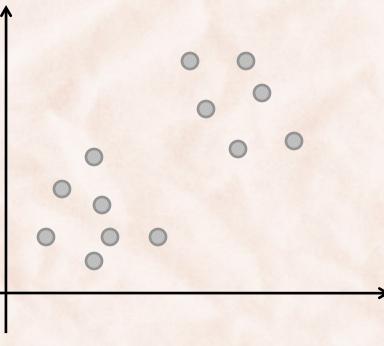
Machine Learning CS 6830

Lecture 10

Razvan C. Bunescu School of Electrical Engineering and Computer Science bunescu@ohio.edu

Unsupervised Learning: Clustering

- Partition unlabeled examples into disjoint clusters such that:
 - Examples in the same cluster are very similar.
 - Examples in different clusters are very different.



Unsupervised Learning: Clustering

- Partition unlabeled examples into disjoint clusters such that:
 - Examples in the same cluster are very similar.
 - Examples in different clusters are very different.

Hierarchical Agglomerative Clustering (HAC)

- Start out with *n* clusters, one example per cluster.
- At each step merge the *nearest* two clusters.
- Stop when there is only one cluster left, or:
 - there are only *k* clusters left.
 - distance is above a threshold τ .
- History of clustering decision can be represented as a binary tree.

The HAC Algorithm

- 1. let $C_i = {\mathbf{x}_i}$, for $i \in 1...n$
- 2. let $C = \{C_i\}$, for $i \in 1...n$
- 3. while |C| > 1:

4. set
$$\langle C_i, C_j \rangle = \arg \min_{C_k \neq C_l} d(C_k, C_l)$$

5. replace C_i , C_j in C with $C_i \cup C_j$

Q: How do we compute the distance *d* between two clusters?

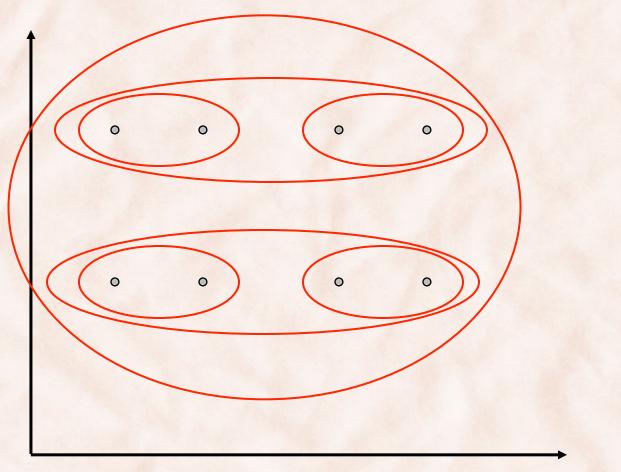
Distance Measures

- Assume a distance function between any two instances:
 Euclidean distance ||x-y||
- Single Link: $d(C_i, C_j) = \min_{\mathbf{x} \in C_i, \mathbf{y} \in C_j} \|\mathbf{x} \mathbf{y}\|$
- Complete Link: $d(C_i, C_j) = \max_{\mathbf{x} \in C_i, \mathbf{y} \in C_i} \|\mathbf{x} \mathbf{y}\|$
- Group Average: $d(C_i, C_j) = \frac{1}{|C_i| * |C_j|} \sum_{\mathbf{x} \in C_i, \mathbf{y} \in C_i} \|\mathbf{x} \mathbf{y}\|$
- Centroid Distance: $d(C_i, C_j) = \|\mathbf{m}_i \mathbf{m}_j\|$

Single Link (Nearest Neighbor)

- Distance function $d(C_i, C_j) = \min_{\mathbf{x} \in C_i, \mathbf{y} \in C_j} \|\mathbf{x} \mathbf{y}\|$
- It favors elongated clusters.
- Equivalent with Kruskal's MST algorithm.

