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Max-Margin Classifiers: Separable Case 

•  Linear model for binary classification: 

•  Training examples: 
  (x1,t1), (x2,t2), … (xN,tN), where tn∈{+1,-1} 

 

•  Assume training data is linearly separable: 

⇒ perceptron solution depends on: 
–  initial values of w and b. 
–  order of processing of data points. 
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Maximum Margin Classifiers 

•  Which hyperplane has the smallest generalization error? 
–  The one that maximizes the margin [Computational Learning Theory] 

•  margin = the distance between the decision boundary and the 
closest sample. 
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Maximum Margin Classifiers 

•  The distance between a point xn and a hyperplane y(x)=0 is: 
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Maximum Margin Classifiers 

•  Margin = the distance between hyperplane y(x)=0 and closest sample: 

 
•  Find parameters w and b that maximize the margin: 

•  Rescaling w and b does not change distances to the hyperplane: 

⇒ for the closest point(s), set  

⇒  
5 

Lecture 03 

⎥
⎦

⎤
⎢
⎣

⎡ +
w
xw ))((min bt n

T
n

n

ϕ

[ ]
⎭
⎬
⎫

⎩
⎨
⎧

+ ))((min1maxarg
,

bt n
T

nnb
xw

ww
ϕ

1))(( =+ bt n
T

n xw ϕ

},,1{     ,1))(( Nnbt n
T

n …∈∀≥+xw ϕ



Max-Margin: Quadratic Optimization 

•  Constrained optimization problem: 

•  Solved using the technique of Lagrange Multipliers. 
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Convex Optimization 

•  Convex optimization problem in standard form (primal): 

–  fi : Rn→R are all convex functions, for i = 0, …, m  
–  hi : Rn→R are all afine functions , for i = 0, …, p (e.g. hi(x)=Ax+b)  
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Lagrange Multipliers 

•  Define Lagrangian function LP : Rn × Rm × Rp → R: 

•  λi ≥ 0, and νi are the Lagrange multipliers. 

•  Define Lagrange dual function LD : Rm × Rp → R: 
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Convex Optimization 

•  Lagrange Dual Problem: 

 

9 
Lecture 03 

maximize: 

subject to: 
mii ,,1   ,0 …=≥λ

),( υλDL
solution (λ*,ν*) 

),,(inf),( υλxυλ
x PD LL =



Strong Duality 

•  Optimum for primal problem = optimum for dual problem: 
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Karush–Kuhn–Tucker (KKT) conditions 

Assume (x, λ, ν) are the primal & dual solutions. Then (x, λ, ν) 
satisfy the following constraints: 
 

1.  primal constraints: 

2.  dual constraints: 

3.  complementary slackness: 

4.  gradient of Lagrangian with respect to x vanishes: 
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Max-Margin: Quadratic Optimization 

•  Constrained optimization problem: 

•  Let’s solve it using the technique of Lagrange Multipliers. 
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Max-Margin: Quadratic Optimization 

•  Lagrangian function: 

•  αn ≥ 0 are the Lagrangian multipliers. 

•  Lagrangian dual function: 

•  Solve: 
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Max-Margin: Quadratic Optimization 

•  Dual representation: 

•  k(xn,xm)=ϕ(xn)Tϕ(xn) is the kernel function. 
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KKT conditions 

1.  primal constraints: 
 

2.  dual constraints: 

3.  complementary slackness: 

⇒  for any data point, either αn = 0 or tn y(xn) = 1 
 
S = {n | tn y(xn) = 1} is the set of  
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Max-Margin Solution 

•  After solving the dual problem ⇒ know αn, for n = 1… N 

•  Linear discriminant function becomes: 

⇒ In both training and testing, examples are used only through 
the kernel function! 
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An SVM with Gaussian kernel 
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Max-Margin Classifiers: Non-Separable Case 

•  Allow data points to be on the wrong side of the margin boundary. 
–  Penalty that increases with the distance from the boundary. 
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Max-Margin: Quadratic Optimization 

•  Optimization problem: 

