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Neurons 
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Soma is the central part of the neuron: 
•   where the input signals are combined. 
 
Dendrites are cellular extensions: 
•   where majority of the input occurs. 
 
Axon is a fine, long projection: 
•   carries nerve signals to other neurons. 
 
Synapses are molecular structures between 
axon terminals and other neurons: 
•   where the communication thakes place. 



Neurons & Perceptrons 

•  Biological Interpretation: 
–  The output of the neuron is a linear combination of  inputs from other neurons, 

rescaled by the synaptic weights. 
•  It is often transformed through a monotonic function such as signum, or sigmoid 

–  Weights wi correspond to the synaptic weights (activating or inhibiting ). 
–  Summation corresponds to combination of signals in the soma. 
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The Perceptron Algorithm: Two Classes 

1.   initialize parameters w = 0 
2.   for i = 1 … n 
3.    yi = sgn(wTϕ(xi)) 
4.    if yi ≠ ti then 
5.         w = w + tiϕ(xi) 
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Repeat: 
a)  until convergence. 
b)  for a number of epochs E. 

Theorem [Rosenblatt, 1962]: 
If the training dataset is linearly separable, the perceptron learning 
algorithm is guaranteed to find a solution in a finite number of steps. 
•  see Theorem 1 (Block, Novikoff)  in [Freund & Schapire, 1999]. 



Motivation: Error function minimization 

•  Error: total number of misclassified patterns? 
–  piecewise constant function of w with discontinuities. 
–  cannot use gradient methods (gradient zero almost everywhere). 

•  The Perceptron Criterion: 
–  Assume classes T = {c1, c2} = {-1,+1}. 
–  Want wTϕ(xn) ≥ 0 for tn = +1, and wTϕ(xn) < 0 for tn = - 1. 
⇒  would like to have wTϕ(xn) tn > 0 for all patterns. 
⇒  want to minimize -wTϕ(xn) tn for all misclassified patterns. 
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The Perceptron Algorithm as Stochastic 
Gradient Descent 

•  Update parameters w sequentially: 

•  The magnitude of w is inconsequential => η = 1. 
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The Perceptron Algorithm: K classes 

1.   initialize parameters w = 0 
2.   for i = 1 … n 
3.    yi =  
4.    if yi ≠ ti then 
5.         w = w + ϕ(xi,ti) - ϕ(xi,yi) 

During testing: 

7 
Lecture 03 

),(maxarg ti
T

Tt
xw ϕ

∈
Repeat: 
a)  until convergence. 
b)  for a number of epochs E. 

t* = argmax
t∈T
wTφ(x, t)



Averaged Perceptron 

1.   initialize parameters w = 0, τ = 1,  
2.   for i = 1 … n 
3.    yi = sgn(wTϕ(xi)) 
4.    if yi ≠ ti then 
5.         w = w + tiϕ(xi) 

6.     
7.    τ = τ + 1 
8.   return  
 

During testing: 
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Repeat: 
a)  until convergence. 
b)  for a number of epochs E. 
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t* = sgnwTφ(x)



Averaged Perceptron: K classes 

1.   initialize parameters w = 0, τ = 1,  
2.   for i = 1 … n 
3.    yi =  
4.    if yi ≠ ti then 
5.         w = w + ϕ(xi,ti) - ϕ(xi,yi) 
6.     
7.    τ = τ + 1 
8.   return  
 

During testing: 
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Repeat: 
a)  until convergence. 
b)  for a number of epochs E. 
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The Perceptron Algorithm: Two Classes 

1.   initialize parameters w = 0 
2.   for i = 1 … n 
3.    yi = sgn(wTϕ(xi)) 
4.    if yi ≠ ti then 
5.         w = w + tiϕ(xi) 

Loop invariant: w is a weighted sum of training vectors: 
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Repeat: 
a)  until convergence. 
b)  for a number of epochs E. 

w = αitiφ(xi )
i
∑ wTφ(x) = αitiφ(xi )
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Kernel Perceptron: Two Classes 

1.   define  

2.   initialize dual parameters αi = 0 
3.   for i = 1 … n 
4.    yi = sgn f(xi) 
5.    if yi ≠ ti then 
6.        αi = αi + 1 

