Machine Learning CS 6830

Lecture 03b

Razvan C. Bunescu

School of Electrical Engineering and Computer Science
bunescu@ohio.edu

Neurons

Soma is the central part of the neuron:

- where the input signals are combined.

Dendrites are cellular extensions:

- where majority of the input occurs.

Axon is a fine, long projection:

- carries nerve signals to other neurons.

Synapses are molecular structures between axon terminals and other neurons:

- where the communication thakes place.

Neurons \& Perceptrons

- Biological Interpretation:
- The output of the neuron is a linear combination of inputs from other neurons, rescaled by the synaptic weights.
- It is often transformed through a monotonic function such as signum, or sigmoid
- Weights w_{i} correspond to the synaptic weights (activating or inhibiting).
- Summation corresponds to combination of signals in the soma.

The Perceptron Algorithm: Two Classes

1. initialize parameters $\mathbf{w}=0$
2. for $i=1 \ldots n$
3. $y_{\mathrm{i}}=\operatorname{sgn}\left(\mathbf{w}^{\mathrm{T}} \varphi\left(\mathbf{x}_{\mathrm{i}}\right)\right)$
4. if $y_{\mathrm{i}} \neq t_{i}$ then
5. $\quad \mathbf{w}=\mathbf{w}+t_{i} \varphi\left(\mathbf{x}_{\mathrm{i}}\right)$

Repeat:
a) until convergence.
b) for a number of epochs E .

Theorem [Rosenblatt, 1962]:
If the training dataset is linearly separable, the perceptron learning algorithm is guaranteed to find a solution in a finite number of steps. - see Theorem 1 (Block, Novikoff) in [Freund \& Schapire, 1999].

Motivation: Error function minimization

- Error: total number of misclassified patterns?
- piecewise constant function of \mathbf{w} with discontinuities.
- cannot use gradient methods (gradient zero almost everywhere).
- The Perceptron Criterion:
- Assume classes $\mathrm{T}=\left\{\mathrm{c}_{1}, \mathrm{c}_{2}\right\}=\{-1,+1\}$.
- Want $\mathbf{w}^{\mathrm{T}} \varphi\left(\mathbf{x}_{\mathrm{n}}\right) \geq 0$ for $\mathrm{t}_{\mathrm{n}}=+1$, and $\mathbf{w}^{\mathrm{T}} \varphi\left(\mathbf{x}_{\mathrm{n}}\right)<0$ for $\mathrm{t}_{\mathrm{n}}=-1$.
\Rightarrow would like to have $\mathbf{w}^{\mathrm{T}} \varphi\left(\mathbf{x}_{\mathrm{n}}\right) \mathrm{t}_{\mathrm{n}}>0$ for all patterns.
\Rightarrow want to minimize $-\mathbf{w}^{\mathrm{T}} \varphi\left(\mathbf{x}_{\mathrm{n}}\right) \mathrm{t}_{\mathrm{n}}$ for all misclassified patterns.
$\Rightarrow \operatorname{minimize} E_{P}(\mathbf{w})=-\sum_{n \in M} \mathbf{w}^{T} \varphi\left(\mathbf{x}_{n}\right) t_{n}$

The Perceptron Algorithm as Stochastic Gradient Descent

- Update parameters \mathbf{w} sequentially:

$$
\begin{aligned}
& \mathbf{w}^{(\tau+1)}=\mathbf{w}^{(\tau)}-\eta \nabla E_{P}\left(\mathbf{w}^{(\tau)}, x_{n}\right) \\
& \mathbf{w}^{(\tau+1)}=\mathbf{w}^{(\tau)}+\eta \varphi\left(x_{n}\right) t_{n}
\end{aligned}
$$

- The magnitude of \mathbf{w} is inconsequential $\Rightarrow \boldsymbol{\eta}=1$.

The Perceptron Algorithm: K classes

1. initialize parameters $\mathbf{w}=0$
2. for $i=1 \ldots n$
3. $y_{\mathrm{i}}=\arg \max _{t \in T} \mathbf{w}^{T} \varphi\left(\mathbf{x}_{i}, t\right)$
4. if $y_{\mathrm{i}} \neq t_{i}$ then
5. $\left.\quad \mathbf{w}=\mathbf{w}+\varphi\left(\mathbf{x}_{\mathrm{i}}, t_{i}\right)-\varphi\left(\mathbf{x}_{\mathrm{i}}, y_{\mathrm{i}}\right)\right]$

Repeat:
a) until convergence.
b) for a number of epochs E .

