
Machine Learning
CS 6830

Razvan C. Bunescu

School of Electrical Engineering and Computer Science

bunescu@ohio.edu

Lecture 02

Supervised Learning

•  Task = learn a function y : X → T that maps input
instances x ∈ X to output targets t ∈ T:
–  Classification:

•  The output t ∈ T is one of a finite set of discrete categories.
–  Regression:

•  The output t ∈ T is continuous, or has a continuous component.

•  Supervision = set of training examples:
 (x1,t1), (x2,t2), … (xn,tn)

2
Lecture 01

Regression: Curve Fitting

•  Training: examples (x1,t1), (x2,t2), … (xn,tn)

3
Lecture 01

Regression: Curve Fitting

•  Testing: for arbitrary (unseen) instance x ∈ X , compute
target output y(x) = t ∈ T .

4
Lecture 01

t = ?

Polynomial Curve Fitting

5
Lecture 01

∑
=

=++++==
M

j

j
j

M
M xwxwxwxwwxyxy

0

2
210),()(…w

t = ?

parameters features

Polynomial Curve Fitting

•  Learning = finding the “right” parameters wT = [w0, w1, … , wM]
–  Find w that minimizes an error function E(w) which measures the

misfit between y(xn,w) and tn.
–  Expect that y(x,w) performing well on training examples xn ⇒ y(x,w)

will perform well on arbitrary test examples x∈ X.

•  Sum-of-Squares error function:

6
Lecture 01

∑
=

−=
N

n
nn txyE

1

2}),({
2
1)(ww

Inductive Learning Hyphotesis

why squared?

Sum-of-Squares Error Function

•  How do we find w* that minimizes E(w)?

7
Lecture 01

∑
=

−=
N

n
nn txyE

1

2}),({
2
1)(ww

)(minarg* ww E
w

=

Polynomial Curve Fitting

•  Least Square solution is found by solving a set of M + 1
linear equations:

•  Generalization = how well the parameterized y(x,w*)
performs on arbitrary (unseen) test instances x∈ X.
–  Generalization performance depends on the value of M.

8
Lecture 01

∑ ∑∑
= =

+

=

===
N

n

N

n

i
nni

ji
nijij

M

j
ij xtTxATwA

1 10

 and , where,

0th Order Polynomial

9
Lecture 01

1st Order Polynomial

10
Lecture 01

3rd Order Polynomial

11
Lecture 01

9th Order Polynomial

12
Lecture 01

Polynomial Curve Fitting

•  Model Selection: choosing the order M of the polynomial.
–  Best generalization obtained with M = 3.
–  M = 9 obtains poor generlization, even though it fits training

examples perfectly:
•  But M = 9 polynomials subsume M = 3 polynomials!

•  Overfitting ≡ good performance on training examples, poor
performance on test examples.

13
Lecture 01

Overfitting

•  Measure fit to training/testing examples using the Root-Mean-Square

(RMS) error:

•  Use 100 random test examples, generated in the same way as the

training examples.

14
Lecture 01

NwEERMS /*)(2=

Over-fitting and Parameter Values

15
Lecture 01

Overfitting vs. Data Set Size

•  More training data ⇒ less overfitting.
•  What if we do not have more training data?

–  Use regularization.
–  Use a probabilistic model in a Bayesian setting.

16
Lecture 01

M = 9 M = 9

Regularization

•  Penalize large parameter values:

17
Lecture 01

E(w) = 1
2

{y(xn,w)− tn}
2

n=1

N

∑ +
λ
2
w 2

regularizer

)(minarg* ww E
w

=

9th Order Polynomial with Regularization

18
Lecture 01

9th Order Polynomial with Regularization

19
Lecture 01

Training & Test error vs.

20
Lecture 01

How do we find the optimal value of λ?

 Model Selection

•  Put aside an independent validation set.
•  Select parameters giving best performance on validation set.

21
Lecture 01

Validation Training

}15,20,25,30,35,40{ln −−−−−−∈λ

ln λ -40 -35 -30 -25 -20 -15
ERMS 1.05 0.30 0.25 0.27 0.52 0.55

Model Evaluation

•  K-fold cross-validation
–  randomly partition dataset in K equally sized subsets P1, P2, … Pk

–  for each fold i in {1, 2, …, k}:
•  test on Pi, train on P1 ∪ … ∪ Pi-1 ∪ Pi+1 ∪ … ∪ Pk

–  compute average error/accuracy across K folds.

22
Lecture 01

4-fold cross validation

Sum-of-Squares Error Function (Revisited)

•  Training objective: minimize sum-of-squares error.
•  Why least squares?

23
Lecture 01

∑
=

−=
N

n
nn txyE

1

2}),({
2
1)(ww

∑
=

−=
N

n
nn

T tx
1

2})({
2
1

φw

Least Squares <=> Maximum Likelihood (1)

•  Assume observations from a deterministic function with
added Gaussian noise:

 which is the same as saying:

•  Given observed inputs X = {x1, ..., xN} and targets t =
[t1, ..., tN]T, we obtain the likelihood function:

24
Lecture 01

where

Least Squares <=> Maximum Likelihood (2)

•  Taking the logarithm, we get the log-likelihood function:

 where

•  ED(w) is the sum-of-squares error!

