Machine Learning CS 6830

Lecture 02

Razvan C. Bunescu School of Electrical Engineering and Computer Science bunescu@ohio.edu

Supervised Learning

- Task = learn a function $y : X \rightarrow T$ that maps input instances $x \in X$ to output targets $t \in T$:
 - Classification:
 - The output $t \in T$ is one of a finite set of discrete categories.
 - Regression:
 - The output $t \in T$ is continuous, or has a continuous component.
- Supervision = set of training examples:

 $(\mathbf{x}_1, t_1), (\mathbf{x}_2, t_2), \dots (\mathbf{x}_n, t_n)$

Regression: Curve Fitting

• Training: examples $(x_1, t_1), (x_2, t_2), ..., (x_n, t_n)$

Regression: Curve Fitting

Testing: for arbitrary (unseen) instance x ∈ X, compute target output y(x) = t ∈ T.

Polynomial Curve Fitting

Polynomial Curve Fitting

- Learning = finding the "right" parameters $\mathbf{w}^{T} = [w_0, w_1, \dots, w_M]$
 - Find w that minimizes an *error function* $E(\mathbf{w})$ which measures the misfit between $y(x_n, \mathbf{w})$ and t_n .
 - Expect that $y(x, \mathbf{w})$ performing well on training examples $x_n \Rightarrow y(x, \mathbf{w})$ will perform well on arbitrary test examples $x \in X$.

• Sum-of-Squares error function:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

Why squared?

Inductive Learning Hyphotesis

Sum-of-Squares Error Function

How do we find w* that minimizes E(w)?
 w* = arg min E(w)

Polynomial Curve Fitting

 Least Square solution is found by solving a set of M + 1 linear equations:

$$\sum_{j=0}^{M} A_{ij} w_j = T_i \text{, where } A_{ij} = \sum_{n=1}^{N} x_n^{i+j} \text{, and } T_i = \sum_{n=1}^{N} t_n x_n^i$$

- Generalization = how well the parameterized $y(x, \mathbf{w}^*)$ performs on arbitrary (unseen) test instances $x \in X$.
 - Generalization performance depends on the value of M.

0th Order Polynomial

1st Order Polynomial

3rd Order Polynomial

9th Order Polynomial

Polynomial Curve Fitting

- Model Selection: choosing the order M of the polynomial.
 - Best generalization obtained with M = 3.
 - M = 9 obtains poor generlization, even though it fits training examples perfectly:
 - But M = 9 polynomials subsume M = 3 polynomials!
- Overfitting = good performance on training examples, poor performance on test examples.

Overfitting

- Measure fit to training/testing examples using the Root-Mean-Square (RMS) error: $E_{RMS} = \sqrt{2E(w^*)/N}$
- Use 100 random test examples, generated in the same way as the training examples.

Over-fitting and Parameter Values

	M=0	M = 1	M = 3	M = 9
w_0^\star	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^\star			17.37	48568.31
w_4^\star				-231639.30
w_5^{\star}				640042.26
w_6^\star				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w_9^{\star}				125201.43
U I				

Overfitting vs. Data Set Size

- More training data \Rightarrow less overfitting.
- What if we do not have more training data?
 - Use regularization.
 - Use a probabilistic model in a Bayesian setting.

Regularization

• Penalize large parameter values:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

regularizer

 $\mathbf{w}^* = \arg\min_{\mathbf{w}} E(\mathbf{w})$

9th Order Polynomial with Regularization

9th Order Polynomial with Regularization

Training & Test error vs. $\ln \lambda$

How do we find the optimal value of λ ?

Lecture 01

Model Selection

- Put aside an independent validation set.
- Select parameters giving best performance on validation set.

 $\ln \lambda \in \{-40, -35, -30, -25, -20, -15\}$

Model Evaluation

- K-fold cross-validation
 - randomly partition dataset in K equally sized subsets $P_1, P_2, \dots P_k$
 - for each fold i in $\{1, 2, ..., k\}$:
 - test on P_i , train on $P_1 \cup \ldots \cup P_{i-1} \cup P_{i+1} \cup \ldots \cup P_k$
 - compute average error/accuracy across K folds.

Sum-of-Squares Error Function (Revisited)

- Training objective: *minimize sum-of-squares error*.
- Why least squares?

