CS 4900/5900: Machine Learning

k-Nearest Neighbors

Razvan C. Bunescu

School of Electrical Engineering and Computer Science

bunescu@ohio.edu

Nonparametric Methods: k-Nearest Neighbors

Input:

- A training dataset (\mathbf{x}_1, t_1) , (\mathbf{x}_2, t_2) , ... (\mathbf{x}_n, t_n) .
- A test instance x.

Output:

- Estimated class label $y(\mathbf{x})$.

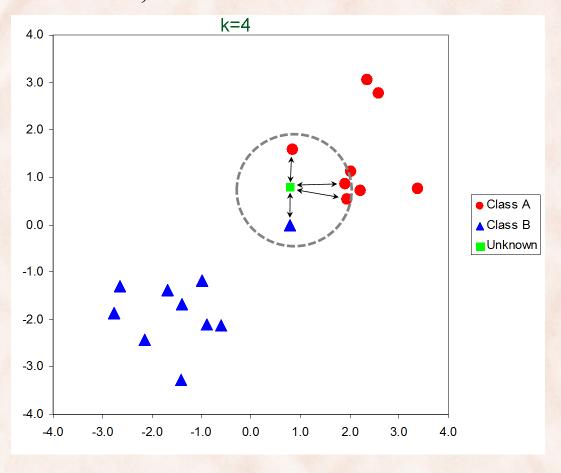
1. Find k instances $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k$ nearest to \mathbf{x} .

2. Let
$$y(x) = \arg \max_{t \in T} \sum_{i=1}^{\kappa} \delta_t(t_i)$$

where
$$\delta_t(x) = \begin{cases} 1 & x = t \\ 0 & x \neq t \end{cases}$$
 is the *Kronecker delta* function.

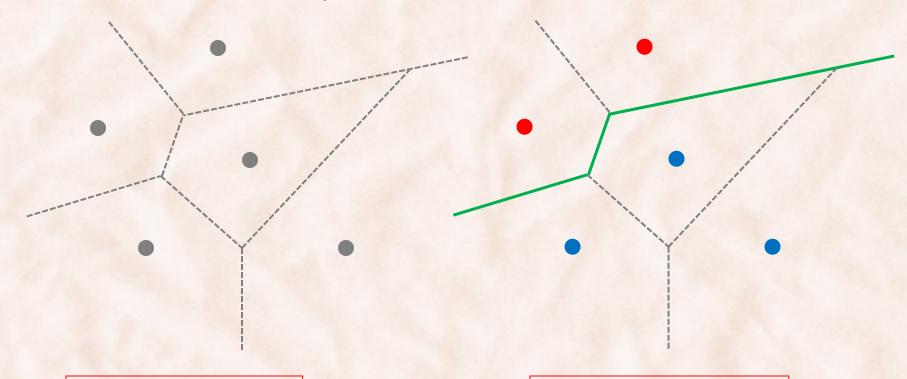
k-Nearest Neighbors (k-NN)

• Euclidean distance, k = 4



k-Nearest Neighbors (k-NN)

• Euclidian distance, k = 1.



Voronoi diagram

decision boundary

k-NN for Classification: Probabilistic Justification

• Assume a dataset with N_i points in class C_i .

$$\Rightarrow$$
 total number of points is $N = \sum_{j} N_{j}$

- Draw a sphere centered at **x** containing *K* points:
 - sphere has volume V.
 - sphere contains K_j points from class C_j .
- If V sufficiently small and K sufficiently large, we can estimate [2.5.1]:

$$p(\mathbf{x} \mid C_j) = \frac{K_j}{N_j V} \qquad p(\mathbf{x}) = \frac{K}{N V} \qquad p(C_j) = \frac{N_j}{N}$$

• Bayes' theorem $\Rightarrow p(C_j | \mathbf{x}) = \frac{K_j}{K} \Rightarrow \text{choose class } C_j \text{ with most neighbors.}$

Distance Metrics

• Euclidean distance:

$$d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|_{2} = \sqrt{(\mathbf{x} - \mathbf{y})^{T}(\mathbf{x} - \mathbf{y})}$$

Hamming distance:

of (discrete) features that have different values in x and y.

Mahalanobis distance:

(sample) covariance matrix

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{(\mathbf{x} - \mathbf{y})^T S^{-1}(\mathbf{x} - \mathbf{y})}$$

- scale-invariant metric that normalizes for variance.
- if $S = I \Rightarrow$ Euclidean distance.
- if $S = diag(\sigma_1^{-2}, \sigma_2^{-2}, ..., \sigma_K^{-2})$ ⇒ normalized Euclidean distance.

