Machine Learning CS 6830

Lecture 02

Razvan C. Bunescu

School of Electrical Engineering and Computer Science
bunescu@ohio.edu

Supervised Learning

- Task $=$ learn a function $\mathrm{y}: \mathrm{X} \rightarrow \mathrm{T}$ that maps input instances $x \in \mathrm{X}$ to output targets $t \in \mathrm{~T}$:
- Classification:
- The output $t \in \mathrm{~T}$ is one of a finite set of discrete categories.
- Regression:
- The output $t \in \mathrm{~T}$ is continuous, or has a continuous component.
- Supervision $=$ set of training examples:

$$
\left(\mathrm{x}_{1}, t_{1}\right),\left(\mathrm{x}_{2}, t_{2}\right), \ldots\left(\mathrm{x}_{n}, t_{n}\right)
$$

Regression: Curve Fitting

- Training: examples $\left(\mathrm{x}_{1}, t_{1}\right),\left(\mathrm{x}_{2}, t_{2}\right), \ldots\left(\mathrm{x}_{n}, t_{n}\right)$

Regression: Curve Fitting

- Testing: for arbitrary (unseen) instance $\mathrm{x} \in \mathrm{X}$, compute target output $y(\mathrm{x})=t \in \mathrm{~T}$.

Polynomial Curve Fitting

Polynomial Curve Fitting

- Learning $=$ finding the "right" parameters $\mathbf{w}^{\mathrm{T}}=\left[w_{0}, w_{1}, \ldots, w_{M}\right]$
- Find \mathbf{w} that minimizes an error function $E(\mathbf{w})$ which measures the misfit between $y\left(x_{n}, \mathbf{w}\right)$ and t_{n}.
- Expect that $y(x, \mathbf{w})$ performing well on training examples $x_{n} \Rightarrow y(x, \mathbf{w})$ will perform well on arbitrary test examples $x \in X$.
- Sum-of-Squares error function:

$$
\begin{aligned}
& E(\mathbf{w})=\frac{1}{2} \sum_{n=1}^{N}\left\{y\left(x_{n}, \mathbf{w}\right)-t_{n}\right\}^{2} \\
& \ddots \\
& \text { Lecture } 01 \text { why squared? }
\end{aligned}
$$

Sum-of-Squares Error Function

- How do we find \mathbf{w}^{*} that minimizes $E(\mathbf{w})$?
$\mathbf{w}^{*}=\arg \min _{\mathbf{w}} E(\mathbf{w})$

Polynomial Curve Fitting

- Least Square solution is found by solving a set of $\mathrm{M}+1$ linear equations:

$$
\sum_{j=0}^{M} A_{i j} w_{j}=T_{i}, \text { where } A_{i j}=\sum_{n=1}^{N} x_{n}^{i+j}, \text { and } T_{i}=\sum_{n=1}^{N} t_{n} x_{n}^{i}
$$

- Generalization $=$ how well the parameterized $y\left(x, \mathbf{w}^{*}\right)$ performs on arbitrary (unseen) test instances $x \in X$.
- Generalization performance depends on the value of M.

$0^{\text {th }}$ Order Polynomial

Lecture 01

$1{ }^{\text {st }}$ Order Polynomial

Lecture 01

$3{ }^{\text {rd }}$ Order Polynomial

Lecture 01

$9^{\text {th }}$ Order Polynomial

Lecture 01

Polynomial Curve Fitting

- Model Selection: choosing the order M of the polynomial.
- Best generalization obtained with $\mathrm{M}=3$.
- $\mathrm{M}=9$ obtains poor generlization, even though it fits training examples perfectly:
- But $M=9$ polynomials subsume $\mathrm{M}=3$ polynomials!
- Overfitting \equiv good performance on training examples, poor performance on test examples.

Overfitting

- Measure fit to training/testing examples using the Root-Mean-Square (RMS) error: $E_{R M S}=\sqrt{2 E\left(w^{*}\right) / N}$
- Use 100 random test examples, generated in the same way as the training examples.

Over-fitting and Parameter Values

	$M=0$	$M=1$	$M=3$	$M=9$
w_{0}^{\star}	0.19	0.82	0.31	0.35
w_{1}^{\star}		-1.27	7.99	232.37
w_{2}^{\star}			-25.43	-5321.83
w_{3}^{\star}			17.37	48568.31
w_{4}^{\star}				-231639.30
w_{5}^{\star}				640042.26
w_{6}^{\star}				-1061800.52
w_{7}^{\star}				1042400.18
w_{8}^{\star}				-557682.99
w_{9}^{\star}				125201.43

Overfitting vs. Data Set Size

- More training data \Rightarrow less overfitting.
- What if we do not have more training data?
- Use regularization.
- Use a probabilistic model in a Bayesian setting.

