
HW Assignment 4 (Due date: Dec 2, Friday)

1 Problems

1. [Decision Trees, 50 points]
Consider the following set of training examples:

A1 A2 A3 Label
F F F –
F T F –
T F F +
T F T +
F T F –
F F T –
T F T +
F T F –

Table 1: Training examples

1. What is the entropy of the class label distribution?

2. What attribute gets selected as root by the ID3 algorithm?

2. [Naive Bayes, 50 points]
The Naive Bayes algorithm for text categorization presented in class (slide 16) treats
all sections of a document equally, ignoring the fact that words in the title are often
more important than words in the text in determining the document category. Describe
how you would modify the Naive Bayes algorithm for text categorization to reflect the
constraint that words in the title are K times more important than the other words
in the document for deciding the category, where K is an input parameter (include
pseudocode).

3. [Logistic Regression, 50 points]
By setting the gradient of the log-likelihood to zero, prove that the ML solution wML

for the multiple class logistic regression problem satisfies the constraint that, for every
feature φi, the observed value of φi on the training data D is the same as its ex-
pected value on D under the probability distribution parameterized by wML (i.e. the
constraint on slide 14).
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4. [Logistic Regression, 50 points]
Assume that a binary feature φi is equal to 1 for all training examples belonging to a
particular class Ck, and zero otherwise (i.e. φi perfectly separates examples from class
Ck from all other examples). Show that in this case the magnitude of the ML solution
for w goes to infinity, thus motivating the use of a prior over the parameters (Hint:
use constraint equation on slide 14).

5. [k-Means Clustering, 50 points]
Prove that the value of the objective function of k-Means decreases at every iteration
i.e. J (t+1) ≤ J (t). Use this observation to prove that k-Means converges after a finite
number of iterations.

6. [Hidden Markov Models, 50 bonus points]
Using the notation introduced in class, show that:

p(O|µ) =
N∑
i=1

αi(t)βi(t) ∀t ∈ [1..T ]
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