
Razvan C. Bunescu

School of Electrical Engineering and Computer Science

bunescu@ohio.edu

The Perceptron Algorithm

The Kernel Trick

CS 4900/5900: Machine Learning

1

McCulloch-Pitts Neuron Function

Σ f

1x0

x1

x2

x3

wixi∑ hw(x)

activation / output
function

w0

w1

w2

w3

• Algebraic interpretation:
– The output of the neuron is a linear combination of inputs from other neurons,

rescaled by the synaptic weights.
• weights wi correspond to the synaptic weights (activating or inhibiting).
• summation corresponds to combination of signals in the soma.

– It is often transformed through a monotonic activation function.

2

Activation/Output Functions

1

0

f (z) = 1
1+ e−z

logistic

f (z) = 0 if z < 0
1 if z ≥ 0

"
#
$

%$
unit step

f (z) = zidentity

Perceptron

Logistic Regression
Linear Regression

3

Perceptron

• Assume classes T = {c1, c2} = {1, -1}.
• Training set is (x1,t1), (x2,t2), … (xn,tn).

x = [1, x1, x2, ..., xk]T

h(x) = step(wTx)

Σ

1x0

x1

x2

x3

wixi∑ hw(x)

activation
function f

w0

w1

w2

w3
= 1 if wTx > 0

0 otherwise

!
"
#

$#f (z) = 0 if z < 0
1 if z ≥ 0

"
#
$

%$

4

Perceptron Learning

• Learning = finding the “right” parameters wT = [w0, w1, … , wk]
– Find w that minimizes an error function E(w) which measures the

misfit between h(xn,w) and tn.
– Expect that h(x,w) performing well on training examples xn Þ h(x,w)

will perform well on arbitrary test examples x Î X.

• Least Squares error function?

E(w) = 1
2

{h(xn,w)− tn}
2

n=1

N

∑
of mistakes

5

Least Squares vs. Perceptron Criterion

• Least Squares => cost is # of misclassified patterns:
– Piecewise constant function of w with discontinuities.
– Cannot find closed form solution for w that minimizes cost.
– Cannot use gradient methods (gradient zero almost everywhere).

• Perceptron Criterion:
– Set labels to be +1 and − 1. Want wTxn > 0 for tn = 1, and wTxn < 0

for tn = − 1.
Þ would like to have wTxntn > 0 for all patterns.
Þ want to minimize −wTxntn for all missclassified patterns M.

Þ minimize 𝐸" 𝐰 = −∑'∈)𝐰*𝐱'𝑡'

6

Stochastic Gradient Descent

• Perceptron Criterion:

• Update parameters w sequentially after each mistake:

• The magnitude of w is inconsequential => set h = 1.

w(τ+1) =w(τ) −η∇EP (w
(τ),xn)

= 𝐰(.) + 𝜂𝐱'𝑡'

minimize 𝐸" 𝐰 = −∑'∈)𝐰*𝐱'𝑡'

𝐰(.23) = 𝐰(.) + 𝐱'𝑡'

7

The Perceptron Algorithm: Two Classes

1. initialize parameters w = 0
2. for n = 1 … N
3. hn = sgn(wTxn)
4. if hn ¹ tn then
5. w = w + tnxn

Repeat:
a) until convergence.
b) for a number of epochs E.

Theorem [Rosenblatt, 1962]:
If the training dataset is linearly separable, the perceptron learning
algorithm is guaranteed to find a solution in a finite number of steps.
• see Theorem 1 (Block, Novikoff) in [Freund & Schapire, 1999].

8

Averaged Perceptron: Two Classes

1. initialize parameters w = 0, t = 1,
2. for n = 1 … N
3. hn = sgn(wTxn)
4. if hn ¹ tn then
5. w = w + tnxn

6.
7. t = t + 1
8. return

During testing: h(𝐱) = 𝑠𝑔𝑛(8𝐰*𝐱)

9

Repeat:
a) until convergence.
b) for a number of epochs E.

www +=

0=w

t/w

Linear vs. Non-linear Decision Boundaries

And Or Xor

?

Txx],,1[)(21=xj
Twww],,[210=w 02121],[],[)(wxxww TT +==> xw j

10

Deep Learning class

How to Find Non-linear Decision Boundaries

1) Logistic Regression with manually engineered features:
– Quadratic features.