Lecture 01

Least Squares <=> Maximum Likelihood (1)

• Assume observations from a deterministic function with added Gaussian noise:

 $t = y(\mathbf{x}, \mathbf{w}) + \epsilon$ where $p(\epsilon|\beta) = \mathcal{N}(\epsilon|0, \beta^{-1})$

which is the same as saying:

$$p(t|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(t|y(\mathbf{x}, \mathbf{w}), \beta^{-1}).$$

• Given observed inputs $\mathbf{X} = {\mathbf{x}_1, ..., \mathbf{x}_N}$ and targets $\mathbf{t} = {\mathbf{t}_1, ..., \mathbf{t}_N}^T$, we obtain the *likelihood* function:

$$p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}(t_n | \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1}).$$

Lecture 01

Least Squares <=> Maximum Likelihood (2)

• Taking the logarithm, we get the *log-likelihood* function:

$$\ln p(\mathbf{t}|\mathbf{w},\beta) = \sum_{n=1}^{N} \ln \mathcal{N}(t_n|\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n),\beta^{-1})$$
$$= \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi) - \beta E_D(\mathbf{w})$$

where

$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2$$

• $E_D(\mathbf{w})$ is the sum-of-squares error!

Least Squares <=> Maximum Likelihood (3)

• Minimizing square error <=> maximizing likelihood:

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} E_D(\mathbf{w}) = \mathbf{W}_{ML} = \arg\max_{\mathbf{w}} \ln p(\mathbf{t} | \mathbf{w}, \beta)$$

• How do we find w (and β)?

Least Squares <=> Maximum Likelihood (4)

• Computing the gradient and setting it to zero yields:

$$abla_{\mathbf{w}} \ln p(\mathbf{t}|\mathbf{w}, \beta) = \beta \sum_{n=1}^{N} \left\{ t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) \right\} \boldsymbol{\phi}(\mathbf{x}_n)^{\mathrm{T}} = \mathbf{0}.$$

• Solving for w, we get $\mathbf{w}_{ML} = \left(\mathbf{\Phi}^{T} \mathbf{\Phi} \right)^{-1} \mathbf{\Phi}^{T} \mathbf{t}$ The Moore-Penrose pseudo-inverse, $\mathbf{\Phi}^{\dagger}$. where

$$\mathbf{\Phi} = \left(egin{array}{ccccc} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \cdots & \phi_{M-1}(\mathbf{x}_1) \ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \cdots & \phi_{M-1}(\mathbf{x}_2) \ dots & dots & \ddots & dots \ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \cdots & \phi_{M-1}(\mathbf{x}_N) \end{array}
ight)$$

Least Squares <=> Maximum Likelihood (5)

• Minimizing square error <=> maximizing likelihood:

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} E_D(\mathbf{w}) = \mathbf{W}_{ML} = \arg\max_{\mathbf{w}} \ln p(\mathbf{t} | \mathbf{w}, \beta)$$

- Maximizing with respect to w gives: $\mathbf{w}_{\mathrm{ML}} = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}\right)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{t}$
- Maximizing with respect to β gives:

$$\frac{1}{\beta_{\mathrm{ML}}} = \frac{1}{N} \sum_{n=1}^{N} \{t_n - \mathbf{w}_{\mathrm{ML}}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2$$

Regularized Least Square

• Consider the error function:

 $E_D(\mathbf{w}) + \lambda E_W(\mathbf{w})$

Data term + Regularization term

• With the sum-of-squares error function and a quadratic regularizer, we get:

$$\frac{1}{2}\sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2 + \frac{\lambda}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$$

which is minimized by:

$$\mathbf{w} = \left(\lambda \mathbf{I} + \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{t}.$$

 λ is called the *regularization coefficient*.