During testing:

$$
t^{*}=\arg \max _{t \in T} \mathbf{w}^{T} \phi(\mathbf{x}, t)
$$

Averaged Perceptron

1. initialize parameters $\mathbf{w}=0, \tau=1, \overline{\mathbf{w}}=0$
2. for $i=1 \ldots n$
3. $y_{\mathrm{i}}=\operatorname{sgn}\left(\mathbf{w}^{\mathrm{T}} \varphi\left(\mathbf{x}_{\mathrm{i}}\right)\right)$
4. if $y_{\mathrm{i}} \neq t_{i}$ then
5. $\quad \mathbf{w}=\mathbf{w}+t_{i} \varphi\left(\mathbf{x}_{\mathrm{i}}\right)$
6. $\quad \overline{\mathbf{w}}=\overline{\mathbf{w}}+\mathbf{w}$
7. $\tau=\tau+1$

Repeat:
a) until convergence.
b) for a number of epochs E.
8. return $\overline{\mathbf{w}} / \tau$

During testing: $t^{*}=\operatorname{sgn} \overline{\mathbf{w}}^{T} \phi(\mathbf{x})$

Averaged Perceptron: K classes

1. initialize parameters $\mathbf{w}=0, \tau=1, \overline{\mathbf{w}}=0$
2. for $i=1 \ldots n$
3. $y_{\mathrm{i}}=\arg \max _{i \in T} \mathbf{w}^{T} \varphi\left(\mathbf{x}_{i}, t\right)$

Repeat:
4. if $y_{\mathrm{i}} \neq t_{i}$ then
5. $\quad \mathbf{w}=\mathbf{w}+\varphi\left(\mathbf{x}_{\mathrm{i}}, t_{i}\right)-\varphi\left(\mathbf{x}_{\mathrm{i}}, y_{\mathrm{i}}\right)$
6. $\quad \overline{\mathbf{w}}=\overline{\mathbf{w}}+\mathbf{w}$
7. $\tau=\tau+1$
a) until convergence.
b) for a number of epochs E.
8. return $\overline{\mathbf{w}} / \tau$

During testing: $t^{*}=\arg \max _{t \in T} \overline{\mathbf{w}}^{T} \varphi(\mathbf{x}, t)$

The Perceptron Algorithm: Two Classes

1. initialize parameters $\mathbf{w}=0$
2. for $i=1 \ldots n$
3. $y_{\mathrm{i}}=\operatorname{sgn}\left(\mathbf{w}^{\mathrm{T}} \varphi\left(\mathbf{x}_{\mathrm{i}}\right)\right)$
4. if $y_{\mathrm{i}} \neq t_{i}$ then
5. $\quad \mathbf{w}=\mathbf{w}+t_{i} \varphi\left(\mathbf{x}_{\mathrm{i}}\right)$

Repeat:
a) until convergence.
b) for a number of epochs E .

Loop invariant: \mathbf{w} is a weighted sum of training vectors:

$$
\mathbf{w}=\sum_{i} \alpha_{i} t_{i} \phi\left(\mathbf{x}_{i}\right) \Rightarrow \mathbf{w}^{T} \phi(\mathbf{x})=\sum_{i} \alpha_{i} t_{i} \phi\left(\mathbf{x}_{i}\right)^{T} \phi(\mathbf{x})
$$

Kernel Perceptron: Two Classes

1. define $f(\mathbf{x})=\sum_{j} \alpha_{j} t_{j} \phi\left(\mathbf{x}_{j}\right)^{T} \phi(\mathbf{x})=\sum_{j} \alpha_{j} t_{j} K\left(\mathbf{x}_{j}, \mathbf{x}\right)$
2. initialize dual parameters $\alpha_{i}=0$
3. for $i=1 \ldots n$
4. $y_{i}=\operatorname{sgn} f\left(\mathbf{x}_{\mathrm{i}}\right)$
5. if $y_{i} \neq t_{i}$ then
6. $\quad \alpha_{i}=\alpha_{i}+1$

During testing: $t=\operatorname{sgn} f(\mathbf{x})$

Kernel Perceptron: Two Classes

1. \quad define $f(\mathbf{x})=\sum_{j} \alpha_{j} \phi\left(\mathbf{x}_{j}\right)^{T} \phi(\mathbf{x})=\sum_{j} \alpha_{j} K\left(\mathbf{x}_{j}, \mathbf{x}\right)$
2. initialize dual parameters $\alpha_{i}=0$
3. for $i=1 \ldots n$
4. $y_{i}=\operatorname{sgn} f\left(\mathbf{x}_{\mathrm{i}}\right)$
5. if $y_{i} \neq t_{i}$ then
6.