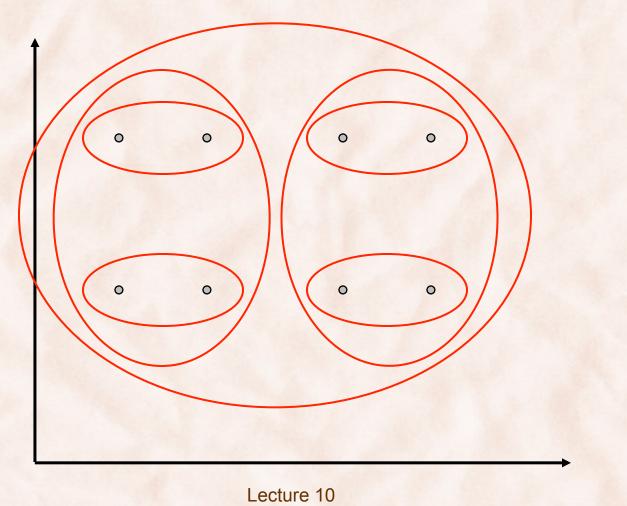
Single Link



Complete Link (Farthest Neighbor)

- Distance function $d(C_i, C_j) = \max_{\mathbf{x} \in C_i, \mathbf{y} \in C_j} \|\mathbf{x} \mathbf{y}\|$
- It favors tight, spherical clusters.
- $d(C_i, C_j)$ is the *diameter* of the cluster $C_i \cup C_j$.

Complete Link



Divisive Clustering with k-Means

- The goal is to produce k clusters such that instances are close to the cluster centroids:
 - The cluster centroid is the mean of all instances in the cluster.
- Optimization problem:

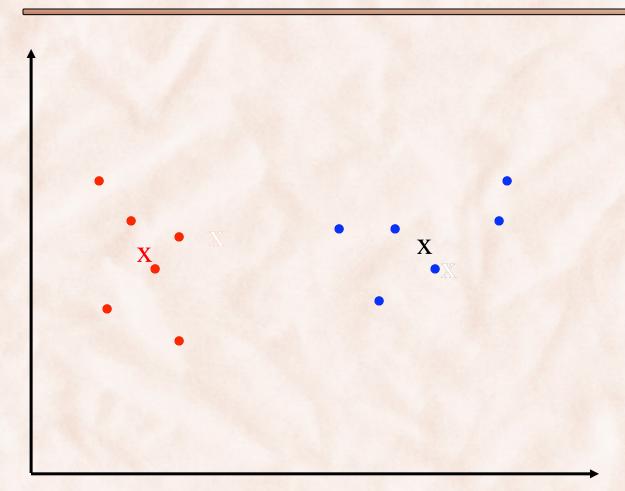
$$= \arg\min_{C} J(C)$$
$$J(C) = \sum_{i=1}^{k} \sum_{\mathbf{x} \in C_{i}} ||\mathbf{x} - \mathbf{m}_{i}||^{2}$$

The k-Means Algorithm

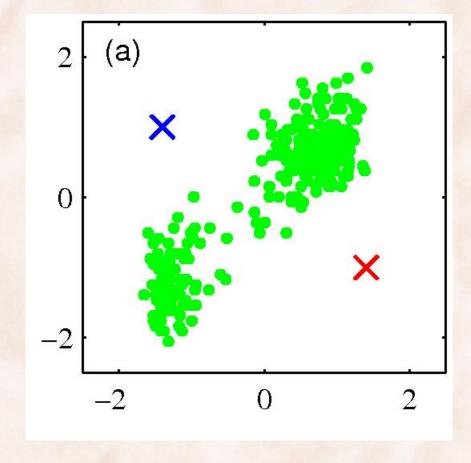
- 1. start with some seed centroids $\mathbf{m}_1^{(0)}, \mathbf{m}_2^{(0)}, \dots, \mathbf{m}_k^{(0)}$
- 2. set $t \leftarrow 0$.
- 3. while not converged:
- 4. **for** each **x**:

