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Feature Selection 

•  Datasets with thousands of features are common: 
–  text documents 
–  gene expression data 

•  Processing thousands of features during training & testing 
can be computationally infeasible. 

•  Many irrelevant features can lead to overfitting. 

=> select most relevant features in order to obtain faster, 
better and easier to understand learning models. 
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Feature Selection: Methods 

•  Wrapper method:  
–  uses a classifier to assess features or feature subsets. 

•  Filter method:  
–  ranks features or feature subsets independently of the classifier. 

•  Univariate method:  
–  considers one feature at a time. 

•  Multivariate method:  
–  considers subsets of features together. 
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The Wrapper Method 

Greedy Forward Selection: 
•  F is the set of all features. 
•  S ⊆ F is the subset of selected features. 
 
1.  Start with no features in S = {} 
2.  For each feature f in F- S, train model with S +{f} 
3.  Add to S the best performing feature(s). 
4.  Repeat from 2 until:  

(a)  performance does not improve, or  
(b)  performance good enough. 
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The Wrapper Method 

Greedy Backward Elimination: 
•  F is the set of all features. 
•  S ⊆ F is the subset of selected features. 
 
1.  Start with all features in S = F 
2.  For each feature in S, train model without that feature. 
3.  Remove from S feature corresponding to best model. 
4.  Repeat from 2 until:  

(a)  performance does not improve, or  
(b)  performance good enough. 
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The Wrapper Method 

•  Forward: Greedily add features one (more) at a time. 
Efficiently Inducing Features of Conditional Random 
Fields” [McCallum, UAI’03] 

•  Backward: Greedily remove features one (more) at a time. 
Multiclass cancer diagnosis using tumor gene expression 
signatures” [Ramaswamy et al., PNAS’01] 

•  Combined: Two steps forward, one step back. 

•  Train multiple times ⇒ can be very time consuming! 
–  Alternative: use external criteria to decide feature relevance ⇒ the 

Filter Method. 
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Recursive Feature Elimination with SVM   

•  An instance of Greedy Backward Elimination. 

1.  Let F = {1, 2, ..., K} be the set of features. 
2.  Let S = [] be the ranked set of features. 
3.  Repeat until F – S is empty: 

I.  Train weight vector w using a linear SVM and F – S. 
II.  Find feature f  in F – S with minimum |wf|. 
III.  Append f to S. 

4.  Return S. 
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The Filter Method 

1.  Rank all features using a measure of correlation with the 
label. 

2.  Select top k features to use in the model. 

•  Measures of correlation between feature X and label Y: 
–  Mutual Information 
–  Chi-square Statistic 
–  Pearson Correlation Coefficient 
–  Signal-to-Noise Ratio 
–  T-test 
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Mutual Information 

•  Independence: 
 
 

•  Measure of dependence: 

–  It is 0 when X and Y are independent. 
–  It is maximum when X=Y. 
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Mutual Information 

•  Problems: 
–  Works only with nominal features & labels ⇒ discretization. 
–  Biased toward high arity features ⇒ normalization. 
–  May choose redundant features. 
–  Features may become relevant in the context of other ⇒ use 

conditional MI [Fleuret, JMLR ‘04]. 

•  Other measures: 
–  Chi square (χ2). 
–  Log-likelihood Ratio (LLR). 

•  Comparison between MI, χ2, and LLR in [Dunning, CL’98] 
“Accurate methods for the statistics of surprise and coincidence” 
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Chi Square (χ2) Test of Independence 

•  N training examples (observations). 
•  X is a discrete feature with k possible values. 
•  Y is a label with l possible values. 
•  Create k-by-l contingency table with cells for every feature-label 

combination.  
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Chi Square (χ2) Test of Independence 

•  Oij is the observed count for X= i & Y= j. 
•  Eij is the expected value for X= i & Y= j, assuming X,Y are independent. 
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Chi Square (χ2) Test of Independence 
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Use X2 test value to rank features X with respect to label Y. 



Pearson Correlation Coefficient 

•  Feature X and label Y are two random variables. 
•  Population correlation coefficient (linear dependence): 

•  Sample correlation coefficient: 

•  Values always between [-1,+1] 
–  when linearly dependent +1, -1, when independent 0. 
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Pearson Correlation Coefficient 
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Signal-to-Noise Ratio (S2N) 

•  Feature X and label Y are two random variables: 
–  Y is binary, Y∈{y+, y-} 

•  Let µ+, σ+ be the sample µ, σ of X for which Y= y+. 

•  Let µ-, σ- be the sample µ, σ of X for which Y= y-. 
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Ranking Features with the T-test 

•  Let m+ be the number of samples in class y+. 
•  Let m- be the number of sample in class y- . 
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