Regularization

- Penalize large parameter values:

$$
\begin{aligned}
& E(\mathbf{w})=\frac{1}{2} \sum_{n=1}^{N}\left\{y\left(x_{n}, \mathbf{w}\right)-t_{n}\right\}^{2}+\underbrace{\frac{\lambda}{2}\|\mathbf{w}\|^{2}}_{\text {regularizer }} \\
& \mathbf{w}^{*}=\arg \min _{\mathbf{w}} E(\mathbf{w})
\end{aligned}
$$

9 ${ }^{\text {th }}$ Order Polynomial with Regularization

Lecture 01

9 ${ }^{\text {th }}$ Order Polynomial with Regularization

Lecture 01

Training \& Test error vs. $\ln \lambda$

How do we find the optimal value of λ ?

Model Selection

- Put aside an independent validation set.
- Select parameters giving best performance on validation set.

Model Evaluation

- K-fold cross-validation
- randomly partition dataset in K equally sized subsets $P_{1}, P_{2}, \ldots P_{k}$
- for each fold i in $\{1,2, \ldots, k\}$:
- test on P_{i}, train on $P_{1} \cup \ldots \cup P_{i-1} \cup P_{i+1} \cup \ldots \cup P_{k}$
- compute average error/accuracy across K folds.

Sum-of-Squares Error Function (Revisited)

- Training objective: minimize sum-of-squares error.
- Why least squares?

Least Squares <=> Maximum Likelihood (1)

- Assume observations from a deterministic function with added Gaussian noise:

$$
t=y(\mathbf{x}, \mathbf{w})+\epsilon \quad \text { where } \quad p(\epsilon \mid \beta)=\mathcal{N}\left(\epsilon \mid 0, \beta^{-1}\right)
$$

which is the same as saying:

$$
p(t \mid \mathbf{x}, \mathbf{w}, \beta)=\mathcal{N}\left(t \mid y(\mathbf{x}, \mathbf{w}), \beta^{-1}\right)
$$

- Given observed inputs $\mathbf{X}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{N}}\right\}$ and targets $\mathbf{t}=$ $\left[\mathbf{t}_{1}, \ldots, \mathbf{t}_{\mathrm{N}}\right]^{\mathrm{T}}$, we obtain the likelihood function:

$$
p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \beta)=\prod_{n=1}^{N} \mathcal{N}\left(t_{n} \mid \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right), \beta^{-1}\right)
$$

Least Squares <=> Maximum Likelihood (2)

- Taking the logarithm, we get the log-likelihood function:

$$
\begin{aligned}
\ln p(\mathbf{t} \mid \mathbf{w}, \beta) & =\sum_{n=1}^{N} \ln \mathcal{N}\left(t_{n} \mid \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right), \beta^{-1}\right) \\
& =\frac{N}{2} \ln \beta-\frac{N}{2} \ln (2 \pi)-\beta E_{D}(\mathbf{w})
\end{aligned}
$$

where

$$
E_{D}(\mathbf{w})=\frac{1}{2} \sum_{n=1}^{N}\left\{t_{n}-\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right)\right\}^{2}
$$

- $E_{D}(\mathbf{w})$ is the sum-of-squares error!

Least Squares <=> Maximum Likelihood (3)

- Minimizing square error $<=>$ maximizing likelihood:

$$
\mathbf{w}^{*}=\arg \min _{\mathbf{w}} E_{D}(\mathbf{w})=\mathbf{w}_{M L}=\arg \max _{\mathbf{w}} \ln p(\mathbf{t} \mid \mathbf{w}, \beta)
$$

- How do we find \mathbf{w} (and β)?