Regularized Least Square <=> Maximum A Posteriori (MAP)

• Define a conjugate prior over W

 $p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I})$

 Combining this with the likelihood function and using results for marginal and conditional Gaussian distributions, gives the posterior

$$p(\mathbf{w}|\mathbf{t}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_N, \mathbf{S}_N)$$

where

$$\mathbf{m}_{N} = \beta \mathbf{S}_{N} \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{t}$$
$$\mathbf{S}_{N}^{-1} = \alpha \mathbf{I} + \beta \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}.$$

Lecture 01

Regularized Least Square <=> Maximum A Posteriori (MAP)

• Taking the logarithm of the posterior distribution:

$$\ln p(\mathbf{w} \mid \mathbf{t}) = -\frac{\beta}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^T \varphi(x_n)\}^2 - \frac{\alpha}{2} \mathbf{w}^T \mathbf{w} + const$$

• The MAP estimate of w is:

$$\mathbf{W}_{MAP} = \arg \max_{\mathbf{w}} \ln p(\mathbf{w} | \mathbf{t})$$

= $\arg \max_{\mathbf{w}} -\frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^T \varphi(x_n)\}^2 - \frac{\alpha_{\beta}}{2} \mathbf{w}^T \mathbf{w}$
= $\arg \min_{\mathbf{w}} \frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^T \varphi(x_n)\}^2 + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w}$
= $\arg \min_{\mathbf{w}} E_D(\mathbf{w}) + E_W(\mathbf{w})$

Leclure U

Regularization & Occam's Razor

William of Occam (1288 – 1348) English Franciscan friar, theologian and philosopher.

*"Entia non sunt multiplicanda praeter necessitatem"*Entities must not be multiplied beyond necessity.

i.e. Do not make things needlessly complicated.i.e. Prefer the simplest hypothesis that fits the data.

Gradient Descent (Batch)

- Want to minimize a function $f: \mathbb{R}^n \to \mathbb{R}$.
 - -f is differentiable and convex.
 - compute gradient of f i.e. direction of steepest increase:

$$\nabla f(\mathbf{x}) = \left[\frac{df}{dx_1}(\mathbf{x}), \frac{df}{dx_2}(\mathbf{x}), \dots, \frac{df}{dx_n}(\mathbf{x})\right]$$

- choose a sequence of points $x^1, x^2, ...$ and a learning rate η such that:

$$\mathbf{x}^{\tau+1} = \mathbf{x}^{\tau} - \eta \nabla f(\mathbf{x}^{\tau})$$

• Sum-of-squares error: $E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{\mathbf{w}^{T} \phi(x_{n}) - t_{n}\}^{2}$

Lecture 01

Gradient Descent

Gradient Descent

Lecture 01

Stochastic Gradient Descent (Online)

• Decompose error function in sum of example errors:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{\mathbf{w}^{T} \phi(x_{n}) - t_{n}\}^{2} = \frac{1}{2} \sum_{n=1}^{N} E_{n}(\mathbf{w})$$

• Update parameters w after each example, sequentially:

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E_n(\mathbf{w}^{(\tau)})$$
$$= \mathbf{w}^{(\tau)} + \eta (t_n - \mathbf{w}^{(\tau)T} \varphi(\mathbf{x}_n)) \varphi(\mathbf{x}_n)$$
$$=> \text{ the least-mean-square (LMS) algorithm.}$$

Regularization: Ridge vs. Lasso

• Ridge regression:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \sum_{j=1}^{M} w_j^2$$

• Lasso:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \sum_{j=1}^{M} |w_j|$$

- If λ is sufficiently large, some of the coefficients w_j are driven to 0 => sparse model.

Polynomial Curve Fitting (Revisited)

Generalization: Basis Functions as Features

- Generally $y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})$ where $\varphi_i(\mathbf{x})$ are known as *basis functions*.
- Typically $\varphi_0(\mathbf{x}) = 1$, so that w_0 acts as a bias.
- In the simplest case, use linear basis functions : $\varphi_d(\mathbf{x}) = x_d$.

Linear Basis Function Models (1)

• Polynomial basis functions:

 $\phi_j(x) = x^j.$

- Global behavior:
 - a small change in x affect all basis functions.

Linear Basis Function Models (2)

• Gaussian basis functions:

$$\phi_j(x) = \exp\left\{-\frac{(x-\mu_j)^2}{2s^2}\right\}$$

- Local behavior:
 - a small change in x only affects nearby basis functions.
 - μ_j and *s* control location and scale (width).

Linear Basis Function Models (3)

• Sigmoidal basis functions:

$$\phi_j(x) = \sigma\left(\frac{x-\mu_j}{s}\right)$$

where $\sigma(a) = \frac{1}{1+\exp(-a)}$

- Local behavior:
 - a small change in x only affect nearby basis functions.
 - μ_j and *s* control location and scale (slope).

