CS 4900/5900: Machine Learning

Feature Selection

Razvan C. Bunescu

School of Electrical Engineering and Computer Science

bunescu@ohio.edu

Feature Selection

- Datasets with thousands of features are common:
 - text documents
 - gene expression data
- Processing thousands of features during training & testing can be computationally infeasible.
- Many irrelevant features can lead to overfitting.
- => select most relevant features in order to obtain *faster*, better and easier to understand learning models.

Feature Selection: Methods

Wrapper method:

uses a classifier to assess features or feature subsets.

Filter method:

ranks features or feature subsets independently of the classifier.

Univariate method:

considers one feature at a time.

Multivariate method:

considers subsets of features together.

The Wrapper Method

Greedy Forward Selection:

- F is the set of all features.
- $S \subseteq F$ is the subset of selected features.
- 1. Start with no features in $S = \{\}$
- 2. For each feature f in F-S, train model with $S+\{f\}$
- 3. Add to S the best performing feature(s).
- 4. Repeat from 2 until:
 - (a) performance does not improve, or
 - (b) performance good enough.

The Wrapper Method

Greedy Backward Elimination:

- F is the set of all features.
- $S \subseteq F$ is the subset of selected features.
- 1. Start with all features in S = F
- 2. For each feature in S, train model without that feature.
- 3. Remove from S feature corresponding to best model.
- 4. Repeat from 2 until:
 - (a) performance does not improve, or
 - (b) performance good enough.

The Wrapper Method

• Forward: Greedily add features one (more) at a time.

Efficiently Inducing Features of Conditional Random Fields"
[McCallum, UAI'03]

• Backward: Greedily remove features one (more) at a time.

Multiclass cancer diagnosis using tumor gene expression signatures" [Ramaswamy et al., PNAS'01]

- Combined: Two steps forward, one step back.
- Train multiple times ⇒ can be very time consuming!
 - Alternative: use external criteria to decide feature relevance ⇒ the Filter Method.

Recursive Feature Elimination with SVM

[Guyon et al., ML'03]

- An instance of Greedy Backward Elimination.
- 1. Let $F = \{1, 2, ..., K\}$ be the set of features.
- 2. Let S = [] be the ranked set of features.
- 3. Repeat until F S is empty:
 - I. Train weight vector \mathbf{w} using a linear SVM and $\mathbf{F} \mathbf{S}$.
 - II. Find feature f in F S with minimum $|\mathbf{w}_f|$.
 - III. Append f to S.
- 4. Return S.

The Filter Method

- 1. Rank all features using a measure of correlation with the label.
- 2. Select top k features to use in the model.
- Measures of correlation between feature X and label Y:
 - Mutual Information
 - Chi-square Statistic

nominal features & label

- Pearson Correlation Coefficient
- Signal-to-Noise Ratio
- T-test

Mutual Information

• Independence:

$$P(X,Y) = P(X)P(Y)$$

Measure of dependence:

$$MI(X,Y) = \sum_{X \in \mathcal{X}} \sum_{Y \in \mathcal{U}} p(X,Y) \log \frac{p(X,Y)}{p(X)p(Y)}$$
$$= KL(p(X,Y) \parallel p(X)p(Y))$$

- It is 0 when X and Y are independent.
- It is maximum when X=Y.

Mutual Information

• Problems:

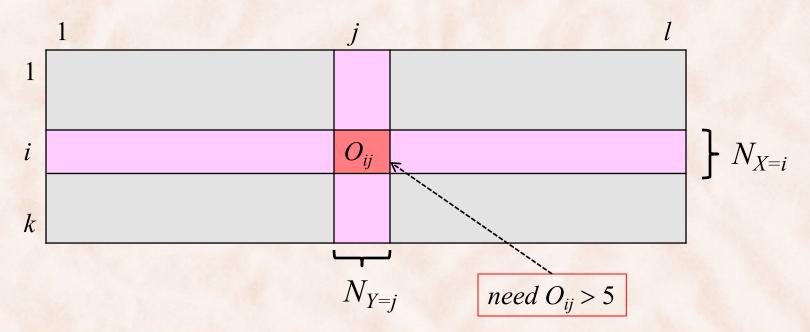
- Works only with nominal features & labels ⇒ discretization.
- Biased toward high arity features \Rightarrow normalization.
- May choose redundant features.
- Features may become relevant in the context of other ⇒ use conditional MI [Fleuret, JMLR '04].

Other measures:

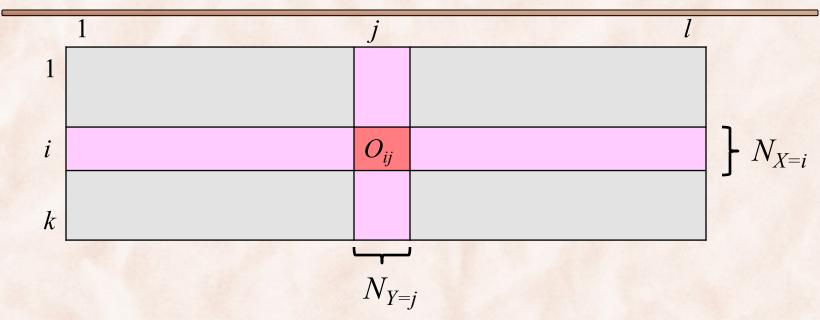
- Chi square (χ^2) .
- Log-likelihood Ratio (LLR).
- Comparison between MI, χ^2 , and LLR in [Dunning, CL'98] "Accurate methods for the statistics of surprise and coincidence"

Chi Square (χ²) Test of Independence

- *N* training examples (observations).
- X is a discrete feature with k possible values.
- Y is a label with *l* possible values.
- Create *k*-by-*l* contingency table with cells for every feature-label combination.



