
Machine Learning
CS 6830

Razvan C. Bunescu

School of Electrical Engineering and Computer Science

bunescu@ohio.edu

Lecture 10

Unsupervised Learning: Clustering

•  Partition unlabeled examples into disjoint clusters such that:
–  Examples in the same cluster are very similar.
–  Examples in different clusters are very different.

2
Lecture 10

Unsupervised Learning: Clustering

•  Partition unlabeled examples into disjoint clusters such that:
–  Examples in the same cluster are very similar.
–  Examples in different clusters are very different.

3
Lecture 10

Hierarchical Agglomerative Clustering (HAC)

•  Start out with n clusters, one example per cluster.
•  At each step merge the nearest two clusters.
•  Stop when there is only one cluster left, or:

–  there are only k clusters left.
–  distance is above a threshold τ.

•  History of clustering decision can be represented as a
binary tree.

4
Lecture 10

The HAC Algorithm

1.  let Ci = {xi}, for i∈1…n

2.  let C = {Ci}, for i∈1…n

3.  while |C| > 1:

4.  set

5.  replace Ci , Cj in C with Ci ∪ Cj

Q: How do we compute the distance d between two clusters?

5
Lecture 10

),(minarg, lkCCji CCdCC
lk ≠

=〉〈

Distance Measures

•  Assume a distance function between any two instances:
–  Euclidean distance ||x-y||

•  Single Link:

•  Complete Link:

•  Group Average:

•  Centroid Distance:

6
Lecture 10

yx
yx

−=
∈∈ ji CCji CCd
,
min),(

yx
yx

−=
∈∈ ji CCji CCd
,
max),(

∑
∈∈

−
∗

=
ji CCji

ji CC
CCd

yx
yx

,||||
1),(

jiji CCd mm −=),(

Single Link (Nearest Neighbor)

•  Distance function

•  It favors elongated clusters.

•  Equivalent with Kruskal’s MST algorithm.

7
Lecture 10

yx
yx

−=
∈∈ ji CCji CCd
,
min),(

Single Link

8
Lecture 10

Complete Link (Farthest Neighbor)

•  Distance function

•  It favors tight, spherical clusters.

•  d(Ci,Cj) is the diameter of the cluster Ci ∪ Cj.

9
Lecture 10

yx
yx

−=
∈∈ ji CCji CCd
,
max),(

Complete Link

10
Lecture 10

Divisive Clustering with k-Means

•  The goal is to produce k clusters such that instances are
close to the cluster centroids:
–  The cluster centroid is the mean of all instances in the cluster.

•  Optimization problem:

11
Lecture 10

∑∑
= ∈

−=
k

i C
i

i

CJ
1

2||||)(
x

mx

)(minargˆ CJC
C

=

The k-Means Algorithm

1.  start with some seed centroids
2.  set t ← 0.
3.  while not converged:
4.  for each x:
5.  set

6.  set

7.  set

8.  set t ← t + 1

12
Lecture 10

)0()0(
2

)0(
1 ,...,, kmmm

)()(
)(

minarg)(t
i

t
t
i

mxxm
m

−←

{ })()()1()(| t
i

tt
iC mxmx =←+

∑
+∈

+

+ ←
)1(

)1(
)1(1

t
iC

t
i

t
i C x

xm

[E] step

[M] step

The k-Means Algorithm (k = 2)

13
Lecture 10

Pick seeds
Reassign clusters
Compute centroids

x
x

Reasssign clusters

x
x x x Compute centroids

Reassign clusters

Converged!

The k-Means Algorithm (k = 2)

14
Lecture 10

The k-Means Algorithm (k = 2)

15
Lecture 10

The k-Means Algorithm (k = 2)

16
Lecture 10

The k-Means Algorithm (k = 2)

17
Lecture 10

The k-Means Algorithm (k = 2)

18
Lecture 10

The k-Means Algorithm (k = 2)

19
Lecture 10

The k-Means Algorithm (k = 2)

20
Lecture 10

The k-Means Algorithm (k = 2)

21
Lecture 10

The k-Means Algorithm (k = 2)

22
Lecture 10

The k-Means Algorithm

•  The objective function monotonically decreases at every
iteration:

23
Lecture 10

)1()(+≥ tt JJ

[E] step

[M] step

The k-Means Algorithm

•  Optimization problem is NP-hard:
–  Results depend on seed selection.
–  Improve performance by providing must-link and/or cannot-link

constraints ⇒ semi-supervised clustering.

•  Time complexity for each iteration is O(knm):
–  number of clusters is k.
–  feature vectors have dimensionality m.
–  total number of instances is n.

24
Lecture 10

Soft Clustering

•  Clustering typically assumes that each instance is given a
“hard” assignment to exactly one cluster.

•  Does not allow uncertainty in class membership or for an
instance to belong to more than one cluster.

•  Soft clustering gives probabilities that an instance belongs
to each of a set of clusters.