$$
\alpha_{i}=\alpha_{i}+t_{i}
$$

During testing: $t=\operatorname{sgn} f(\mathbf{x})$

The Perceptron Algorithm: K classes

1. initialize parameters $\mathbf{w}=0$
2. for $i=1 \ldots n$
3. $c_{j}=\arg \max _{t \in T} \mathbf{w}^{T} \varphi\left(\mathbf{x}_{i}, t\right)$
4. if $c_{\mathrm{j}} \neq t_{i}$ then
5. $\left.\quad \mathbf{w}=\mathbf{w}+\varphi\left(\mathbf{x}_{\mathrm{i}}, t_{i}\right)-\varphi\left(\mathbf{x}_{\mathrm{i}}, c_{j}\right)\right]$

Repeat:
a) until convergence.
b) for a number of epochs E .

Loop invariant: \mathbf{w} is a weighted sum of training vectors:

$$
\begin{aligned}
& \mathbf{w}=\sum_{i, j} \alpha_{i j}\left(\phi\left(\mathbf{x}_{i}, t_{i}\right)-\phi\left(\mathbf{x}_{i}, c_{j}\right)\right) \\
& \Rightarrow \quad \mathbf{w}^{T} \phi(\mathbf{x}, t)=\sum_{i, j} \alpha_{i j}\left(\phi\left(\mathbf{x}_{i}, t_{i}\right)^{T} \phi(\mathbf{x}, t)-\phi\left(\mathbf{x}_{i}, c_{j}\right)^{T} \phi(\mathbf{x}, t)\right)
\end{aligned}
$$

Kernel Perceptron: K classes

1. define $f(\mathbf{x}, t)=\sum_{i, j} \alpha_{i j}\left(\phi\left(\mathbf{x}_{i}, t_{i}\right)^{T} \phi(\mathbf{x}, t)-\phi\left(\mathbf{x}_{i}, c_{j}\right)^{T} \phi(\mathbf{x}, t)\right)$
2. initialize dual parameters $\alpha_{i j}=0$
3. $\mathbf{f o r} i=1 \ldots n$
4. $\mathrm{c}_{\mathrm{j}}=\arg \max _{t \in T} f\left(\mathbf{x}_{i}, t\right)$
5. if $y_{\mathrm{i}} \neq t_{i}$ then
6. $\quad \alpha_{i j}=\alpha_{i j}+1$

Repeat:
a) until convergence.
b) for a number of epochs E .

During testing:

$$
t^{*}=\arg \max _{t \in T} f(\mathbf{x}, t)
$$

Kernel Perceptron: K classes

- Discriminant function:

$$
\begin{aligned}
f(\mathbf{x}, t) & =\sum_{i, j} \alpha_{i, j}\left(\phi\left(\mathbf{x}_{i}, t_{i}\right)^{T} \phi(\mathbf{x}, t)-\phi\left(\mathbf{x}_{i}, c_{j}\right)^{T} \phi(\mathbf{x}, t)\right) \\
& =\sum_{i, j} \alpha_{i j}\left(K\left(\mathbf{x}_{i}, t_{i}, \mathbf{x}, t\right)-K\left(\mathbf{x}_{i}, c_{j}, \mathbf{x}, t\right)\right)
\end{aligned}
$$

where:

$$
\begin{aligned}
& K\left(\mathbf{x}_{i}, t_{i}, \mathbf{x}, t\right)=\varphi^{T}\left(\mathbf{x}_{i}, t_{i}\right) \varphi(\mathbf{x}, t) \\
& K\left(\mathbf{x}_{i}, y_{i}, \mathbf{x}, t\right)=\phi^{T}\left(\mathbf{x}_{i}, y_{i}\right) \phi(\mathbf{x}, t)
\end{aligned}
$$

The Perceptron vs. Boolean Functions

Perceptron with Quadratic Kernel

- Discriminant function:

$$
f(\mathbf{x})=\sum_{i} \alpha_{i} t_{i} \varphi\left(\mathbf{x}_{i}\right)^{T} \varphi(\mathbf{x})=\sum_{i} \alpha_{i} t_{i} K\left(\mathbf{x}_{i}, \mathbf{x}\right)
$$

- Quadratic kernel:

$$
K(\mathbf{x}, \mathbf{y})=\left(\mathbf{x}^{T} \mathbf{y}\right)^{2}=\left(x_{1} y_{1}+x_{2} y_{2}\right)^{2}
$$

