CS 4900/5900: Machine Learning

Clustering

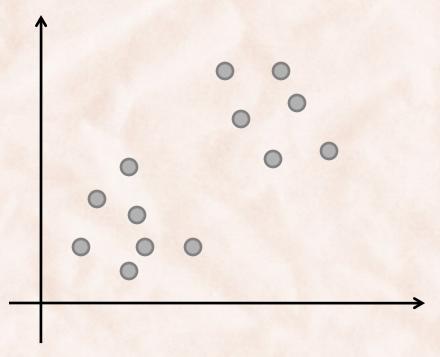
Razvan C. Bunescu

School of Electrical Engineering and Computer Science

bunescu@ohio.edu

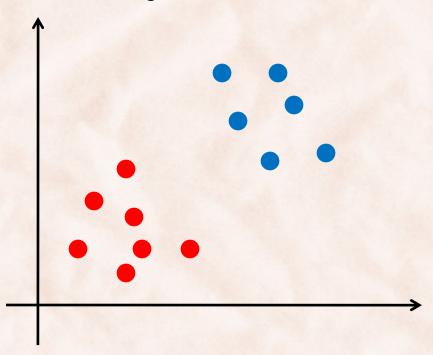
Unsupervised Learning: Clustering

- Partition unlabeled examples into disjoint clusters such that:
 - Examples in the same cluster are very similar.
 - Examples in different clusters are very different.



Unsupervised Learning: Clustering

- Partition unlabeled examples into disjoint clusters such that:
 - Examples in the same cluster are very similar.
 - Examples in different clusters are very different.



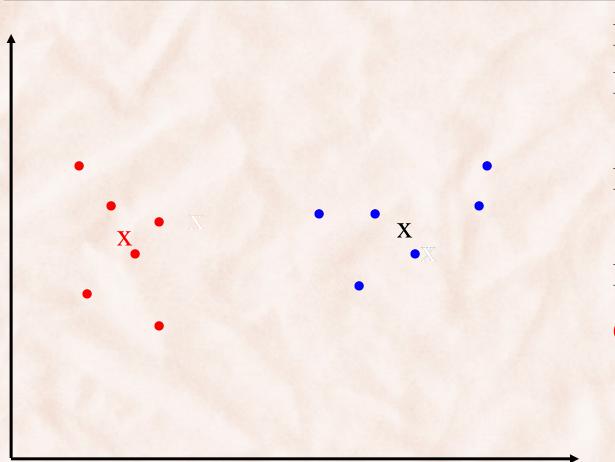
Divisive Clustering with k-Means

- The goal is to produce k clusters such that instances are close to the cluster centroids:
 - The cluster centroid is the mean of all instances in the cluster.
- Optimization problem:

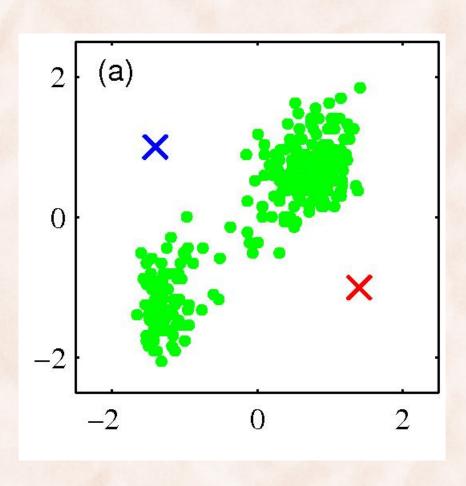
$$\hat{C} = \arg\min_{C} J(C)$$

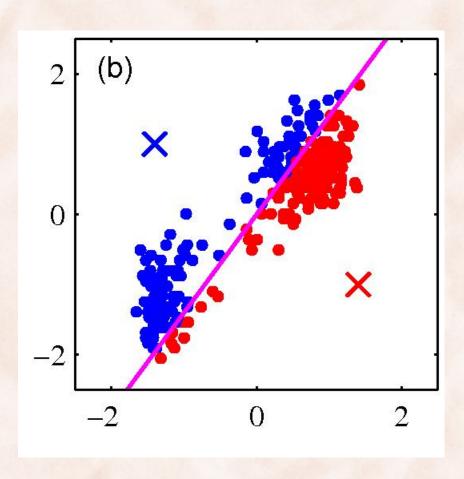
$$J(C) = \sum_{i=1}^{k} \sum_{\mathbf{x} \in C} ||\mathbf{x} - \mathbf{m}_{i}||^{2}$$

