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Three Parametric Approaches to 
Classification

1) Discriminant Functions: construct f : X ® T that directly 
assigns a vector x to a specific class Ck.
– Inference and decision combined into a single learning 

problem.
– Linear Discriminant: the decision surface is a 

hyperplane in X:
• Fisher ‘s Linear Discriminant
• Perceptron
• Support Vector Machines
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Three Parametric Approaches to 
Classification

2) Probabilistic Discriminative Models: directly model the 
posterior class probabilities p(Ck | x).
– Inference and decision are separate.
– Less data needed to estimate p(Ck | x) than p(x |Ck).
– Can accommodate many overlapping features.

• Logistic Regression
• Conditional Random Fields
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Three Parametric Approaches to 
Classification

3) Probabilistic Generative Models: 
– Model class-conditional p(x |Ck) as well as the priors 

p(Ck), then use Bayes’s theorem to find p(Ck | x).
• or model p(x,Ck) directly, then marginalize to obtain the 

posterior probabilities p(Ck | x).

– Inference and decision are separate.
– Can use p(x) for outlier or novelty detection.
– Need to model dependencies between features.

• Naïve Bayes.
• Hidden Markov Models.
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Unbiased Learning of Generative Models

• Let x = [x1, x2, …, xM]T be a feature vector with M features.

• Assume Boolean features:
Þ distribution p(x |Ck) is completely specified by a table of 2M

probabilities, of which 2M -1 are independent.

• Assume binary classification:
Þneed to estimate 2M -1 parameters for each class
Þ total of 2(2M -1) independent parameters to estimate.
– 30 features Þ more than 2 billion parameters to estimate!
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The Naïve Bayes Model

• Assume features are conditionally independent given the 
target output:

• Assume binary classification & features:
Þ need to estimate only 2M parameters, a lot less than 2(2M -1). 
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The Naïve Bayes Model: Inference

• Posterior distribution:

• Inference º find C* to minimize missclassification rate:
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The Naïve Bayes Model: Training

• Training º estimate parameters p(xi|Ck) and p(Ck).

• Maximum Likelihood (ML) estimation:
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The Naïve Bayes Model: Training

• Maximum A-Posteriori (MAP) estimation:
– assume a Dirichlet prior over the NB parameters, with  equal-

valued parameters.
– assume xi can take V values, label t can take K values.
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Text Categorization with Naïve Bayes

• Text categorization problems:
– Spam filtering.
– Targeted advertisement in Gmail.
– Classification in multiple categories on news websites.

• Representation as one feature per word:
Þ each document is a very high dimensional feature vector.

• Most words are rare:
– Zipf’s law and heavy tail distribution.
Þ feature vectors are sparse.
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Text Categorization with Naïve Bayes

• Generative model of documents:
1) Generate document category by sampling from p(Ck).
2) Generate a document as a bag of words by repeatedly sampling 

with replacement from a vocabulary V = {w1, w2, …, w|V|} based 
on p(wi | Ck).

• Inference with Naïve Bayes:
– Input :

• Document x with n words v1, v2, … vn.
– Output:

• Category
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Text Categorization with Naïve Bayes

• Training with Naïve Bayes:
– Input:

• Dataset of training documents D with vocabulary V.
– Output:

• Parameters p(Ck) and p(wi | Ck).

1. for each category Ck:
2. let Dk be the subset of documents in category Ck
3. set p(Ck) = |Dk| / |D|
4. let nk be the total number of words in Dk
5. for each word wi Î V:
6. let nki be the number of occurrences of wi in Dk
7. set p(wi | Ck) = (nki+1) / (nk + |V|)
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Medical Diagnosis with Naïve Bayes

• Diagnose a disease T={Yes, No}, using information from 
various medical tests.
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continuous values 
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Naïve Bayes with Continuous Features

• Assume p(xi | Ck) are Gaussian distributions N(µik,sik).

• Training: use ML or MAP criteria to estimate µik,sik:

• Inference: 
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Numerical Issues

• Multiplying lots of probabilities may results in underflow:
– especially when many attributes (e.g. text categorization).

• Compute everything in log space:
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Naïve Bayes

• Often has good performance, despite strong independence 
assumptions:
– quite competitive with other classification methods on UCI 

datasets.

• It does not produce accurate probability estimates when 
independence assumptions are violated:
– the estimates are still useful for finding max-probability class.

• Does not focus on completely fitting the data Þ resilient to 
noise.
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Probabilistic Generative Models: Binary 
Classification (K = 2)

• Model class-conditional p(x |C1), p(x |C2) as well as the priors p(C1), 
p(C2), then use Bayes’s theorem to find p(C1 | x), p(C2 | x): 
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Probabilistic Generative Models: Binary 
Classification (K = 2)

• If a(x) is a linear function of x Þ p(C1 | x) is a generalized linear 
model:
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The Naïve Bayes Model

• Assume binary features xi Î{0,1}:
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Probabilistic Generative Models: Multiple 
Classes (K ³ 2)

• Model class-conditional p(x |Ck) as well as the priors p(Ck), then use 
Bayes’s theorem to find p(Ck | x):

• If  Þ p(Ck | x) is a generalized linear model.
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