
Machine Learning
CS 6830

Razvan C. Bunescu

School of Electrical Engineering and Computer Science

bunescu@ohio.edu

Lecture 03b

Neurons

2
Lecture 03

Soma is the central part of the neuron:
•  where the input signals are combined.

Dendrites are cellular extensions:
•  where majority of the input occurs.

Axon is a fine, long projection:
•  carries nerve signals to other neurons.

Synapses are molecular structures between
axon terminals and other neurons:
•  where the communication thakes place.

Neurons & Perceptrons

•  Biological Interpretation:
–  The output of the neuron is a linear combination of inputs from other neurons,

rescaled by the synaptic weights.
•  It is often transformed through a monotonic function such as signum, or sigmoid

–  Weights wi correspond to the synaptic weights (activating or inhibiting).
–  Summation corresponds to combination of signals in the soma.

3
Lecture 03

The Perceptron Algorithm: Two Classes

1.  initialize parameters w = 0
2.  for i = 1 … n
3.  yi = sgn(wTϕ(xi))
4.  if yi ≠ ti then
5.  w = w + tiϕ(xi)

4
Lecture 03

Repeat:
a)  until convergence.
b)  for a number of epochs E.

Theorem [Rosenblatt, 1962]:
If the training dataset is linearly separable, the perceptron learning
algorithm is guaranteed to find a solution in a finite number of steps.
•  see Theorem 1 (Block, Novikoff) in [Freund & Schapire, 1999].

Motivation: Error function minimization

•  Error: total number of misclassified patterns?
–  piecewise constant function of w with discontinuities.
–  cannot use gradient methods (gradient zero almost everywhere).

•  The Perceptron Criterion:
–  Assume classes T = {c1, c2} = {-1,+1}.
–  Want wTϕ(xn) ≥ 0 for tn = +1, and wTϕ(xn) < 0 for tn = - 1.
⇒  would like to have wTϕ(xn) tn > 0 for all patterns.
⇒  want to minimize -wTϕ(xn) tn for all misclassified patterns.

5
Lecture 03

nn
Mn

T
P tE)()(xww ϕ∑

∈

−=⇒ minimize

The Perceptron Algorithm as Stochastic
Gradient Descent

•  Update parameters w sequentially:

•  The magnitude of w is inconsequential => η = 1.

6
Lecture 03

),()()()1(
nP xE τττ η www ∇−=+

nn tx)()()1(ηϕττ +=+ ww

The Perceptron Algorithm: K classes

1.  initialize parameters w = 0
2.  for i = 1 … n
3.  yi =
4.  if yi ≠ ti then
5.  w = w + ϕ(xi,ti) - ϕ(xi,yi)

During testing:

7
Lecture 03

),(maxarg ti
T

Tt
xw ϕ

∈
Repeat:
a)  until convergence.
b)  for a number of epochs E.

t* = argmax
t∈T
wTφ(x, t)

Averaged Perceptron

1.  initialize parameters w = 0, τ = 1,
2.  for i = 1 … n
3.  yi = sgn(wTϕ(xi))
4.  if yi ≠ ti then
5.  w = w + tiϕ(xi)

6. 
7.  τ = τ + 1
8.  return

During testing:

8
Lecture 03

Repeat:
a)  until convergence.
b)  for a number of epochs E.

www +=

0=w

τ/w

t* = sgnwTφ(x)

Averaged Perceptron: K classes

1.  initialize parameters w = 0, τ = 1,
2.  for i = 1 … n
3.  yi =
4.  if yi ≠ ti then
5.  w = w + ϕ(xi,ti) - ϕ(xi,yi)
6. 
7.  τ = τ + 1
8.  return

During testing:

9
Lecture 03

Repeat:
a)  until convergence.
b)  for a number of epochs E.

),(maxarg ti
T

Tt
xw ϕ

∈

www +=

0=w

τ/w

),(maxarg* tt T

Tt
xw ϕ

∈
=

The Perceptron Algorithm: Two Classes

1.  initialize parameters w = 0
2.  for i = 1 … n
3.  yi = sgn(wTϕ(xi))
4.  if yi ≠ ti then
5.  w = w + tiϕ(xi)

Loop invariant: w is a weighted sum of training vectors:

10
Lecture 03

Repeat:
a)  until convergence.
b)  for a number of epochs E.

w = αitiφ(xi)
i
∑ wTφ(x) = αitiφ(xi)

i
∑

T
φ(x)⇒

Kernel Perceptron: Two Classes

1.  define

2.  initialize dual parameters αi = 0
3.  for i = 1 … n
4.  yi = sgn f(xi)
5.  if yi ≠ ti then
6.  αi = αi + 1

During testing: t = sgn f(x)

11
Lecture 03

f (x) = α jt jφ(x j
j
∑)Tφ(x) = α jt jK(x j

j
∑ ,x)

Kernel Perceptron: Two Classes

1.  define

2.  initialize dual parameters αi = 0
3.  for i = 1 … n
4.  yi = sgn f(xi)
5.  if yi ≠ ti then
6.  αi = αi + ti

During testing: t = sgn f(x)

12
Lecture 03

f (x) = α jφ(x j
j
∑)Tφ(x) = α jK(x j

j
∑ ,x)