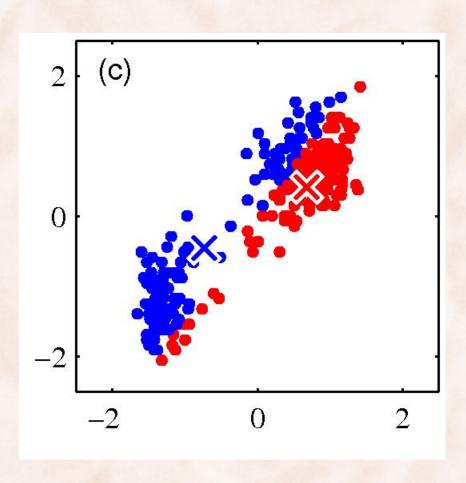
- 1. start with some seed centroids $\mathbf{m}_1^{(0)}, \mathbf{m}_2^{(0)}, \dots, \mathbf{m}_k^{(0)}$
- 2. set $t \leftarrow 0$.
- 3. while not converged:
- 4. for each x:
- 5. $\operatorname{set} \mathbf{m}^{(t)}(\mathbf{x}) \leftarrow \arg\min_{\mathbf{m}_{i}^{(t)}} \|\mathbf{x} \mathbf{m}_{i}^{(t)}\| \leftarrow \mathbb{E} \operatorname{step}$
- 6. **set** $C_i^{(t+1)} \leftarrow \{ \mathbf{x} \mid \mathbf{m}^{(t)}(\mathbf{x}) = \mathbf{m}_i^{(t)} \}$
- 7. **set** $\mathbf{m}_i^{(t+1)} \leftarrow \frac{1}{\left|C_i^{(t+1)}\right|} \sum_{\mathbf{x} \in C_i^{(t+1)}} \mathbf{x} \leftarrow [\mathbf{M}] \text{ step}$
- 8. set $t \leftarrow t + 1$

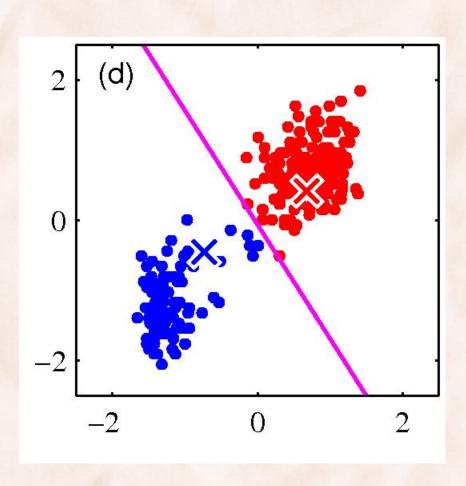


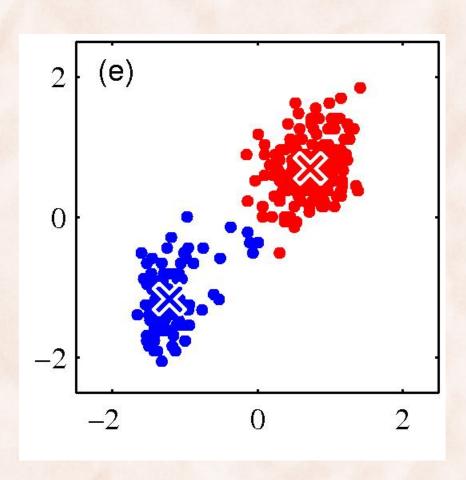
Pick seeds
Reassign clusters
Compute centroids
Reassign clusters
Compute centroids
Reassign clusters
Converged!