Distance Metrics

• Cosine similarity:

$$d(\mathbf{x}, \mathbf{y}) = 1 - \cos(\mathbf{x}, \mathbf{y}) = 1 - \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$$

- used for text and other high-dimensional data.
- Levenshtein distance (Edit distance):
 - distance metric on strings (sequences of symbols).
 - min. # of basic edit operations that can transform one string into the other (delete, insert, substitute).

$$\begin{cases} \mathbf{x} = \text{"athens"} \\ \mathbf{y} = \text{"hints"} \end{cases} \Rightarrow d(\mathbf{x}, \mathbf{y}) = 4$$

used in bioinformatics.

Efficient Indexing

- Linear searching for *k*-nearest neighbors is not efficient for large training sets:
 - O(N) time complexity.
- For Euclidean distance use a kd-tree:
 - instances stored at leaves of the tree.
 - internal nodes branch on threshold test on individual features.
 - expected time to find the nearest neighbor is O(log N)
- Indexing structures depend on distance function:
 - inverted index for text retrieval with cosine similarity.

k-NN and The Curse of Dimensionality

- Standard metrics weigh each feature equally:
 - Problematic when many features are irrelevant.
- One solution is to weigh each feature differently:
 - Use measure indicating ability to discriminate between classes, such as:
 - Information Gain, Chi-square Statistic
 - Pearson Correlation, Signal to Noise Ration, T test.
 - "Stretch" the axes:
 - lengthen for relevant features, shorten for irrelevant features.
 - Equivalent with Mahalanobis distance with diagonal covariance.

Distance-Weighted k-NN

For any test point \mathbf{x} , weight each of the k neighbors according to their distance from \mathbf{x} .

- 1. Find k instances $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k$ nearest to \mathbf{x} .
- 2. Let $y(x) = \arg \max_{t \in T} \sum_{i=1}^{k} w_i \delta_t(t_i)$

where $w_i = \|\mathbf{x} - \mathbf{x}_i\|^{-2}$ measures the similarity between \mathbf{x} and \mathbf{x}_i

Kernel-based Distance-Weighted NN

For any test point **x**, weight all training instances according to their similarity with **x**.

- 1. Assume binary classification, $T = \{+1, -1\}$.
- 2. Compute weighted majority:

$$y(\mathbf{x}) = sign\left(\sum_{i=1}^{N} K(\mathbf{x}, \mathbf{x}_i) t_i\right)$$

Regression with k-Nearest Neighbor

Input:

- A training dataset (\mathbf{x}_1, t_1) , (\mathbf{x}_2, t_2) , ... (\mathbf{x}_n, t_n) .
- A test instance x.

Output:

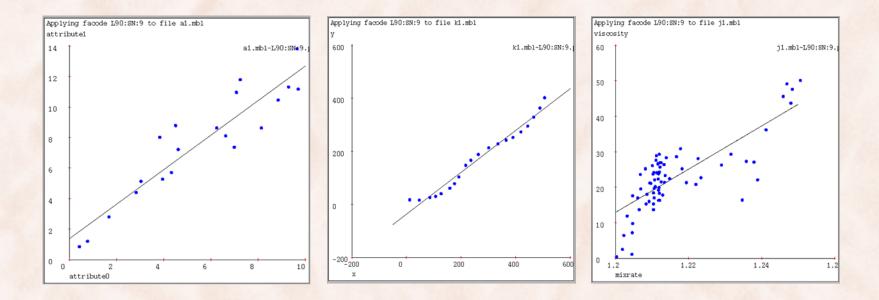
- Estimated function value $y(\mathbf{x})$.

1. Find k instances $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k$ nearest to \mathbf{x} .

2. Let
$$y(x) = \frac{1}{k} \sum_{i=1}^{k} t_i$$

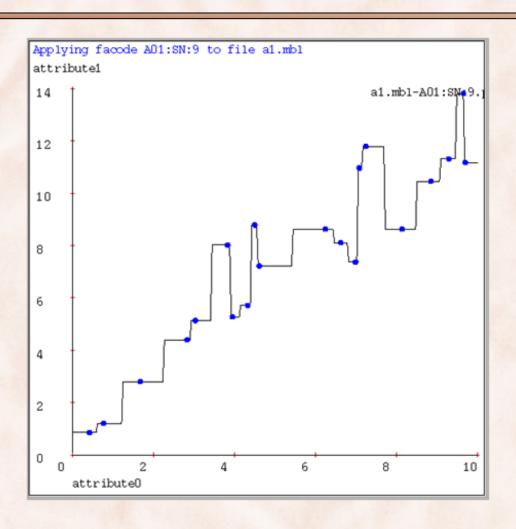
3 Datasets & Linear Interpolation

[http://www.autonlab.org/tutorials/mbl08.pdf]