25
Lecture 01

Least Squares <=> Maximum Likelihood (3)

•  Minimizing square error <=> maximizing likelihood:

•  How do we find w (and β)?

26
Lecture 01

),|(lnmaxarg)(minarg* βwtw
ww

pE MLD === ww

Least Squares <=> Maximum Likelihood (4)

27
Lecture 01

•  Computing the gradient and setting it to zero yields:

•  Solving for w, we get

 where

The Moore-Penrose
pseudo-inverse, .

Least Squares <=> Maximum Likelihood (5)

•  Minimizing square error <=> maximizing likelihood:

•  Maximizing with respect to w gives:

•  Maximizing with respect to β gives:

28
Lecture 01

),|(lnmaxarg)(minarg* βwtw
ww

pE MLD === ww

Regularized Least Square

29
Lecture 01

•  Consider the error function:

•  With the sum-of-squares error function and a quadratic
regularizer, we get:

 which is minimized by:

Data term + Regularization term

λ is called the
regularization
coefficient.

Regularized Least Square <=> Maximum A
Posteriori (MAP)

•  Define a conjugate prior over w

•  Combining this with the likelihood function and using
results for marginal and conditional Gaussian distributions,
gives the posterior

 where

30
Lecture 01

Regularized Least Square <=> Maximum A
Posteriori (MAP)

•  Taking the logarithm of the posterior distribution:

•  The MAP estimate of w is:

31
Lecture 01

ln p(w | t) = − β
2

{tn
n=1

N

∑ −wTϕ(xn)}
2 −

α
2
wTw+ const

)|(ln maxarg tww
w

pMAP =

= argmax
w

 − 1
2

{tn −w
Tϕ(xn)}2

n=1

N

∑ −
α
β

2
wTw

= argmin
w

 1
2

{tn −w
Tϕ(xn)}2

n=1

N

∑ +
λ
2
wTw

)()(minarg ww
w WD EE +=

Regularization & Occam’s Razor

 William of Occam (1288 – 1348)
•  English Franciscan friar, theologian and philosopher.

•  “Entia non sunt multiplicanda praeter necessitatem”

–  Entities must not be multiplied beyond necessity.

i.e. Do not make things needlessly complicated.
i.e. Prefer the simplest hypothesis that fits the data.

32
Lecture 01

Gradient Descent (Batch)

•  Want to minimize a function f : Rn → R.
–  f is differentiable and convex.
–  compute gradient of f i.e. direction of steepest increase:

–  choose a sequence of points x1, x2, … and a learning rate
η such that:

•  Sum-of-squares error:

33
Lecture 01

∑
=

−=
N

n
nn

T txE
1

2})({
2
1)(φww

⎥
⎦

⎤
⎢
⎣

⎡
=∇)(),...,(),()(

21

xxxx
ndx
df

dx
df

dx
dff

)(1 τττ η xxx f∇−=+

Gradient Descent

34
Lecture 01

Gradient Descent

35
Lecture 01

Stochastic Gradient Descent (Online)

•  Decompose error function in sum of example errors:

•  Update parameters w after each example, sequentially:

=> the least-mean-square (LMS) algorithm.

36
Lecture 01

∑∑
==

=−=
N

n
n

N

n
nn

T EtxE
11

2)(
2
1})({

2
1)(www φ

)()()()1(τττ η www nE∇−=+

)())(()()(
nn

T
nt xxww ϕϕη ττ −+=

Regularization: Ridge vs. Lasso

•  Ridge regression:

•  Lasso:

–  If λ is sufficiently large, some of the coefficients wj are driven to 0
=> sparse model.

37
Lecture 01

E(w) = 1
2

{y(xn,w)− tn}
2

n=1

N

∑ +
λ
2

wj
2

j=1

M

∑

E(w) = 1
2

{y(xn,w)− tn}
2

n=1

N

∑ +
λ
2

wj
j=1

M

∑

Polynomial Curve Fitting (Revisited)

38
Lecture 01

∑
=

=++++==
M

j

j
j

M
M xwxwxwxwwxyxy

0

2
210),()(…w

t = ?

parameters features

Generalization: Basis Functions as Features

•  Generally

 where ϕj(x) are known as basis functions.

•  Typically ϕ0(x) = 1, so that w0 acts as a bias.

•  In the simplest case, use linear basis functions : ϕd(x) = xd.

Linear Basis Function Models (1)

•  Polynomial basis functions:

•  Global behavior:
–  a small change in x affect all basis

functions.

Linear Basis Function Models (2)

•  Gaussian basis functions:

•  Local behavior:
–  a small change in x only

affects nearby basis functions.
–  µj and s control location and

scale (width).

Linear Basis Function Models (3)

•  Sigmoidal basis functions:

 where

•  Local behavior:
–  a small change in x only affect

nearby basis functions.
–  µj and s control location and

scale (slope).