Least Squares <=> Maximum Likelihood (4)

- Computing the gradient and setting it to zero yields:

$$
\nabla_{\mathbf{w}} \ln p(\mathbf{t} \mid \mathbf{w}, \beta)=\beta \sum_{n=1}^{N}\left\{t_{n}-\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right)\right\} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right)^{\mathrm{T}}=\mathbf{0}
$$

- Solving for \mathbf{w}, we get

$$
\mathbf{w}_{\mathrm{ML}}=\left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{t}
$$

where

$$
\mathbf{\Phi}=\left(\begin{array}{cccc}
\phi_{0}\left(\mathbf{x}_{1}\right) & \phi_{1}\left(\mathbf{x}_{1}\right) & \cdots & \phi_{M-1}\left(\mathbf{x}_{1}\right) \\
\phi_{0}\left(\mathbf{x}_{2}\right) & \phi_{1}\left(\mathbf{x}_{2}\right) & \cdots & \phi_{M-1}\left(\mathbf{x}_{2}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\phi_{0}\left(\mathbf{x}_{N}\right) & \phi_{1}\left(\mathbf{x}_{N}\right) & \cdots & \phi_{M-1}\left(\mathbf{x}_{N}\right)
\end{array}\right)
$$

Least Squares <=> Maximum Likelihood (5)

- Minimizing square error $<=>$ maximizing likelihood:

$$
\mathbf{w}^{*}=\arg \min _{\mathbf{w}} E_{D}(\mathbf{w})=\mathbf{w}_{M L}=\arg \max _{\mathbf{w}} \ln p(\mathbf{t} \mid \mathbf{w}, \beta)
$$

- Maximizing with respect to w gives:

$$
\mathbf{w}_{\mathrm{ML}}=\left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{t}
$$

- Maximizing with respect to β gives:

$$
\frac{1}{\beta_{\mathrm{ML}}}=\frac{1}{N} \sum_{n=1}^{N}\left\{t_{n}-\mathbf{w}_{\mathrm{ML}}^{\mathrm{T}} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right)\right\}^{2}
$$

Regularized Least Square

- Consider the error function:

$$
\begin{aligned}
E_{D}(\mathbf{w}) & +\lambda E_{W}(\mathbf{w}) \\
\text { Data term } & + \text { Regularization term }
\end{aligned}
$$

- With the sum-of-squares error function and a quadratic regularizer, we get:

$$
\frac{1}{2} \sum_{n=1}^{N}\left\{t_{n}-\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right)\right\}^{2}+\frac{\lambda}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}
$$

which is minimized by:

$$
\mathbf{w}=\left(\lambda \mathbf{I}+\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{t}
$$

λ is called the regularization coefficient.

Regularized Least Square $<=>$ Maximum A Posteriori (MAP)

- Define a conjugate prior over w

$$
p(\mathbf{w})=\mathcal{N}\left(\mathbf{w} \mid \mathbf{0}, \alpha^{-1} \mathbf{I}\right)
$$

- Combining this with the likelihood function and using results for marginal and conditional Gaussian distributions, gives the posterior

$$
p(\mathbf{w} \mid \mathbf{t})=\mathcal{N}\left(\mathbf{w} \mid \mathbf{m}_{N}, \mathbf{S}_{N}\right)
$$

where

$$
\begin{aligned}
\mathbf{m}_{N} & =\beta \mathbf{S}_{N} \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{t} \\
\mathbf{S}_{N}^{-1} & =\alpha \mathbf{I}+\beta \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} .
\end{aligned}
$$

Regularized Least Square $<=>$ Maximum A Posteriori (MAP)

- Taking the logarithm of the posterior distribution:

$$
\ln p(\mathbf{w} \mid \mathbf{t})=-\frac{\beta}{2} \sum_{n=1}^{N}\left\{t_{n}-\mathbf{w}^{T} \varphi\left(x_{n}\right)\right\}^{2}-\frac{\alpha}{2} \mathbf{w}^{T} \mathbf{w}+\text { const }
$$

- The MAP estimate of w is:

$$
\begin{aligned}
\mathbf{w}_{M A P} & =\arg \max _{\mathbf{w}} \ln p(\mathbf{w} \mid \mathbf{t}) \\
& =\arg \max _{\mathbf{w}}-\frac{1}{2} \sum_{n=1}^{N}\left\{t_{n}-\mathbf{w}^{T} \varphi\left(x_{n}\right)\right\}^{2}-\frac{\alpha / \beta}{2} \mathbf{w}^{T} \mathbf{w} \\
& =\arg \min _{\mathbf{w}} \frac{1}{2} \sum_{n=1}^{N}\left\{t_{n}-\mathbf{w}^{T} \varphi\left(x_{n}\right)\right\}^{2}+\frac{\lambda}{2} \mathbf{w}^{T} \mathbf{w} \\
& =\arg \min _{\mathbf{w}} E_{D}(\mathbf{w})+E_{W}(\mathbf{w})
\end{aligned}
$$

Regularization \& Occam's Razor

William of Occam (1288-1348)

English Franciscan friar, theologian and philosopher.