\Rightarrow corresponding feature space $\varphi(\mathbf{x})=$?
conjunctions of two atomic features

Perceptron with Quadratic Kernel

Lecture 03

Quadratic Kernels

- Circles, hyperbolas, and ellipses as separating surfaces:
$K(\mathbf{x}, \mathbf{y})=\left(1+\mathbf{x}^{T} \mathbf{y}\right)^{2}=\varphi(x)^{T} \varphi(y)$

$$
\varphi(x)=\left[1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right]^{T}
$$

Quadratic Kernels

$$
K(\mathbf{x}, \mathbf{y})=\left(\mathbf{x}^{T} \mathbf{y}\right)^{2}=\varphi(\mathbf{x})^{T} \varphi(\mathbf{y})
$$

Lecture 03

Explicit Features vs. Kernels

- Explicitly enumerating features can be prohibitive:
- 1,000 basic features for $\mathbf{x}^{\mathrm{T}} \mathbf{y}=>500,500$ quadratic features for $\left(\mathbf{x}^{\mathrm{T}} \mathbf{y}\right)^{2}$
- Much worse for higher order features.
- Solution:
- Do not compute the feature vectors, compute kernels instead (i.e. compute dot products between implicit feature vectors).
- $\left(\mathbf{x}^{\mathrm{T}} \mathbf{y}\right)^{2}$ takes 1001 multiplications.
- $\varphi(\mathbf{x})^{\mathrm{T}} \varphi(\mathbf{y})$ in feature space takes 500,500 multiplications.

Kernel Functions

- Definition:

A function $k: \mathrm{X} \times \mathrm{X} \rightarrow \mathrm{R}$ is a kernel function if there exists a feature mapping $\varphi: \mathrm{X} \rightarrow \mathrm{R}^{\mathrm{n}}$ such that:

$$
k(\mathbf{x}, \mathbf{y})=\varphi(\mathbf{x})^{\mathrm{T}} \varphi(\mathbf{y})
$$

- Theorem:
$k: \mathrm{X} \times \mathrm{X} \rightarrow \mathrm{R}$ is a valid kernel \Leftrightarrow the Gram matrix K whose elements are given by $k\left(\mathbf{x}_{\mathrm{n}}, \mathbf{x}_{\mathrm{m}}\right)$ is positive semidefinite for all possible choices of the set $\left\{\mathbf{x}_{\mathrm{n}}\right\}$.

Kernel Examples

- Linear kernel: $K(\mathbf{x}, \mathbf{y})=\mathbf{x}^{T} \mathbf{y}$
- Quadratic kernel: $K(\mathbf{x}, \mathbf{y})=\left(c+\mathbf{x}^{T} \mathbf{y}\right)^{2}$
- contains constant, linear terms and terms of order two $(c>0)$.
- Polynomial kernel: $K(\mathbf{x}, \mathbf{y})=\left(c+\mathbf{x}^{T} \mathbf{y}\right)^{M}$
- contains all terms up to degree $M(\mathrm{c}>0)$.
- Gaussian kernel: $K(\mathbf{x}, \mathbf{y})=\exp \left(-\|\mathbf{x}-\mathbf{y}\|^{2} / 2 \sigma^{2}\right)$
- corresponding feature space has infinite dimensionality.

Kernels over Discrete Structures

- Subsequence Kernels [Lodhi et al., JMLR 2002]:
$-\Sigma$ is a finite alphabet (set of symbols).
- $\mathbf{x , y} \in \Sigma^{*}$ are two sequences of symbols with lengths $|\mathbf{x}|$ and $|\mathbf{y}|$
- $k(\mathbf{x}, \mathbf{y})$ is defined as the number of common substrings of length n.
- $k(\mathbf{x}, \mathbf{y})$ can be computed in $\mathrm{O}(n|\mathbf{x} \| \mathbf{y}|)$ time complexity.
- Tree Kernels [Collins and Duffy, NIPS 2001]:
- T_{1} and T_{2} are two trees with N_{1} and N_{2} nodes respectively.
- $k\left(T_{1}, T_{2}\right)$ is defined as the nummber of common subtrees.
- $k\left(T_{1}, T_{2}\right)$ can be computed in $\mathrm{O}\left(N_{1} N_{2}\right)$ time complexity.
- in practice, time is linear in the size of the trees.

Reading Assignment

- Chapter 6:
- Section 6.1 on dual representations for linear regression models.
- Section 6.2 on techniques for constructing new kernels.