2) Kernel methods (e.g. SVMs) with non-linear kernels:
– Quadratic kernels, Gaussian kernels.

3) Unsupervised feature learning (e.g. auto-encoders):
– Plug learned features in any linear classifier.

4) Neural Networks with one or more hidden layers:
– Automatically learned features.

11

Non-Linear Classification: XOR Dataset

x = [x1, x2]

12

1) Manually Engineered Features: Add x1x2

x = [x1, x2, x1x2]

13

Logistic Regression with Manually
Engineered Features

x = [x1, x2, x1x2]

14

Perceptron with Manually Engineered Features

Project x = [x1, x2, x1x2] and decision hyperplane back to x = [x1, x2]

15

2) Kernel Methods with Non-Linear Kernels

• Perceptrons, SVMs can be ‘kernelized’:
1. Re-write the algorithm such that during training and testing

feature vectors x, y appear only in dot-products xTy.

2. Replace dot-products xTy with non-linear kernels K(x, y):

• K is a kernel if and only if ∃𝜑 such that K(x, y) = 𝜑(x)T 𝜑(y)

– 𝜑 can be in a much higher dimensional space.

» e.g. combinations of up to k original features

– 𝜑(x)T 𝜑(y) can be computed efficiently without
enumerating 𝜑(x) or 𝜑(y).

16

The Perceptron Algorithm: Two Classes

1. initialize parameters w = 0
2. for n = 1 … N
3. hn = sgn(wTxn)
4. if hn ¹ tn then
5. w = w + tnxn

17

Repeat:
a) until convergence.
b) for a number of epochs E.

Þ𝐰 =;
'

𝛼'𝑡'𝐱' 𝐰*𝐱 =;
'

𝛼'𝑡'𝐱'*𝐱

Loop invariant: w is a weighted sum of training vectors:

Kernel Perceptron: Two Classes

1. define

2. initialize dual parameters an = 0

3. for n = 1 … N
4. hn = sgn f(xn)
5. if hn ¹ tn then
6. an = an + 1

During testing: h(x) = sgn f(x)

18

𝑓 𝐱 = 𝐰*𝐱 =;
'

𝛼'𝑡'𝐱'*𝐱 =;
'

)𝛼'𝑡'𝐾(𝐱', 𝐱

Kernel Perceptron: Two Classes

1. define

2. initialize dual parameters an = 0

3. for n = 1 … N
4. hn = sgn f(xn)
5. if hn ¹ tn then
6. an = an + tn

During testing: h(x) = sgn f(x)

19

𝑓 𝐱 = 𝐰*𝐱 =;
'

𝛼'𝐱'*𝐱 =;
'

)𝛼'𝐾(𝐱', 𝐱

The Perceptron vs. Boolean Functions

20

And Or Xor

?

Txx],,1[)(21=xj
Twww],,[210=w 02121],[],[)(wxxww TT +==> xw j

Perceptron with Quadratic Kernel

• Discriminant function:

• Quadratic kernel:

Þ corresponding feature space j(x) = ?

21

),()()()(xxxxx åå ==
i

iii
T

i
iii Kttf ajja

2
2211

2)()(),(yxyxK T +== yxyx

conjunctions of two atomic features

Perceptron with Quadratic Kernel

22

a b

cd

a b

d

c
1

1 1
1

2

Linear kernel

Quadratic kernel

yxyx TK =),(
2)(),(yxyx TK =

x j(x)

Quadratic Kernels

• Circles, hyperbolas, and ellipses as separating surfaces:

23

)()()1(),(2 yxK TT jj=+= yxyx
Txxxxxxx],2,,2,2,1[)(2

221
2
121=j

x1

x2

Quadratic Kernels

24

)()()(),(2 yxyxyx jj TTK ==

x j(x)

Explicit Features vs. Kernels

• Explicitly enumerating features can be prohibitive:
– 1,000 basic features for xTy => quadratic features for (xTy)2

– Much worse for higher order features.

• Solution:
– Do not compute the feature vectors, compute kernels instead (i.e.

compute dot products between implicit feature vectors).
• (xTy)2 takes 1001 multiplications.
• j(x)T j(y) in feature space takes 500,500 multiplications.