During testing: t = sgn f(x) 
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Kernel Perceptron: Two Classes 

1.   define  

2.   initialize dual parameters αi = 0 
3.   for i = 1 … n 
4.    yi = sgn f(xi) 
5.    if yi ≠ ti then 
6.        αi = αi + ti 

During testing: t = sgn f(x) 
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The Perceptron Algorithm: K classes 

1.   initialize parameters w = 0 
2.   for i = 1 … n 
3.    cj =  
4.    if cj ≠ ti then 
5.         w = w + ϕ(xi,ti) - ϕ(xi, cj) 

Loop invariant: w is a weighted sum of training vectors: 

13 
Lecture 03 

),(maxarg ti
T

Tt
xw ϕ

∈
Repeat: 
a)  until convergence. 
b)  for a number of epochs E. 
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Kernel Perceptron: K classes 

1.   define  

2.   initialize dual parameters αij = 0 
3.   for i = 1 … n 
4.    cj =  
5.    if yi ≠ ti then 
6.        αij = αij + 1 

During testing: 

14 
Lecture 03 

f (x, t) = αij (φ(xi,
i, j
∑  ti )

Tφ(x, t)−φ(xi,cj )
Tφ(x, t))

),(maxarg tf iTt
x

∈

),(maxarg* tft
Tt

x
∈

=

Repeat: 
a)  until convergence. 
b)  for a number of epochs E. 



Kernel Perceptron: K classes 

•  Discriminant function: 

 where: 
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The Perceptron vs. Boolean Functions 
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Perceptron with Quadratic Kernel 

•  Discriminant function:  

•  Quadratic kernel: 

⇒ corresponding feature space ϕ(x) = ?   

17 
Lecture 03 

),()()()( xxxxx ∑∑ ==
i

iii
T

i
iii Kttf αϕϕα

2
2211

2 )()(),( yxyxK T +== yxyx

conjunctions of two atomic features 



Perceptron with Quadratic Kernel 
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Quadratic Kernels 

•  Circles, hyperbolas, and ellipses as separating surfaces: 
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Quadratic Kernels 
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Explicit Features vs. Kernels 

•  Explicitly enumerating features can be prohibitive: 
–  1,000 basic features for xTy =>               quadratic features for (xTy)2 

–  Much worse for higher order features. 

•  Solution: 
–  Do not compute the feature vectors, compute kernels instead (i.e. 

compute dot products between implicit feature vectors). 
•  (xTy)2  takes 1001 multiplications. 
•  ϕ(x)T ϕ(y) in feature space takes 500,500 multiplications. 
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Kernel Functions 

•  Definition: 
 A function k : X × X → R is a kernel function if there 
exists a feature mapping ϕ : X → Rn such that: 
  k(x,y) = ϕ(x)Tϕ(y) 

•  Theorem: 
 k : X × X → R is a valid kernel ⇔ the Gram matrix K 
whose elements are given by k(xn,xm) is positive 
semidefinite for all possible choices of the set {xn}. 
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Kernel Examples 

•  Linear kernel: 

•  Quadratic kernel: 
–  contains constant, linear terms and terms of order two (c > 0). 

 
•  Polynomial kernel: 

–  contains all terms up to degree M (c > 0). 

•  Gaussian kernel: 
–  corresponding feature space has infinite dimensionality. 
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Kernels over Discrete Structures 

•  Subsequence Kernels [Lodhi et al., JMLR 2002]: 
–  Σ is a finite alphabet (set of symbols). 
–  x,y∈Σ* are two sequences of symbols with lengths |x| and |y| 
–  k(x,y) is defined as the number of common substrings of length n. 
–  k(x,y) can be computed in O(n|x||y|) time complexity. 

•  Tree Kernels [Collins and Duffy, NIPS 2001]: 
–  T1 and T2 are two trees with N1 and N2 nodes respectively. 
–  k(T1, T2) is defined as the nummber of common subtrees. 
–  k(T1, T2) can be computed in O(N1N2) time complexity. 
–  in practice, time is linear in the size of the trees. 
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Reading Assignment 

•  Chapter 6: 
–  Section 6.1 on dual representations for linear regression 

models. 
–  Section 6.2 on techniques for constructing new kernels. 
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