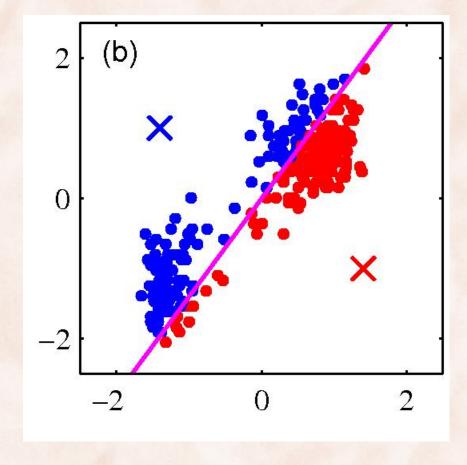
5. $\operatorname{set} \mathbf{m}^{(t)}(\mathbf{x}) \leftarrow \arg\min_{\mathbf{m}^{(t)}_{i}} \left\| \mathbf{x} - \mathbf{m}^{(t)}_{i} \right\| \leftarrow [\mathbf{E}] \operatorname{step}$ 6. $\operatorname{set} C^{(t+1)}_{i} \leftarrow \left\{ \mathbf{x} \mid \mathbf{m}^{(t)}(\mathbf{x}) = \mathbf{m}^{(t)}_{i} \right\}$ 7. $\operatorname{set} \mathbf{m}^{(t+1)}_{i} \leftarrow \frac{1}{|C^{(t+1)}_{i}|} \sum_{\mathbf{x} \in C^{(t+1)}_{i}} \mathbf{x} \leftarrow [\mathbf{M}] \operatorname{step}$

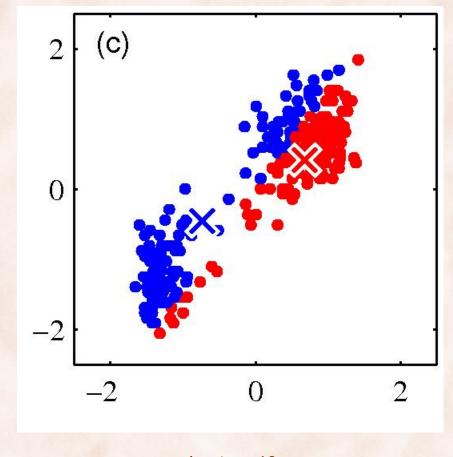
8. set $t \leftarrow t+1$

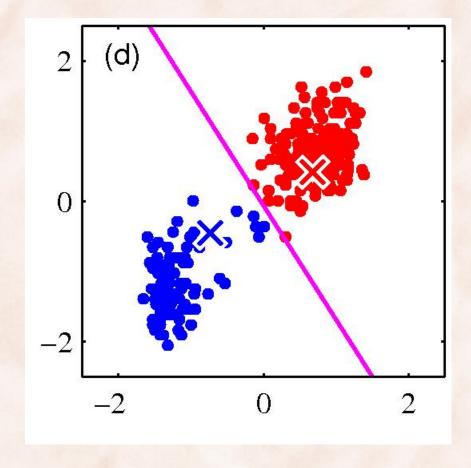


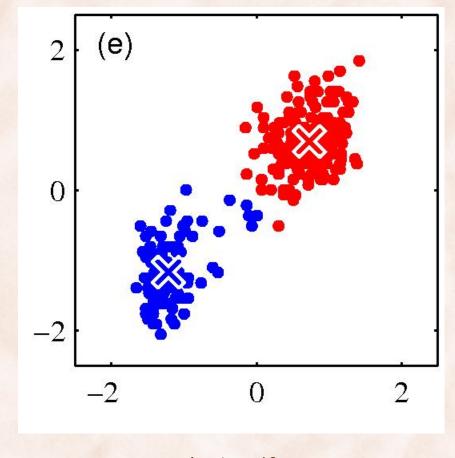
Pick seeds Reassign clusters Compute centroids Reassign clusters Compute centroids Reassign clusters **Converged!**