The Perceptron Algorithm: K classes

1.  initialize parameters w = 0
2.  for i = 1 … n
3.  cj =
4.  if cj ≠ ti then
5.  w = w + ϕ(xi,ti) - ϕ(xi, cj)

Loop invariant: w is a weighted sum of training vectors:

13
Lecture 03

),(maxarg ti
T

Tt
xw ϕ

∈
Repeat:
a)  until convergence.
b)  for a number of epochs E.

w = αij (φ(xi,
i, j
∑ ti)−φ(xi,cj))

wTφ(x, t) = αij (φ(xi,
i, j
∑ ti)

Tφ(x, t)−φ(xi,cj)
Tφ(x, t))⇒

Kernel Perceptron: K classes

1.  define

2.  initialize dual parameters αij = 0
3.  for i = 1 … n
4.  cj =
5.  if yi ≠ ti then
6.  αij = αij + 1

During testing:

14
Lecture 03

f (x, t) = αij (φ(xi,
i, j
∑ ti)

Tφ(x, t)−φ(xi,cj)
Tφ(x, t))

),(maxarg tf iTt
x

∈

),(maxarg* tft
Tt

x
∈

=

Repeat:
a)  until convergence.
b)  for a number of epochs E.

Kernel Perceptron: K classes

•  Discriminant function:

 where:

15
Lecture 03

f (x, t) = αi, j (φ(xi,
i, j
∑ ti)

Tφ(x, t)−φ(xi,cj)
Tφ(x, t))

= αij (K(xi,
i, j
∑ ti,x, t)−K(xi,cj,x, t))

),(),(),,,(ttttK ii
T

ii xxxx ϕϕ=

K(xi, yi,x, t) = φ
T (xi, yi)φ(x, t)

The Perceptron vs. Boolean Functions

16
Lecture 03

And Or Xor

?

Txx],,1[)(21=xϕ
Twww],,[210=w 02121],[],[)(wxxww TT +==> xw ϕ

Perceptron with Quadratic Kernel

•  Discriminant function:

•  Quadratic kernel:

⇒ corresponding feature space ϕ(x) = ?

17
Lecture 03

),()()()(xxxxx ∑∑ ==
i

iii
T

i
iii Kttf αϕϕα

2
2211

2)()(),(yxyxK T +== yxyx

conjunctions of two atomic features

Perceptron with Quadratic Kernel

18
Lecture 03

a b

c d

a b

d

c
1

1 1
1

2

Linear kernel

Quadratic kernel

yxyx TK =),(
2)(),(yxyx TK =

x ϕ(x)

Quadratic Kernels

•  Circles, hyperbolas, and ellipses as separating surfaces:

19
Lecture 03

)()()1(),(2 yxK TT ϕϕ=+= yxyx
Txxxxxxx],2,,2,2,1[)(2

221
2
121=ϕ

x1

x2

Quadratic Kernels

20
Lecture 03

)()()(),(2 yxyxyx ϕϕ TTK ==

x ϕ(x)

Explicit Features vs. Kernels

•  Explicitly enumerating features can be prohibitive:
–  1,000 basic features for xTy => quadratic features for (xTy)2

–  Much worse for higher order features.

•  Solution:
–  Do not compute the feature vectors, compute kernels instead (i.e.

compute dot products between implicit feature vectors).
•  (xTy)2 takes 1001 multiplications.
•  ϕ(x)T ϕ(y) in feature space takes 500,500 multiplications.

21
Lecture 03

500,500

Kernel Functions

•  Definition:
 A function k : X × X → R is a kernel function if there
exists a feature mapping ϕ : X → Rn such that:
 k(x,y) = ϕ(x)Tϕ(y)

•  Theorem:
 k : X × X → R is a valid kernel ⇔ the Gram matrix K
whose elements are given by k(xn,xm) is positive
semidefinite for all possible choices of the set {xn}.

22
Lecture 03

Kernel Examples

•  Linear kernel:

•  Quadratic kernel:
–  contains constant, linear terms and terms of order two (c > 0).

•  Polynomial kernel:

–  contains all terms up to degree M (c > 0).

•  Gaussian kernel:
–  corresponding feature space has infinite dimensionality.

23
Lecture 03

yxyx TK =),(

2)(),(yxyx TcK +=

MTcK)(),(yxyx +=

)2/exp(),(22
σyxyx −−=K

Kernels over Discrete Structures

•  Subsequence Kernels [Lodhi et al., JMLR 2002]:
–  Σ is a finite alphabet (set of symbols).
–  x,y∈Σ* are two sequences of symbols with lengths |x| and |y|
–  k(x,y) is defined as the number of common substrings of length n.
–  k(x,y) can be computed in O(n|x||y|) time complexity.

•  Tree Kernels [Collins and Duffy, NIPS 2001]:
–  T1 and T2 are two trees with N1 and N2 nodes respectively.
–  k(T1, T2) is defined as the nummber of common subtrees.
–  k(T1, T2) can be computed in O(N1N2) time complexity.
–  in practice, time is linear in the size of the trees.

24
Lecture 03

Reading Assignment

•  Chapter 6:
–  Section 6.1 on dual representations for linear regression

models.
–  Section 6.2 on techniques for constructing new kernels.

25
Lecture 03