- "Entia non sunt multiplicanda praeter necessitatem"
- Entities must not be multiplied beyond necessity.
i.e. Do not make things needlessly complicated.
i.e. Prefer the simplest hypothesis that fits the data.

Gradient Descent (Batch)

- Want to minimize a function $f: R^{\mathrm{n}} \rightarrow R$.
$-f$ is differentiable and convex.
- compute gradient of f i.e. direction of steepest increase:

$$
\nabla f(\mathbf{x})=\left[\frac{d f}{d x_{1}}(\mathbf{x}), \frac{d f}{d x_{2}}(\mathbf{x}), \ldots, \frac{d f}{d x_{n}}(\mathbf{x})\right]
$$

- choose a sequence of points x^{1}, x^{2}, \ldots and a learning rate η such that:

$$
\mathbf{x}^{\tau+1}=\mathbf{x}^{\tau}-\eta \nabla f\left(\mathbf{x}^{\tau}\right)
$$

- Sum-of-squares error: $E(\mathbf{w})=\frac{1}{2} \sum_{n=1}^{N}\left\{\mathbf{w}^{T} \phi\left(x_{n}\right)-t_{n}\right\}^{2}$

Gradient Descent

Lecture 01

Gradient Descent

Lecture 01

Stochastic Gradient Descent (Online)

- Decompose error function in sum of example errors:

$$
E(\mathbf{w})=\frac{1}{2} \sum_{n=1}^{N}\left\{\mathbf{w}^{T} \phi\left(x_{n}\right)-t_{n}\right\}^{2}=\frac{1}{2} \sum_{n=1}^{N} E_{n}(\mathbf{w})
$$

- Update parameters \mathbf{w} after each example, sequentially:

$$
\begin{aligned}
\mathbf{w}^{(\tau+1)} & =\mathbf{w}^{(\tau)}-\eta \nabla E_{n}\left(\mathbf{w}^{(\tau)}\right) \\
& =\mathbf{w}^{(\tau)}+\eta\left(t_{n}-\mathbf{w}^{(\tau) T} \varphi\left(\mathbf{x}_{n}\right)\right) \varphi\left(\mathbf{x}_{n}\right)
\end{aligned}
$$

\Rightarrow the least-mean-square (LMS) algorithm.

Regularization: Ridge vs. Lasso

- Ridge regression:

$$
E(\mathbf{w})=\frac{1}{2} \sum_{n=1}^{N}\left\{y\left(x_{n}, \mathbf{w}\right)-t_{n}\right\}^{2}+\frac{\lambda}{2} \sum_{j=1}^{M} w_{j}^{2}
$$

- Lasso:

$$
E(\mathbf{w})=\frac{1}{2} \sum_{n=1}^{N}\left\{y\left(x_{n}, \mathbf{w}\right)-t_{n}\right\}^{2}+\frac{\lambda}{2} \sum_{j=1}^{M}\left|w_{j}\right|
$$

- If λ is sufficiently large, some of the coefficients w_{j} are driven to 0 => sparse model.

Polynomial Curve Fitting (Revisited)

Generalization: Basis Functions as Features

- Generally

$$
y(\mathbf{x}, \mathbf{w})=\sum_{j=0}^{M-1} w_{j} \phi_{j}(\mathbf{x})=\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})
$$

where $\varphi_{j}(\mathbf{x})$ are known as basis functions.

- Typically $\varphi_{0}(\mathbf{x})=1$, so that w_{0} acts as a bias.
- In the simplest case, use linear basis functions : $\varphi_{d}(\mathbf{x})=x_{d}$.

Linear Basis Function Models (1)

- Polynomial basis functions:

$$
\phi_{j}(x)=x^{j} .
$$

- Global behavior:
- a small change in x affect all basis functions.

Linear Basis Function Models (2)

- Gaussian basis functions:

$$
\phi_{j}(x)=\exp \left\{-\frac{\left(x-\mu_{j}\right)^{2}}{2 s^{2}}\right\}
$$

- Local behavior:
- a small change in x only affects nearby basis functions.
- μ_{j} and s control location and scale (width).

Linear Basis Function Models (3)

- Sigmoidal basis functions:

$$
\phi_{j}(x)=\sigma\left(\frac{x-\mu_{j}}{s}\right)
$$

where $\sigma(a)=\frac{1}{1+\exp (-a)}$.

- Local behavior:
- a small change in x only affect nearby basis functions.
- μ_{j} and s control location and scale (slope).