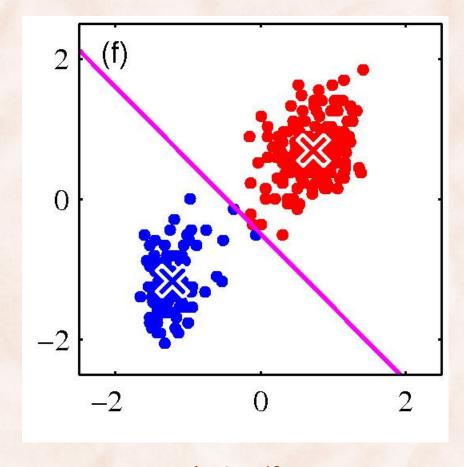


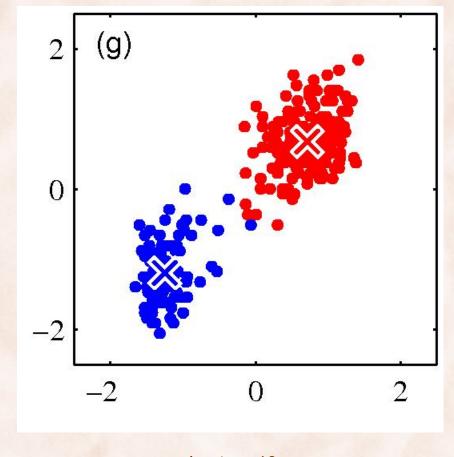


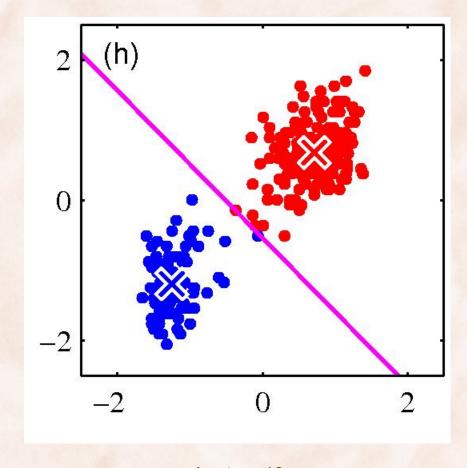


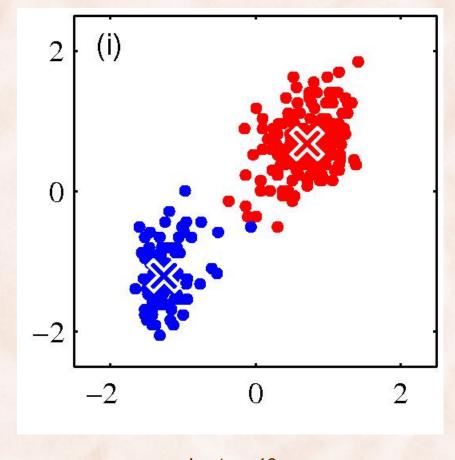












The k-Means Algorithm

• The objective function monotonically decreases at every iteration: $J^{(t)} \ge J^{(t+1)}$

[E] step J 500 [M] step (M] step Lecture 10

The k-Means Algorithm

- Optimization problem is NP-hard:
 - Results depend on seed selection.
 - Improve performance by providing *must-link* and/or *cannot-link* constraints ⇒ semi-supervised clustering.
- Time complexity for each iteration is O(*knm*):
 - number of clusters is k.
 - feature vectors have dimensionality *m*.
 - total number of instances is *n*.

Soft Clustering

- **Clustering** typically assumes that each instance is given a "hard" assignment to exactly one cluster.
- Does not allow uncertainty in class membership or for an instance to belong to more than one cluster.
- **Soft clustering** gives probabilities that an instance belongs to each of a set of clusters.
- Each instance is assigned a probability distribution across a set of discovered categories.

Soft Clustering with EM

- Soft version of *k*-means.
- Assumes a probabilistic model of categories that allows computing P(c_i | x) for each category, c_i, for a given example x.
 - For text, typically assume a naïve-Bayes category model.
 - Parameters $\theta = \{ P(c_i), P(w_j | c_i) | i \in \{1, ..., k\}, j \in \{1, ..., |V|\} \}$

Soft Clustering with EM

- Iterative method for learning probabilistic categorization model from unsupervised data.
- Initially assume random assignment of examples to categories.
- Learn an initial probabilistic model by estimating model parameters θ from this randomly labeled data.
- Iterate following two steps until convergence:
 - Expectation (E-step): Compute $P(c_i | \mathbf{x})$ for each example given the current model, and probabilistically re-label the examples based on these posterior probability estimates.
 - Maximization (M-step): Re-estimate the model parameters, θ , from the probabilistically re-labeled data.