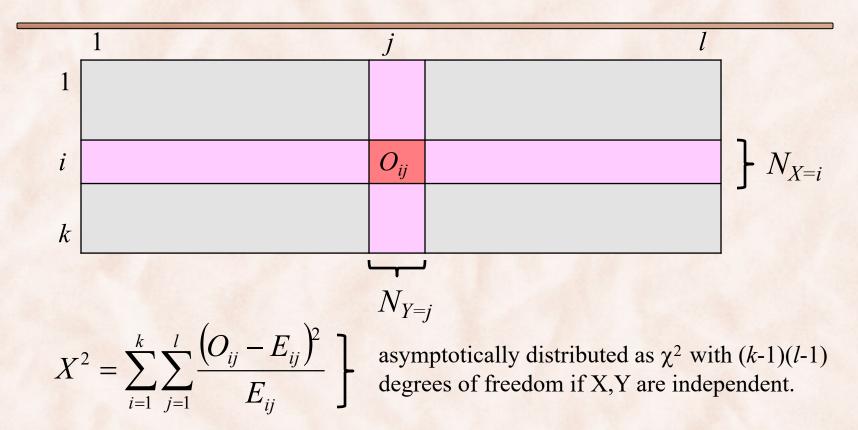
Chi Square (χ^2) Test of Independence



- O_{ij} is the observed count for X=i & Y=j.
- E_{ij} is the expected value for X=i & Y=j, assuming X,Y are independent.

$$E_{ij} = \frac{N_{X=i} \times N_{Y=j}}{N} = \frac{\left(\sum_{c=1}^{l} O_{ic}\right) \times \left(\sum_{r=1}^{k} O_{rj}\right)}{N}$$

Chi Square (χ²) Test of Independence



Use X^2 test value to rank features X with respect to label Y.

Pearson Correlation Coefficient

- Feature X and label Y are two random variables.
- Population correlation coefficient (linear dependence):

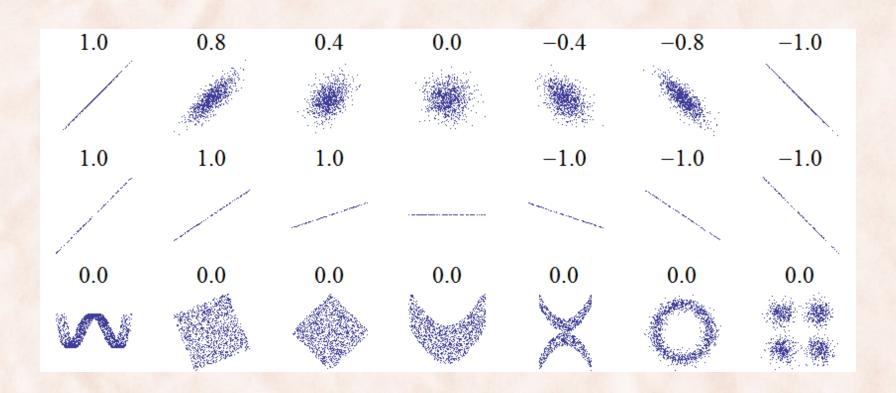
$$\rho(X,Y) = \frac{E[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}$$

• Sample correlation coefficient:

$$\rho(X,Y) = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \overline{X})^2} \sqrt{\sum_{i=1}^{n} (Y_i - \overline{Y})^2}}$$

- Values always between [-1,+1]
 - when linearly dependent +1, -1, when independent 0.

Pearson Correlation Coefficient

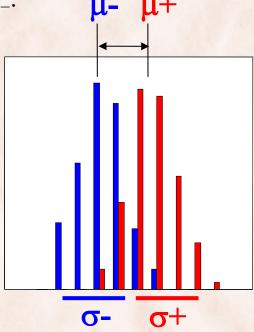


Signal-to-Noise Ratio (S2N)

- Feature X and label Y are two random variables:
 - Y is binary, $Y \in \{y_+, y_-\}$
- Let μ_+ , σ_+ be the sample μ , σ of X for which $Y = y_+$.
- Let μ_{-} , σ_{-} be the sample μ_{+} , σ of X for which Y= y_.

$$\mu(X,Y) = \frac{\left|\mu_{+} - \mu_{-}\right|}{\sigma_{+} + \sigma_{-}}$$

related to Fisher's criterion



Ranking Features with the T-test

- Let m₊ be the number of samples in class y₊.
- Let m_ be the number of sample in class y_.

