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Supervised Learning 

•  Task = learn a function y : X → T that maps input 
instances x ∈ X to output targets t ∈ T: 
–  Classification: 

•  The output t ∈ T is one of a finite set of discrete categories. 
–  Regression: 

•  The output t ∈ T is continuous, or has a continuous component. 

•  Supervision = set of training examples: 
  (x1,t1), (x2,t2), … (xn,tn) 
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Regression: Curve Fitting 

•  Training: examples (x1,t1), (x2,t2), … (xn,tn) 
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Regression: Curve Fitting 

•  Testing: for arbitrary (unseen) instance x ∈ X , compute 
target output  y(x) = t ∈ T . 
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Polynomial Curve Fitting 
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Polynomial Curve Fitting 

•  Learning = finding the “right” parameters wT = [w0, w1, … , wM ] 
–  Find w that minimizes an error function  E(w) which measures the 

misfit between y(xn,w) and tn. 
–  Expect that y(x,w) performing well on training examples xn ⇒ y(x,w) 

will perform well on arbitrary test examples x∈ X. 

 
•  Sum-of-Squares error function: 
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why squared? 



Sum-of-Squares Error Function 

•  How do we find w* that minimizes E(w)? 

7 
Lecture 01 

∑
=

−=
N

n
nn txyE

1

2}),({
2
1)( ww

)(minarg* ww E
w

=



Polynomial Curve Fitting 

•  Least Square solution is found by solving a set of M + 1 
linear equations: 

•  Generalization = how well the parameterized y(x,w*) 
performs on arbitrary (unseen) test instances x∈ X. 
–  Generalization performance depends on the value of M. 
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 and ,  where, 



0th Order Polynomial 
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1st Order Polynomial 
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3rd Order Polynomial 
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9th Order Polynomial 
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Polynomial Curve Fitting 

•  Model Selection: choosing the order M of the polynomial. 
–  Best generalization obtained with M = 3. 
–  M = 9 obtains poor generlization, even though it fits training 

examples perfectly: 
•  But M = 9 polynomials subsume M = 3 polynomials! 

•  Overfitting ≡ good performance on training examples, poor 
performance on test examples. 
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Overfitting 

•  Measure fit to training/testing examples using the Root-Mean-Square 

(RMS) error: 

•  Use 100 random test examples, generated in the same way as the 

training examples. 
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Over-fitting and Parameter Values 
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Overfitting vs. Data Set Size 

•  More training data ⇒ less overfitting. 
•  What if we do not have more training data? 

–  Use regularization. 
–  Use a probabilistic model in a Bayesian setting. 
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Regularization 

•  Penalize large parameter values: 
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9th Order Polynomial with Regularization 
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9th Order Polynomial with Regularization 
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Training & Test error vs.     
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How do we find the optimal value of λ? 



 Model Selection 

•  Put aside an independent validation set. 
•  Select parameters giving best performance on validation set. 
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Validation Training 

}15,20,25,30,35,40{ln −−−−−−∈λ

ln λ -40 -35 -30 -25 -20 -15 
ERMS 1.05 0.30 0.25 0.27 0.52 0.55 



Model Evaluation 

•  K-fold cross-validation 
–  randomly partition dataset in K equally sized subsets P1, P2, … Pk 

–  for each fold i in {1, 2, …, k}: 
•  test on Pi, train on P1 ∪ … ∪ Pi-1 ∪ Pi+1 ∪ … ∪ Pk 

–  compute average error/accuracy across K folds. 
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Sum-of-Squares Error Function (Revisited) 

•  Training objective: minimize sum-of-squares error. 
•  Why least squares? 
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Least Squares <=> Maximum Likelihood (1) 

•  Assume observations from a deterministic function with 
added Gaussian noise: 

 which is the same as saying: 

•  Given observed inputs X = {x1, ..., xN} and targets t = 
[t1, ..., tN]T, we obtain the likelihood function:   
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Least Squares <=> Maximum Likelihood (2) 

•  Taking the logarithm, we get the log-likelihood function: 

 where 

 
•  ED(w) is the sum-of-squares error! 
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Least Squares <=> Maximum Likelihood (3) 

•  Minimizing square error <=> maximizing likelihood: 

•  How do we find w (and β)? 
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Least Squares <=> Maximum Likelihood (4) 
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•  Computing the gradient and setting it to zero yields: 

•  Solving for w, we get  

 where 

The Moore-Penrose 
pseudo-inverse,       . 



Least Squares <=> Maximum Likelihood (5) 

•  Minimizing square error <=> maximizing likelihood: 

 
•  Maximizing with respect to w gives: 

•  Maximizing with respect to β gives: 
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Regularized Least Square 
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•  Consider the error function: 

•  With the sum-of-squares error function and a quadratic 
regularizer, we get:   

 which is minimized by: 

Data term + Regularization term 

λ is called the 
regularization 
coefficient. 



Regularized Least Square <=> Maximum A 
Posteriori (MAP)  

•  Define a conjugate prior over w 

•  Combining this with the likelihood function and using  
results for marginal and conditional Gaussian distributions, 
gives the posterior  

 where 
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Regularized Least Square <=> Maximum A 
Posteriori (MAP)  

•  Taking the logarithm of the posterior distribution: 

 
•  The MAP estimate of w is: 
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Regularization & Occam’s Razor 

      

   William of Occam (1288 – 1348) 
•  English Franciscan friar, theologian and philosopher. 

 
•  “Entia non sunt multiplicanda praeter necessitatem” 

–  Entities must not be multiplied beyond necessity. 

i.e.  Do not make things needlessly complicated. 
i.e.  Prefer the simplest hypothesis that fits the data. 
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Gradient Descent (Batch) 

•  Want to minimize a function  f : Rn → R. 
–  f  is differentiable and convex. 
–  compute gradient of f  i.e. direction of steepest increase: 

–  choose a sequence of points x1, x2, … and a learning rate 
η such that: 

•  Sum-of-squares error:  
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Gradient Descent 
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Gradient Descent 

35 
Lecture 01 



Stochastic Gradient Descent (Online) 

•  Decompose error function in sum of example errors: 

•  Update parameters w after each example, sequentially: 

=> the least-mean-square (LMS) algorithm. 
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Regularization: Ridge vs. Lasso 

•  Ridge regression: 

 
 

•  Lasso: 

–  If λ is sufficiently large, some of the coefficients wj are driven to 0 
=> sparse model. 
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Polynomial Curve Fitting (Revisited) 
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Generalization: Basis Functions as Features 

•  Generally 

 where ϕj(x) are known as basis functions. 
 
•  Typically ϕ0(x) = 1, so that w0 acts as a bias. 

•  In the simplest case, use linear basis functions : ϕd(x) = xd. 



Linear Basis Function Models (1) 

•  Polynomial basis functions: 

•  Global behavior: 
–  a small change in x affect all basis 

functions. 



Linear Basis Function Models (2) 

•  Gaussian basis functions: 

•  Local behavior: 
–  a small change in x only 

affects nearby basis functions. 
–  µj and s control location and 

scale (width). 



Linear Basis Function Models (3) 

•  Sigmoidal basis functions: 

 where 

•  Local behavior: 
–   a small change in x only affect 

nearby basis functions.  
–   µj and s control location and 

scale (slope). 