Learning with Probabilistic Labels

- Instead of training data labeled with "hard" category labels, training data is labeled with "soft" probabilistic category labels.
- When estimating model parameters θ from training data, weight counts by the corresponding probability of the given category label.
- For example, if $P(c_1 | \mathbf{x}) = 0.8$ and $P(c_2 | \mathbf{x}) = 0.2$, each word w_j in \mathbf{x} contributes only 0.8 towards the counts n_1 and n_{1j} , and 0.2 towards the counts n_2 and n_{2j} .

Naïve Bayes EM

- 1. Randomly assign examples probabilistic category labels.
- 2. Use standard naïve-Bayes training to learn a probabilistic model with parameters θ from the labeled data.
- 3. Until convergence or until maximum number of iterations reached:
 - E-Step: Use the naïve Bayes model θ to compute $P(c_i | \mathbf{x})$ for each category and example, and re-label each example using these probability values as soft category labels.
 - M-Step: Use standard naïve-Bayes training to re-estimate the parameters θ using these new probabilistic category labels.

The k-Means Algorithm

- 1. start with some seed centroids $\mathbf{m}_1^{(0)}, \mathbf{m}_2^{(0)}, \dots, \mathbf{m}_k^{(0)}$
- 2. set $t \leftarrow 0$.
- 3. while not converged:
- 4. **for** each **x**:

5. $\operatorname{set} \mathbf{m}^{(t)}(\mathbf{x}) \leftarrow \arg\min_{\mathbf{m}^{(t)}_{i}} \left\| \mathbf{x} - \mathbf{m}^{(t)}_{i} \right\| \leftarrow [\mathbf{E}] \operatorname{step}$ 6. $\operatorname{set} C^{(t+1)}_{i} \leftarrow \left\{ \mathbf{x} \mid \mathbf{m}^{(t)}(\mathbf{x}) = \mathbf{m}^{(t)}_{i} \right\}$ 7. $\operatorname{set} \mathbf{m}^{(t+1)}_{i} \leftarrow \frac{1}{|C^{(t+1)}_{i}|} \sum_{\mathbf{x} \in C^{(t+1)}_{i}} \mathbf{x} \leftarrow [\mathbf{M}] \operatorname{step}$

8. set $t \leftarrow t+1$

The k-Medoids Algorithm

- 1. start with some random seed centroids $\mathbf{m}_1^{(0)}, \mathbf{m}_2^{(0)}, \dots, \mathbf{m}_k^{(0)}$
- 2. set $t \leftarrow 0$.
- 3. while not converged:
- 4. **for** each **x**:

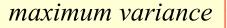
5. **set** $\mathbf{m}^{(t)}(\mathbf{x}) \leftarrow \arg\min_{\mathbf{m}_{i}^{(t)}} d(\mathbf{x} - \mathbf{m}_{i}^{(t)}) \leftarrow [\mathbf{E}] \text{ step}$ 6. **set** $C_{i}^{(t+1)} \leftarrow \{\mathbf{x} \mid \mathbf{m}^{(t)}(\mathbf{x}) = \mathbf{m}_{i}^{(t)}\}$ 7. **set** $\mathbf{m}_{i}^{(t+1)} \leftarrow \arg\min_{\mathbf{x} \in C_{i}^{(t+1)}} \sum_{\mathbf{y} \in C_{i}^{(t+1)}} d(\mathbf{x}, \mathbf{y}) \leftarrow [\mathbf{M}] \text{ step}$

8. set $t \leftarrow t+1$

Principal Component Analysis (PCA)

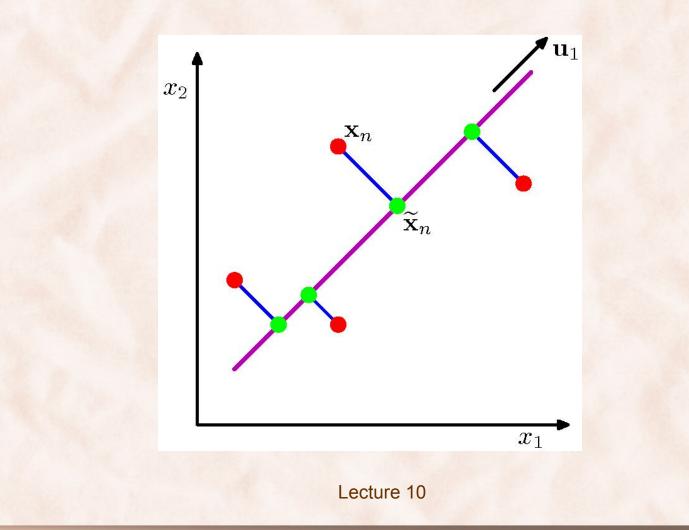
• A technique widely used for:

- dimensionality reduction.
- data compression.
- feature extraction.
- data visualization.