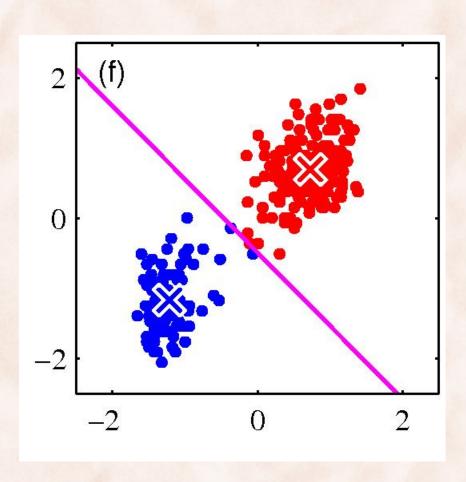


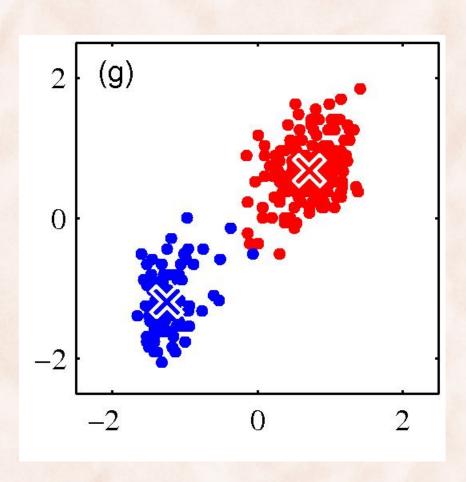


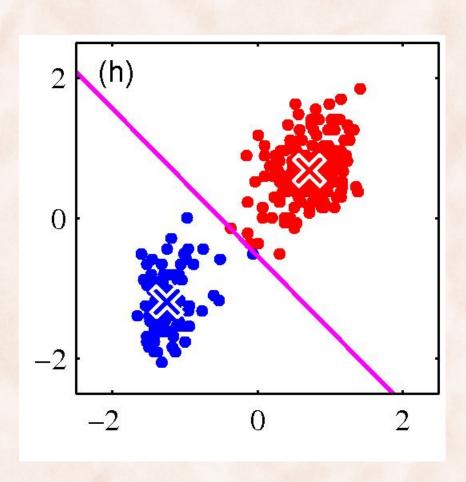


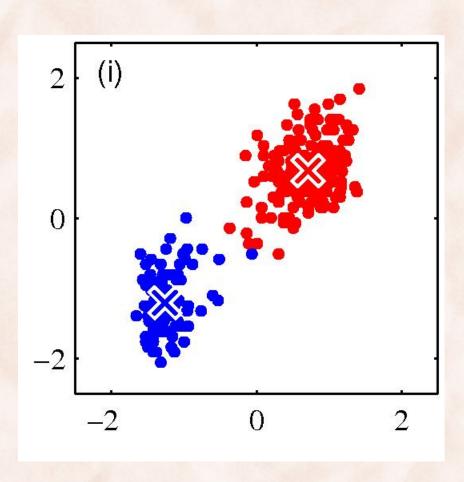






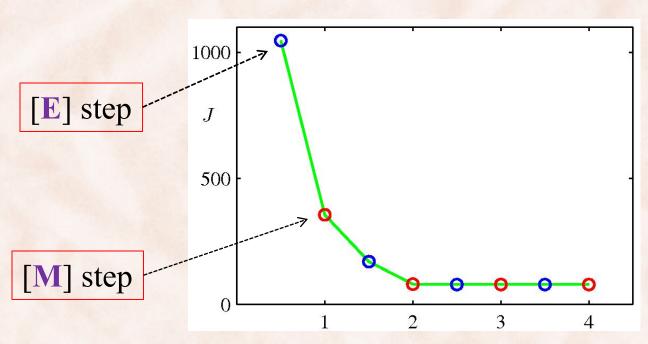






• The objective function monotonically decreases at every iteration:

$$J^{(t)} \ge J^{(t+1)}$$



- Optimization problem is NP-hard:
 - Results depend on seed selection.
 - Improve performance by providing must-link and/or cannot-link constraints ⇒ semi-supervised clustering.
- Time complexity for each iteration is O(knm):
 - number of clusters is k.
 - feature vectors have dimensionality m.
 - total number of instances is n.