25

500,500

Kernel Functions

• Definition:
A function k : X ´ X ® R is a kernel function if there
exists a feature mapping j : X ® Rn such that:

k(x,y) = j(x)Tj(y)

• Theorem:
k : X ´ X ® R is a valid kernel Û the Gram matrix K
whose elements are given by k(xn,xm) is positive
semidefinite for all possible choices of the set {xn}.

26

Kernel Examples

• Linear kernel:

• Quadratic kernel:
– contains constant, linear terms and terms of order two (c > 0).

• Polynomial kernel:
– contains all terms up to degree M (c > 0).

• Gaussian kernel:
– corresponding feature space has infinite dimensionality.

27

yxyx TK =),(

2)(),(yxyx TcK +=

MTcK)(),(yxyx +=

)2/exp(),(22 syxyx --=K

Techniques for Constructing Kernels

28

Kernels over Discrete Structures

• Subsequence Kernels [Lodhi et al., JMLR 2002]:
– S is a finite alphabet (set of symbols).
– x,yÎS* are two sequences of symbols with lengths |x| and |y|
– k(x,y) is defined as the number of common substrings of length n.
– k(x,y) can be computed in O(n|x||y|) time complexity.

• Tree Kernels [Collins and Duffy, NIPS 2001]:
– T1 and T2 are two trees with N1 and N2 nodes respectively.
– k(T1, T2) is defined as the number of common subtrees.
– k(T1, T2) can be computed in O(N1N2) time complexity.
– in practice, time is linear in the size of the trees.

29

Supplementary Reading

• PRML Chapter 6:
– Section 6.1 on dual representations for linear regression

models.
– Section 6.2 on techniques for constructing new kernels.

30

31

The Perceptron Algorithm: K classes

1. initialize parameters w = 0
2. for i = 1 … n
3. yi =
4. if yi ¹ ti then
5. w = w + j(xi,ti) - j(xi,yi)

During testing:

32

),(maxarg ti
T

Tt
xw j

Î
Repeat:
a) until convergence.
b) for a number of epochs E.

t* = argmax
t∈T
wTφ(x, t)

Averaged Perceptron: K classes

1. initialize parameters w = 0, t = 1,
2. for i = 1 … n
3. yi =
4. if yi ¹ ti then
5. w = w + j(xi,ti) - j(xi,yi)
6.
7. t = t + 1
8. return

During testing:

33

Repeat:
a) until convergence.
b) for a number of epochs E.

),(maxarg ti
T

Tt
xw j

Î

www +=

0=w

t/w

),(maxarg* tt T

Tt
xw j

Î
=

The Perceptron Algorithm: K classes

1. initialize parameters w = 0
2. for i = 1 … n
3. cj =
4. if cj ¹ ti then
5. w = w + j(xi,ti) - j(xi, cj)

Loop invariant: w is a weighted sum of training vectors:

34

),(maxarg ti
T

Tt
xw j

Î
Repeat:
a) until convergence.
b) for a number of epochs E.

w = αij (φ(xi,
i, j
∑ ti)−φ(xi,cj))

wTφ(x, t) = αij (φ(xi,
i, j
∑ ti)

Tφ(x, t)−φ(xi,cj)
Tφ(x, t))Þ

Kernel Perceptron: K classes

1. define

2. initialize dual parameters aij = 0

3. for i = 1 … n
4. cj =
5. if yi ¹ ti then
6. aij = aij + 1

During testing:

35

f (x, t) = αij (φ(xi,
i, j
∑ ti)

Tφ(x, t)−φ(xi,cj)
Tφ(x, t))

),(maxarg tf iTt
x

Î

),(maxarg* tft
Tt

x
Î

=

Repeat:
a) until convergence.
b) for a number of epochs E.

Kernel Perceptron: K classes

• Discriminant function:

where:

36

f (x, t) = αi, j (φ(xi,
i, j
∑ ti)

Tφ(x, t)−φ(xi,cj)
Tφ(x, t))

= αij (K(xi,
i, j
∑ ti,x, t)−K(xi,cj,x, t))

),(),(),,,(ttttK ii
T

ii xxxx jj=

K(xi, yi,x, t) = φ
T (xi, yi)φ(x, t)