•  Solve it using the technique of Lagrange Multipliers. 
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Max-Margin: Quadratic Optimization 

•  Dual representation: 

•  k(xn,xm)=ϕ(xn)Tϕ(xn) is the kernel function. 
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(Some of the) KKT conditions 

1.  primal constraints: 
 

2.  dual constraints: 

3.  complementary slackness: 

⇒  for any data point, either αn = 0 or tn y(xn) = 1-ξn 

 
S  = {n | tn y(xn) = 1-ξn} is the set of  
 

M ={n | 0 < αn< C} is the set of SVs that lie on the margin. 
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Max-Margin Solution 

•  After solving the dual problem ⇒ know αn, for n = 1… N 

•  Linear discriminant function becomes: 

⇒ In both training and testing, examples are used only through 
the kernel function! 
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Support Vector Machines 

•  Optimization problem: 
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SVMs for Regression 

•  Use an ε-insensitive error function (ε > 0) to obtain sparse solutions. 
–  Penalty that increases with the distance from the ε-insensitive “tube”. 
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SVMs for Regression: Quadratic Optimization 

•  Optimization problem: 

•  Solve it using the technique of Lagrange Multipliers. 
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SVMs for Regression: Sparse Solution 

•  After solving the dual problem ⇒ know αn,     for n = 1… N 

•  S is the set of support vectors: 
i.e. points for which either αn ≠ 0 or  
⇒ points that lie on the boundary of the ε-insensitive tube or outside 

the tube 

 
 
⇒ In both training and testing, examples are used only through 

the kernel function! 
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SVMs for Regression: Sparse Solution 
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SVMs for Ranking 

•  Problem: 
–  For a query q, a search engine returns a set of documents D. 
–  Want to rank di higher than dj if di is more relevant to q than dj. 

•  Solution: 
–  Learn a ranking function f(q,d) = wTϕ(q,d) 
–  Rank di higher than dj if f(q,di) ≥ f(q,dj) ⇔ wTϕ(q,di) ≥ wTϕ(q,dj) 
–  Training data: 

•  Set {(qk, di, dj) | di ranked higher than dj for query qk}. 
•  Relative rankings obtained from clicktrough data. 
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SVMs for Ranking 

•  Optimization problem: 
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SVMs for Ranking 

•  After solving the quadratic problem: 

 
 
⇒ In both training and testing, examples are used only 

through the kernel function! 
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Learning Scenarios for SVMs 

•  Classification. 
•  Ranking. 
•  Regression. 
•  Ordinal Regression. 
•  One Class Learning. 
•  Learning with Positive and Unlabeled examples. 
•  Transductive Learning. 
•  Semi-Supervised Learning. 
•  Multiple Instance Learning. 
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Practical Issues 

•  Data Scaling: 
–  Between [-1,+1] or [0, 1]. 
–  Use same scaling factors in training and testing! 

•  Parameter Tuning: 
–  Most SVM packages specify reasonable default values. 

•  Tuning helps, especially with kernels that tend to overfit. 
–  Grid search is simple and effective: 

•  For RBF kernels, need to tune C and γ: 
–  C ∈ {2-5, 2-3, ..., 215}, γ ∈ {2-15, 2-13, ..., 23} 

•  Read LibSVM’s “A practical guide to SVM classification”. 
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Conclusion 

•  SVMs were originally proposed by Boser, Guyon, and Vapnik in 1992. 
•  SVMs are currently among the best performers on a number of 

classification tasks ranging from text to genomic data. 
•  SVMs can be applied to complex data types, e.g. graphs, trees, 

sequences, by designing kernel functions for such data. 
–  Also to probability distributions – “Learning from Distributions via Support 

Measure Machines” [Muandet et al., NIPS 2012] 

•  Kernel trick has been extended to other methods such as Perceptron, 
PCA, kNN, etc. 

•  Popular optimization algorithms for SVMs use decomposition to hill-
climb over a subset of αn’s at a time, e.g. SMO [Platt ‘99]. 

–  But training and testing with linear SVMs are much faster. 

•  Read Lin’s “Machine Learning Software: Design and Practical Use” 
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