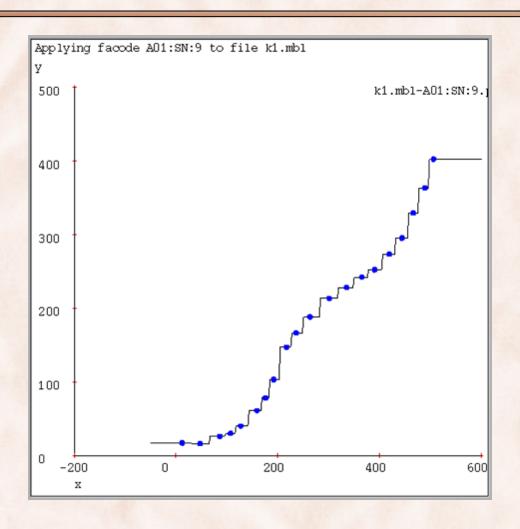


Linear interpolation does not always lead to good models of the data.

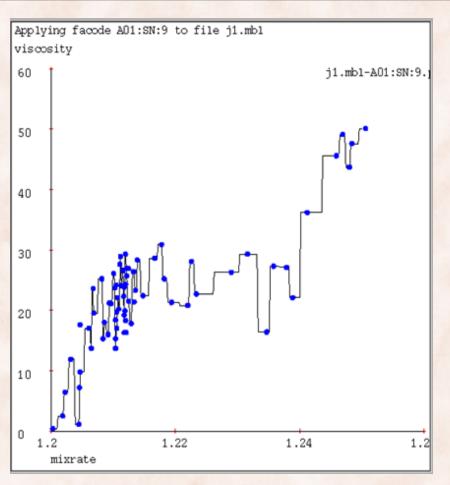
Regression with 1-Nearest Neighbor



Regression with 1-Nearest Neighbor

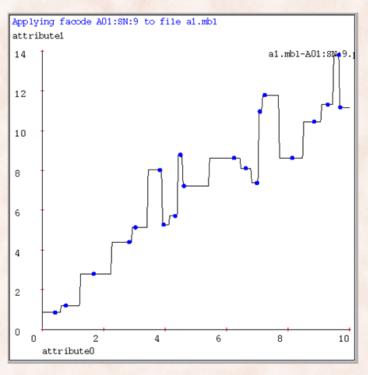


Regression with 1-Nearest Neighbor

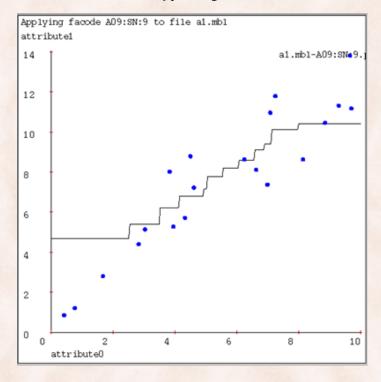


 \Rightarrow 1-NN has high variance

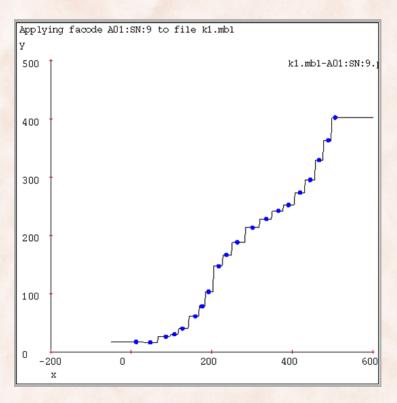
Regression with 9-Nearest Neighbor



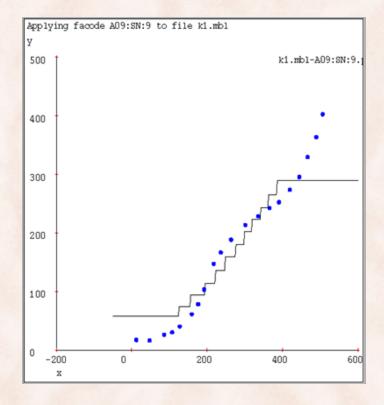
k = 9



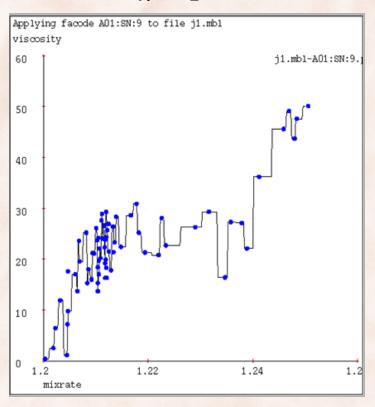
Regression with 9-Nearest Neighbor



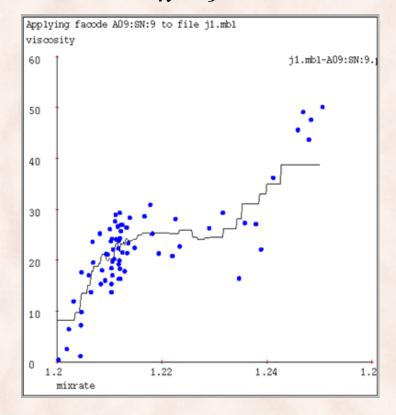
k = 9



Regression with 9-Nearest Neighbor



k = 9



Distance-Weighted k-NN for Regression

For any test point \mathbf{x} , weight each of the k neighbors according to their similarity with \mathbf{x} .

1. Find k instances $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k$ nearest to \mathbf{x} .

2. Let
$$y(x) = \sum_{i=1}^{k} w_i t_i / \sum_{i=1}^{k} w_i$$
where $w_i = \|\mathbf{x} - \mathbf{x}_i\|^{-2}$

For $k = N \Rightarrow$ Shepard's method [Shepard, ACM '68].

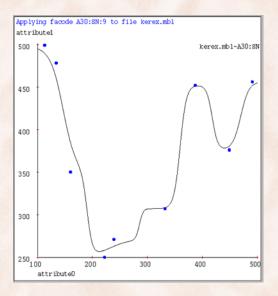
Kernel-based Distance Weighted NN Regression

For any test point **x**, weight all training instances according to their similarity with **x**.