- 1. start with some seed centroids $\mathbf{m}_1^{(0)}, \mathbf{m}_2^{(0)}, \dots, \mathbf{m}_k^{(0)}$
- 2. set $t \leftarrow 0$.
- 3. while not converged:
- 4. for each x:
- 5. $\mathbf{set} \ \mathbf{m}^{(t)}(\mathbf{x}) \leftarrow \arg\min_{\mathbf{m}_{i}^{(t)}} \left\| \mathbf{x} \mathbf{m}_{i}^{(t)} \right\| \leftarrow \mathbf{E} \mathbf{step}$
- 6. set $C_i^{(t+1)} \leftarrow \left\{ \mathbf{x} \mid \mathbf{m}^{(t)}(\mathbf{x}) = \mathbf{m}_i^{(t)} \right\}$
- 7. **set** $\mathbf{m}_i^{(t+1)} \leftarrow \frac{1}{\left|C_i^{(t+1)}\right|} \sum_{\mathbf{x} \in C_i^{(t+1)}} \mathbf{x} \leftarrow [\mathbf{M}] \text{ step}$
- 8. set $t \leftarrow t + 1$

The *k*-Medoids Algorithm

- 1. start with some random seed centroids $\mathbf{m}_1^{(0)}, \mathbf{m}_2^{(0)}, ..., \mathbf{m}_k^{(0)}$
- 2. set $t \leftarrow 0$.
- 3. while not converged:
- 4. for each x:
- 5. set $\mathbf{m}^{(t)}(\mathbf{x}) \leftarrow \arg\min_{\mathbf{m}_i^{(t)}} d(\mathbf{x} \mathbf{m}_i^{(t)}) \leftarrow [\mathbf{E}] \text{ step}$
- 6. **set** $C_i^{(t+1)} \leftarrow \{ \mathbf{x} \mid \mathbf{m}^{(t)}(\mathbf{x}) = \mathbf{m}_i^{(t)} \}$
- 7. $\mathbf{set} \ \mathbf{m}_{i}^{(t+1)} \leftarrow \arg\min_{\mathbf{x} \in C_{i}^{(t+1)}} \sum_{\mathbf{y} \in C_{i}^{(t+1)}} d(\mathbf{x}, \mathbf{y}) \leftarrow \mathbf{[M]} \ \mathbf{step}$
- 8. set $t \leftarrow t + 1$

Soft Clustering

- Clustering typically assumes that each instance is given a "hard" assignment to exactly one cluster.
- Does not allow uncertainty in class membership or for an instance to belong to more than one cluster.
- **Soft clustering** gives probabilities that an instance belongs to each of a set of clusters.
- Each instance is assigned a probability distribution across a set of discovered categories.

Soft Clustering with EM

- Soft version of *k*-means.
- Assumes a probabilistic model of categories that allows computing $P(c_i \mid \mathbf{x})$ for each category, c_i , for a given example \mathbf{x} .
 - For text, typically assume a naïve-Bayes category model.
 - Parameters $\theta = \{P(c_i), P(w_i | c_i) | i \in \{1,...k\}, j \in \{1,...,|V|\}\}$

Soft Clustering with EM

- Iterative method for learning probabilistic categorization model from unsupervised data.
- Initially assume random assignment of examples to categories.
- Learn an initial probabilistic model by estimating model parameters θ from this randomly labeled data.
- Iterate following two steps until convergence:
 - Expectation (E-step): Compute $P(c_i | \mathbf{x})$ for each example given the current model, and probabilistically re-label the examples based on these posterior probability estimates.
 - Maximization (M-step): Re-estimate the model parameters, θ , from the probabilistically re-labeled data.

Learning with Probabilistic Labels

- Instead of training data labeled with "hard" category labels, training data is labeled with "soft" probabilistic category labels.
- When estimating model parameters θ from training data, weight counts by the corresponding probability of the given category label.
- For example, if $P(c_1 | \mathbf{x}) = 0.8$ and $P(c_2 | \mathbf{x}) = 0.2$, each word w_j in \mathbf{x} contributes only 0.8 towards the counts n_1 and n_{1j} , and 0.2 towards the counts n_2 and n_{2j} .

