, \mathbf{x}') = q(k_1(\mathbf{x}, \mathbf{x}'))$$
(6.15)

$$k(\mathbf{x}, \mathbf{x}') = \exp\left(k_1(\mathbf{x}, \mathbf{x}')\right) \tag{6.16}$$

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}') + k_2(\mathbf{x}, \mathbf{x}')$$
(6.17)

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}')k_2(\mathbf{x}, \mathbf{x}')$$
(6.18)

$$k(\mathbf{x}, \mathbf{x}') = k_3(\phi(\mathbf{x}), \phi(\mathbf{x}')) \tag{6.19}$$

$$k(\mathbf{x}, \mathbf{x}') = \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}' \tag{6.20}$$

$$k(\mathbf{x}, \mathbf{x}') = k_a(\mathbf{x}_a, \mathbf{x}'_a) + k_b(\mathbf{x}_b, \mathbf{x}'_b)$$
(6.21)

$$k(\mathbf{x}, \mathbf{x}') = k_a(\mathbf{x}_a, \mathbf{x}'_a)k_b(\mathbf{x}_b, \mathbf{x}'_b)$$
(6.22)

where c > 0 is a constant, $f(\cdot)$ is any function, $q(\cdot)$ is a polynomial with nonnegative coefficients, $\phi(\mathbf{x})$ is a function from \mathbf{x} to \mathbb{R}^M , $k_3(\cdot, \cdot)$ is a valid kernel in \mathbb{R}^M , \mathbf{A} is a symmetric positive semidefinite matrix, \mathbf{x}_a and \mathbf{x}_b are variables (not necessarily disjoint) with $\mathbf{x} = (\mathbf{x}_a, \mathbf{x}_b)$, and k_a and k_b are valid kernel functions over their respective spaces.

Kernels over Discrete Structures

- Subsequence Kernels [Lodhi et al., JMLR 2002]:
 - $-\Sigma$ is a finite alphabet (set of symbols).
 - $\mathbf{x}, \mathbf{y} \in \Sigma^*$ are two sequences of symbols with lengths $|\mathbf{x}|$ and $|\mathbf{y}|$
 - $-k(\mathbf{x},\mathbf{y})$ is defined as the number of common substrings of length *n*.
 - $k(\mathbf{x},\mathbf{y})$ can be computed in $O(n|\mathbf{x}||\mathbf{y}|)$ time complexity.
- Tree Kernels [Collins and Duffy, NIPS 2001]:
 - T_1 and T_2 are two trees with N_1 and N_2 nodes respectively.
 - $-k(T_1, T_2)$ is defined as the number of common subtrees.
 - $k(T_1, T_2)$ can be computed in $O(N_1N_2)$ time complexity.
 - in practice, time is linear in the size of the trees.

Supplementary Reading

- PRML Chapter 6:
 - Section 6.1 on dual representations for linear regression models.
 - Section 6.2 on techniques for constructing new kernels.

The Perceptron Algorithm: K classes

1. initialize parameters $\mathbf{w} = 0$ 2. for i = 1 ... n3. $y_i = \arg \max_{t \in T} \mathbf{w}^T \varphi(\mathbf{x}_i, t)$ 4. if $y_i \neq t_i$ then 5. $\mathbf{w} = \mathbf{w} + \varphi(\mathbf{x}_i, t_i) - \varphi(\mathbf{x}_i, y_i)$

Repeat:

- a) until convergence.
- b) for a number of epochs E.

During testing: $t^* = \arg \max_{t \in T} \mathbf{w}^T \phi(\mathbf{x}, t)$

Averaged Perceptron: K classes

initialize parameters $\mathbf{w} = 0, \tau = 1, \overline{\mathbf{w}} = 0$ 1. **for** *i* = 1 ... *n* 2. $y_i = \arg \max_{t \in T} \mathbf{w}^T \varphi(\mathbf{x}_i, t)$ 3. Repeat: until convergence. a) if $y_i \neq t_i$ then 4. for a number of epochs E. b) $\mathbf{w} = \mathbf{w} + \varphi(\mathbf{x}_i, t_i) - \varphi(\mathbf{x}_i, y_i)$ 5. 6. $\overline{\mathbf{W}} = \overline{\mathbf{W}} + \mathbf{W}$ 7. $\tau = \tau + 1$ return $\overline{\mathbf{w}}/\tau$ 8. During testing: $t^* = \arg \max \overline{\mathbf{w}}^T \varphi(\mathbf{x}, t)$ $t \in T$

The Perceptron Algorithm: K classes

1. **initialize** parameters $\mathbf{w} = 0$ 2. **for** $i = 1 \dots n$ 3. $c_j = \arg \max_{t \in T} \mathbf{w}^T \varphi(\mathbf{x}_i, t)$ 4. **if** $c_j \neq t_i$ **then** 5. $\mathbf{w} = \mathbf{w} + \varphi(\mathbf{x}_i, t_i) - \varphi(\mathbf{x}_i, c_j)$

Repeat:

- a) until convergence.
- b) for a number of epochs E.

Loop invariant: w is a weighted sum of training vectors:

$$\mathbf{w} = \sum_{i,j} \alpha_{ij}(\phi(\mathbf{x}_i, t_i) - \phi(\mathbf{x}_i, c_j))$$

$$\Rightarrow \mathbf{w}^T \phi(\mathbf{x}, t) = \sum_{i,j} \alpha_{ij}(\phi(\mathbf{x}_i, t_i)^T \phi(\mathbf{x}, t) - \phi(\mathbf{x}_i, c_j)^T \phi(\mathbf{x}, t))$$

Kernel Perceptron: K classes

1. **define**
$$f(\mathbf{x},t) = \sum_{i,j} \alpha_{ij} (\phi(\mathbf{x}_i, t_i)^T \phi(\mathbf{x},t) - \phi(\mathbf{x}_i, c_j)^T \phi(\mathbf{x},t))$$

2. **initialize** dual parameters $\alpha_{ij} = 0$
3. **for** $i = 1 \dots n$
4. $\mathbf{c}_j = \arg\max_{t \in T} f(\mathbf{x}_i, t)$
5. $\mathbf{if} y_i \neq t_i$ **then**
6. $\alpha_{ij} = \alpha_{ij} + 1$

During testing: $t^* = \arg \max_{t \in T} f(\mathbf{x}, t)$

Kernel Perceptron: K classes

• Discriminant function:

$$f(\mathbf{x},t) = \sum_{i,j} \alpha_{i,j} (\phi(\mathbf{x}_i, t_i)^T \phi(\mathbf{x}, t) - \phi(\mathbf{x}_i, c_j)^T \phi(\mathbf{x}, t))$$
$$= \sum_{i,j} \alpha_{ij} (K(\mathbf{x}_i, t_i, \mathbf{x}, t) - K(\mathbf{x}_i, c_j, \mathbf{x}, t))$$

where:

$$K(\mathbf{x}_i, t_i, \mathbf{x}, t) = \boldsymbol{\varphi}^T(\mathbf{x}_i, t_i)\boldsymbol{\varphi}(\mathbf{x}, t)$$
$$K(\mathbf{x}_i, y_i, \mathbf{x}, t) = \boldsymbol{\varphi}^T(\mathbf{x}_i, y_i)\boldsymbol{\varphi}(\mathbf{x}, t)$$