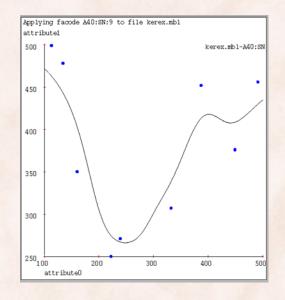
1. Return weighted average:

$$y(\mathbf{x}) = \frac{\sum_{i=1}^{N} K(\mathbf{x}, \mathbf{x}_i) t_i}{\sum_{i=1}^{N} K(\mathbf{x}, \mathbf{x}_i)}$$

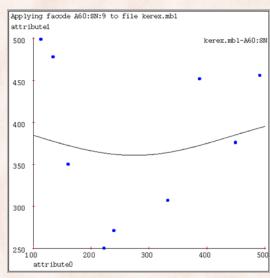
NN Regression with Gaussian Kernel



$$2\sigma^2 = 20$$



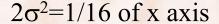
$$2\sigma^2 = 80$$

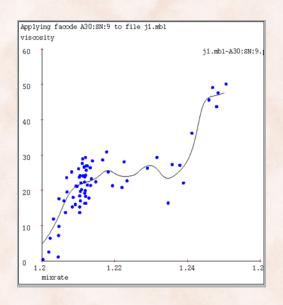


$$K(\mathbf{x}, \mathbf{x}_i) = e^{-\frac{\|\mathbf{x} - \mathbf{x}_i\|^2}{2\sigma^2}}$$

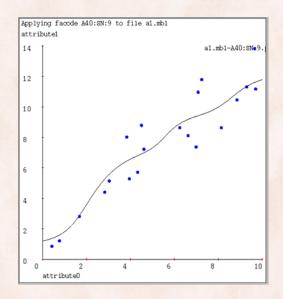
Increased kernel width means more influence from distant points.

NN Regression with Gaussian Kernel

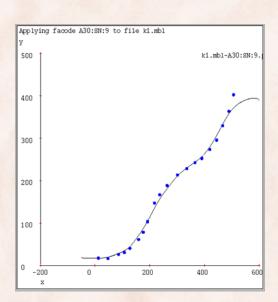




$2\sigma^2=1/32$ of x axis



$2\sigma^2=1/32$ of x axis



$$K(\mathbf{x}, \mathbf{x}_i) = e^{-\frac{\|\mathbf{x} - \mathbf{x}_i\|^2}{2\sigma^2}}$$

k-Nearest Neighbor Summary

- Training: memorize the training examples.
- Testing: compute distance/similarity with training examples.
- Trades decreased training time for increased test time.
- Use kernel trick to work in implicit high dimensional space.
- Needs feature selection when many irrelevant features.
- An Instance-Based Learning (IBL) algorithm:
 - Memory-based learning
 - Lazy learning
 - Exemplar-based
 - Case-based