Naïve Bayes EM

- 1. Randomly assign examples probabilistic category labels.
- 2. Use standard naïve-Bayes training to learn a probabilistic model with parameters θ from the labeled data.
- 3. Until convergence or until maximum number of iterations reached:
 - E-Step: Use the naïve Bayes model θ to compute $P(c_i \mid \mathbf{x})$ for each category and example, and re-label each example using these probability values as soft category labels.
 - M-Step: Use standard naïve-Bayes training to re-estimate the parameters θ using these new probabilistic category labels.

Hierarchical Agglomerative Clustering (HAC)

- Start out with *n* clusters, one example per cluster.
- At each step merge the *nearest* two clusters.
- Stop when there is only one cluster left, or:
 - there are only k clusters left.
 - distance is above a threshold τ .
- History of clustering decision can be represented as a binary tree.

The HAC Algorithm

1. **let**
$$C_i = \{\mathbf{x}_i\}$$
, for $i \in 1...n$

2. **let**
$$C = \{C_i\}$$
, for $i \in 1...n$

- 3. **while** |C| > 1:
- 4. **set** $\langle C_i, C_j \rangle = \arg\min_{C_k \neq C_l} d(C_k, C_l)$
- 5. **replace** C_i , C_j in C with $C_i \cup C_j$

Q: How do we compute the distance *d* between two clusters?

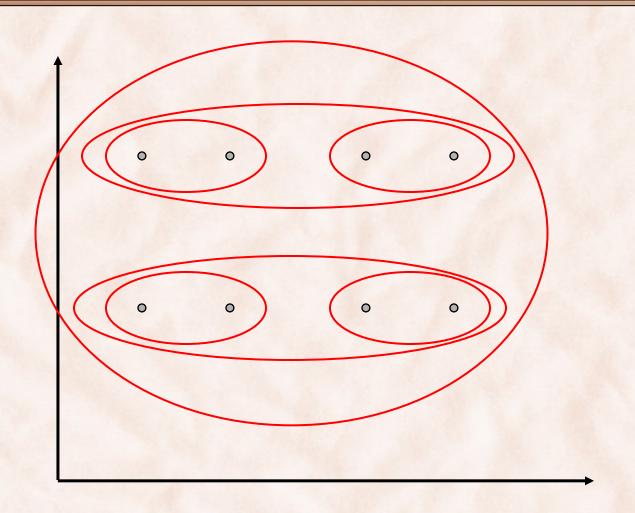
Distance Measures

- Assume a distance function between any two instances:
 - Euclidean distance ||x-y||
- Single Link: $d(C_i, C_j) = \min_{\mathbf{x} \in C_i, \mathbf{y} \in C_j} ||\mathbf{x} \mathbf{y}||$
- Complete Link: $d(C_i, C_j) = \max_{\mathbf{x} \in C_i, \mathbf{y} \in C_j} ||\mathbf{x} \mathbf{y}||$
- Group Average: $d(C_i, C_j) = \frac{1}{|C_i| * |C_j|} \sum_{\mathbf{x} \in C_i, \mathbf{y} \in C_j} \|\mathbf{x} \mathbf{y}\|$
- Centroid Distance: $d(C_i, C_j) = \|\mathbf{m}_i \mathbf{m}_j\|$

Single Link (Nearest Neighbor)

- Distance function $d(C_i, C_j) = \min_{\mathbf{x} \in C_i, \mathbf{y} \in C_j} \|\mathbf{x} \mathbf{y}\|$
- It favors elongated clusters.
- Equivalent with Kruskal's MST algorithm.

Single Link



Complete Link (Farthest Neighbor)

- Distance function $d(C_i, C_j) = \max_{\mathbf{x} \in C_i, \mathbf{y} \in C_j} \|\mathbf{x} \mathbf{y}\|$
- It favors tight, spherical clusters.
- $d(C_i, C_j)$ is the diameter of the cluster $C_i \cup C_j$.

Complete Link