- Two equivalent definitions of PCA:
 - 1) Project the data onto a lower dimensional space such that the variance of the projected data is *maximized*.
 - Project the data onto a lower dimensional space such that the mean squared distance between data points and their projections (average projection cost) is *minimized*.

Principal Component Analysis (PCA)



PCA (Maximum Variance)

- Let $X = {\mathbf{x}_n}_{1 \le n \le N}$ be a set of observations:
 - Each $\mathbf{x}_n \in \mathbb{R}^D$ (*D* is the dimensionality of \mathbf{x}_n).
- Project X onto an M dimensional space (M < D) such that the variance of the projected X is maximized.
- Work out solution for M = 1, then generalize to any M < D.

• The lower dimensional space is defined by a vector $\mathbf{u}_1 \in \mathbb{R}^D$.

- Show that only direction is important \Rightarrow choose $||\mathbf{u}_1||=1$.

- Each \mathbf{x}_n is projected onto a scalar $\mathbf{u}_1^T \mathbf{x}_n$
- The (sample) mean of the data is:

$$\overline{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n$$

• The (sample) mean of the projected data is $\mathbf{u}_1^T \overline{\mathbf{x}}$

• The (sample) variance of the projected data:

$$\frac{1}{N}\sum_{n=1}^{N} \left(\mathbf{u}_{1}^{T}\mathbf{x}_{n} - \mathbf{u}_{1}^{T}\overline{\mathbf{x}} \right)^{2} = \mathbf{u}_{1}^{T}\mathbf{S}\mathbf{u}_{1}$$

where S is the data covariance matrix:

$$\mathbf{S} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \overline{\mathbf{x}}) (\mathbf{x}_n - \overline{\mathbf{x}})^T$$

• Optimization problem is:

minimize:

$$\mathbf{u}_1^T \mathbf{S} \mathbf{u}_1$$

subject to:
 $\mathbf{u}_1^T \mathbf{u}_1 = 1$

Lagrangian function:

 $L_P(\mathbf{u}_1, \lambda_1) = \mathbf{u}_1^T \mathbf{S} \mathbf{u}_1 + \lambda_1 (1 - \mathbf{u}_1^T \mathbf{u}_1)$

where λ_1 is the Lagrangian multiplier for constraint $\mathbf{u}_1^T \mathbf{u}_1 = 1$

• Solve:

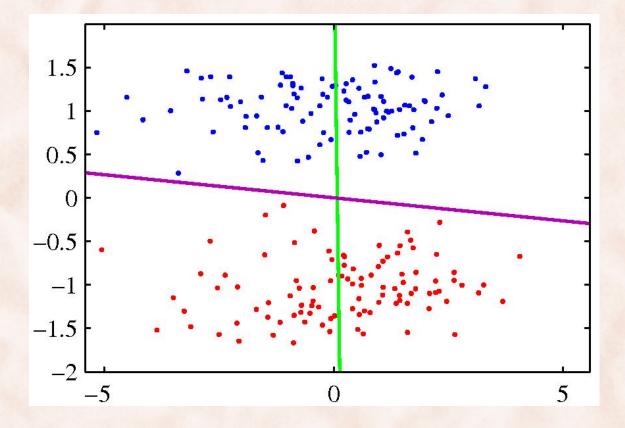
 $\frac{\partial L_p}{\partial \mathbf{u}_1} = 0 \Rightarrow \mathbf{S}\mathbf{u}_1 = \lambda_1 \mathbf{u}_1 \Rightarrow \begin{cases} \mathbf{u}_1 \text{ is an eigenvector of } \mathbf{S} \\ \lambda_1 \text{ is an eigenvalue of } \mathbf{S} \end{cases}$ $\Rightarrow \mathbf{u}_1^T \mathbf{S}\mathbf{u}_1 = \lambda_1 \mathbf{u}_1^T \mathbf{u}_1 = \lambda_1$ $\Rightarrow \lambda_1 \text{ is the largest eigenvalue of } \mathbf{S}.$ Lecture 10

