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Graphical Models

In many supervised learning tasks, the entities to be 
labeled are related to each other:

hyperlinked web pages
cross-citations in scientific papers
social networks 

Standard approach: classify each entity independently
=> flat models 
Alternative approach: collective classification using 
undirected graphical models
=> relational models
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Graphical Models

• An intuitive representation of conditional independence 
between domain variables:

Directed Models => well suited to represent temporal and causal 
relationships (Bayesian Networks, NNs, HMMs)

Undirected Models => appropriate for representing statistical 
correlation between variables (Markov Networks)

Generative Models => define a joint probability over observation 
and label sequences (HMMs)

Discriminative Models => specifies a probability over label 
sequences given an observation sequence (CRFs)
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Markov Random Fields (MRF)

• V – a set of (discrete) random variables
• G = (V, E) an undirected graph

Definition:
V is said to be a Markov Random Field with respect to G if:

E} ),V|(V{VVNVNVPVVVP jijiiiii ∈==− )( where,    ))(|()|(

i.e. N(Vi) is the neighborhood of Vi
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Gibbs Random Fields (GRF)

• G = (V, E) – an undirected graph
– V is a set of (discrete) random variables
– C(G) is the set of all cliques of G
– Vc is the set of vertices in a clique c∈ C(G)

Definition:
V is said to be a Gibbs Random Field with respect to G if:
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)}(  ,:|{ GCcRVccc ∈→=Φ ϕϕ is the set of clique potentials

Z is the normalization constant
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Gibbs Random Fields – Example

D2.LabelD1.Label

D1.w1 D1.wk D2.w1 D2.wk……

D1, D2 are linked webpages
D.Label ∈ {0,1}
D.w is true if word w ∈D, otherwise false
k is the size of the vocabulary

ϕLL

ϕ11 ϕ1k ϕ21 ϕ2k

ϕLL D1.Label D2.Label

ϕLL(0,0) 0 0

ϕLL(0,1) 0 1

ϕLL(1,0) 1 0

ϕLL(1,1) 1 1

ϕ1j D1.Label D1.wj

ϕ1j(0,false) 0 false

ϕ1j(0,true) 0 true
ϕ1j(1,false) 1 false
ϕ1j(1,true) 1 true
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Markov-Gibbs Equivalence

A GRF is characterized by its global property 
=> the Gibbs distribution
An MRF is characterized by its local property
=> the Markov assumption

Theorem [Hammersley & Clifford, 1971]

V is an MRF w.r.t. G V is a GRF w.r.t. G
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Discriminative MRF (CRF)

• V = X ∪ Y is a set of discrete random variables:
– X are observed variables
– Y are hidden variables (labels)

• G = (V, E) is an undirected graph.

Definition:
V is said to be a Conditional Random Field (CRF) w.r.t. G if:

E} ),Y|(Y{YYNVNXYPYYXYP jijiiiii ∈==− )( where,    ))(,|(),|(
i.e. N(Yi) is the neighborhood of Yi

[Lafferty, McCallum & Pereira 2000]
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Discriminative GRF (CMN)

• V = X ∪ Y is a set of discrete random variables
– X are observed variables
– Y are hidden variables (labels)

• G = (V, E) is an undirected graph:
– C(G) are the cliques of G
– Vc = Xc ∪ Yc is the set of vertices in a clique c∈ C(G)

Definition:
V is said to be a Conditional Markov Network w.r.t. G if:

∑
∈
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Z(X) is the normalization constant

[Taskar, Abbeel & Koller 2002] 9
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Markov-Gibbs Equivalence

Theorem [Hammersley & Clifford, 1971] :
V is a Conditional Random Field w.r.t. G 

V is a Conditional Markov Network w.r.t. G
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Linear-Chain CRFs
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Part-of-speech Tagging

Sentence S = a sequence of tokens T1, …, Tn (tokens as entities)

T1.tag T2.tag T3.tag EndStart Tn.tag

T1.w T2.w T3.w Tn.w

…

…

T1.cap T2.cap T3.cap Tn.cap

Tj.tag – the POS tag at position j
Tj.w – true if word w occurs at position j
Tj.cap – true if word at position j begins with capital letter
…

…

[Lafferty, McCallum & Pereira 2001]

ϕcap

ϕtw

ϕtags

12
Lecture 09



“Discriminative HMMs”

T1.tag T2.tag T3.tag Tn.tag

T1.w T2.w T3.w Tn.w

…
ϕtags

ϕw

ϕtags and ϕw play a similar role to the (logarithms of the) usual HMM 
parameters P(Tj+1.tag|Tj.tag) and P(T.w|T.tag).

[Lafferty, McCallum & Pereira 2000]



Inference in Linear Chain CRFs
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Learning with Linear Chain CRFs
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