
Machine Learning 
CS 6830 

Razvan C. Bunescu 

School of Electrical Engineering and Computer Science 

bunescu@ohio.edu 

Lecture 07 



Probabilistic Generative Models: Binary 
Classification (K = 2) 

•  Model class-conditional p(x |C1), p(x |C2) as well as the priors p(C1), 
p(C2), then use Bayes’s theorem to find p(C1 | x), p(C2 | x):  
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Probabilistic Generative Models: Binary 
Classification (K = 2) 

•  If a(x) is a linear function of x ⇒ p(C1 | x) is a generalized linear 
model: 
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Three Parametric Approaches to 
Classification 

2)  Probabilistic Discriminative Models: directly model the 
posterior class probabilities p(Ck | x). 
–  Inference and decision are separate. 
–  Less data needed to estimate p(Ck | x) than p(x |Ck). 
–  Can accommodate many overlapping features. 

•  Logistic Regression 
•  Conditional Random Fields 
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Logistic Regression (K = 2) 

•  Directly model posterior class probabilities: 

•  Dataset D = {〈ϕ(xn), tn〉 | tn∈{0,1}, n ∈ 1…N} 

•  The likelihood function is: 

•  ML solution is: 
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Logistic Regression (K = 2) 

•  The negative log-likelihood error function is: 

•  ∇E(w) = 0 ⇒ ML solution is given by: 

⇒ for every feature ϕi, the expected value on predicted D+ should be the 
same as the observed value on D+: 
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Logistic Regression vs. Linear Regression 

•  Logistic Regression solution: 

•  Linear Regression solution: 

•  Like in linear regression, solution is prone to overfitting: 

–  when data is linearly separable, ML solution is a hyperplane   

 σ(wTx) = 0.5  ⇔   wTx = 0 and ||w||=∞. 
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Regularized Logistic Regression 

•  Use a Gaussian prior over the parameters: 
 w = [w0, w1, … , wM]T 

•  Bayes’ Theorem: 

•  MAP solution: 
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Regularized Logistic Regression 

•  MAP solution: 
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Regularized Logistic Regression 

•  MAP solution: 

 set ∇ED(w) + ∇Ew(w) = 0: 

•  Solve numerically: 
–  Stochastic gradient descent [chapter 3.1.3]. 
–  Newton Raphson iterative optimization [chapter 4.3.3]. 
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Multiclass Logistic Regression (K ≥ 2) 

1)  Train one weight vector per class [Chapter 4.3.4]: 

2)  More general approach: 

-  Inference: 
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Logistic Regression (K ≥ 2) 

2)  Inference in more general approach: 

•  Training using: 
–  Maximum Likelihood (ML) 
–  Maximum A Posteriori (MAP) with a Gaussian prior on w. 
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Logistic Regression (K ≥ 2) with ML 

•  The negative log-likelihood error function is: 

•  The gradient is (prove it): 
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Logistic Regression (K ≥ 2) with ML 

•  Set ∇ED(w) = 0 ⇒ ML solution satisfies: 

⇒ for every feature ϕi, the observed value on D should be the same as 
the expected value on D! 

•  Solve numerically: 
–  Stochastic gradient descent [chapter 3.1.3]. 
–  Newton Raphson iterative optimization (large Hessian!). 
–  Limited memory Newton methods (e.g. L-BFGS). 
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The Maximum Entropy Principle 

•  Principle of Insufficient Reason 
•  Principle of Indifference 

–  can be traced back to Pierre Laplace and Jacob Bernoulli. 

Ø  A. L. Berger, S. A. Della Pietra, and V. J. Della Pietra. 1996. 
 A maximum entropy approach to natural language processing. 
 Computational Linguistics, 22(1). 

–  “model all that is known and assume nothing about that which is 
unknown”. 

–  “given a collection of facts, choose a model consistent with all the 
facts, but otherwise as uniform as possible”. 
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Maximum Likelihood ⇔ Maximum Entropy 

1)  Maximize conditional likelihood: 

 
 
2)  Maximize conditional entropy: 

 subject to: 
 
 
 

 ⇒ solution is:  
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