- λ_1 is the largest eigenvalue of S.
- \mathbf{u}_1 is the eigenvector corresponding to λ_1 :
 - also called the *first principal component*.
- For M < D dimensions:
 - $\mathbf{u}_1 \, \mathbf{u}_2 \, \dots \, \mathbf{u}_M$ are the eigenvectors corresponding to the largest eigenvalues $\lambda_1 \, \lambda_2 \, \dots \, \lambda_M$ of S.
 - proof by induction.

Principal Component Analysis vs. Fisher Linear Discriminant

- Both methods can be used for linear dimensionality reduction.
- PCA is unsupervised:
 - it depends only on the values \mathbf{x}_n .
- Fisher linear discriminant is supervised:
 - it depends on both the observations and the labels (\mathbf{x}_n, t_n) .

Principal Component Analysis vs. Fisher Linear Discriminant



PCA for High-Dimensional Data

- If N < D, it does not make sense to use PCA for M > N-1:
 - The set of N points define a linear subspace with dimensionality at most N-1.
 - PCA will find at least D-N+1 eigenvalues that are 0.
 - Typical algorithms for finding eigenvalues are $O(D^3)$.
- Solution:
 - Let X by the N×D matrix with nth row given by $(\mathbf{x}_n \overline{\mathbf{x}})^T$
 - Then the sample covariance matrix S can be written as:

$$\mathbf{S} = \frac{1}{N} \mathbf{X}^T \mathbf{X}$$

PCA for High-Dimensional Data

$$\mathbf{S}\mathbf{u}_{i} = \lambda_{i}\mathbf{u}_{i} \Longrightarrow \frac{1}{N}\mathbf{X}^{T}\mathbf{X}\mathbf{u}_{i} = \lambda_{i}\mathbf{u}_{i}$$
$$\Longrightarrow \frac{1}{N}\mathbf{X}\mathbf{X}^{T}(\mathbf{X}\mathbf{u}_{i}) = \lambda_{i}(\mathbf{X}\mathbf{u}_{i})$$

Define
$$\mathbf{v}_i = \mathbf{X}\mathbf{u}_i$$

$$\Rightarrow \left(\frac{1}{N}\mathbf{X}\mathbf{X}^{T}\right)\mathbf{v}_{i} = \lambda_{i}\mathbf{v}_{i}$$

an N×N matrix $\Rightarrow O(N^3)$ instead of $O(D^3)$ cost.

• Same eigenvalues as original problem, but what are the original, principal eigenvectors?

PCA for High-Dimensional Data

$$\left(\frac{1}{N}\mathbf{X}\mathbf{X}^{T}\right)\mathbf{v}_{i} = \lambda_{i}\mathbf{v}_{i} \Longrightarrow \left(\frac{1}{N}\mathbf{X}^{T}\mathbf{X}\right)\left(\mathbf{X}^{T}\mathbf{v}_{i}\right) = \lambda_{i}\left(\mathbf{X}^{T}\mathbf{v}_{i}\right)$$

 $\Rightarrow \mathbf{X}^{\mathrm{T}}\mathbf{v}_{i}$ is an eigenvector of **S** with eigenvalue λ_{i} .

$$\Rightarrow \mathbf{u}_i = \frac{\mathbf{X}^T \mathbf{v}_i}{\left\| \mathbf{X}^T \mathbf{v}_i \right\|}$$

- Summary of solution:
 - 1. evaluate $\mathbf{X}^{\mathrm{T}}\mathbf{X}$.
 - 2. find its eigenvectors and eigenvalues.
 - 3. compute the eigenvectors in the original dataspace.

PCA, Fisher & Kernels

- Minimum error formulation leads to the same solution [12.1.2].
 - shows how PCA can be used for compression.
- Kernel PCA [12.3].
- Kernel Fisher linear discriminant [Mika et al., 1999]