•  Each instance is assigned a probability distribution across a
set of discovered categories.

25
Lecture 10

Soft Clustering with EM

•  Soft version of k-means.
•  Assumes a probabilistic model of categories that allows

computing P(ci | x) for each category, ci, for a given
example x.
–  For text, typically assume a naïve-Bayes category model.

•  Parameters θ = {P(ci), P(wj | ci) | i∈{1,…k}, j ∈{1,…,|V|}}

26
Lecture 10

Soft Clustering with EM

•  Iterative method for learning probabilistic categorization
model from unsupervised data.

•  Initially assume random assignment of examples to
categories.

•  Learn an initial probabilistic model by estimating model
parameters θ from this randomly labeled data.

•  Iterate following two steps until convergence:
–  Expectation (E-step): Compute P(ci | x) for each example given the

current model, and probabilistically re-label the examples based on
these posterior probability estimates.

–  Maximization (M-step): Re-estimate the model parameters, θ,
from the probabilistically re-labeled data.

27
Lecture 10

Learning with Probabilistic Labels

•  Instead of training data labeled with “hard” category
labels, training data is labeled with “soft” probabilistic
category labels.

•  When estimating model parameters θ from training data,
weight counts by the corresponding probability of the
given category label.

•  For example, if P(c1 | x) = 0.8 and P(c2 | x) = 0.2, each
word wj in x contributes only 0.8 towards the counts n1 and
n1j, and 0.2 towards the counts n2 and n2j .

28
Lecture 10

Naïve Bayes EM

29
Lecture 10

1.  Randomly assign examples probabilistic category labels.
2.  Use standard naïve-Bayes training to learn a probabilistic

model with parameters θ from the labeled data.

3.  Until convergence or until maximum number of iterations

reached:
•  E-Step: Use the naïve Bayes model θ to compute P(ci | x) for each

category and example, and re-label each example using these
probability values as soft category labels.

•  M-Step: Use standard naïve-Bayes training to re-estimate the
parameters θ using these new probabilistic category labels.

The k-Means Algorithm

1.  start with some seed centroids
2.  set t ← 0.
3.  while not converged:
4.  for each x:
5.  set

6.  set

7.  set

8.  set t ← t + 1

30
Lecture 10

)0()0(
2

)0(
1 ,...,, kmmm

)()(
)(

minarg)(t
i

t
t
i

mxxm
m

−←

{ })()()1()(| t
i

tt
iC mxmx =←+

∑
+∈

+

+ ←
)1(

)1(
)1(1

t
iC

t
i

t
i C x

xm

[E] step

[M] step

The k-Medoids Algorithm

1.  start with some random seed centroids
2.  set t ← 0.
3.  while not converged:
4.  for each x:
5.  set

6.  set

7.  set

8.  set t ← t + 1

31
Lecture 10

)0()0(
2

)0(
1 ,...,, kmmm

m(t) (x)← argmin
mi
(t)
d x−mi

(t)()
{ })()()1()(| t

i
tt

iC mxmx =←+

mi
(t+1) ← arg min

x∈Ci
(t+1)

d(x, y)
y∈Ci

(t+1)
∑

[E] step

[M] step

Principal Component Analysis (PCA)

•  A technique widely used for:
–  dimensionality reduction.
–  data compression.
–  feature extraction.
–  data visualization.

•  Two equivalent definitions of PCA:
1)  Project the data onto a lower dimensional space such that the

variance of the projected data is maximized.
2)  Project the data onto a lower dimensional space such that the

mean squared distance between data points and their projections
(average projection cost) is minimized.

32
Lecture 10

maximum variance

minimum error

Principal Component Analysis (PCA)

33
Lecture 10

PCA (Maximum Variance)

•  Let X = {xn}1≤n≤N be a set of observations:

–  Each xn∈RD (D is the dimensionality of xn).

•  Project X onto an M dimensional space (M < D) such that
the variance of the projected X is maximized.

•  Work out solution for M = 1, then generalize to any M < D.

34
Lecture 10

PCA (Maximum Variance, M = 1)

•  The lower dimensional space is defined by a vector u1∈RD.

–  Show that only direction is important ⇒ choose ||u1||=1.

•  Each xn is projected onto a scalar

•  The (sample) mean of the data is:

•  The (sample) mean of the projected data is

35
Lecture 10

n
Txu1

∑
=

=
N

n
nN 1

1 xx

xuT1

PCA (Maximum Variance, M = 1)

•  The (sample) variance of the projected data:

 where S is the data covariance matrix:

•  Optimization problem is:

36
Lecture 10

() 11
1

2
11

1 Suuxuxu T
N

n

T
n

T

N
=−∑

=

()()∑
=

−−=
N

n

T
nnN 1

1 xxxxS

11SuuT

111 =uuT

minimize:

subject to:

PCA (Maximum Variance, M = 1)

•  Lagrangian function:

 where λ1 is the Lagrangian multiplier for constraint

•  Solve:

37
Lecture 10

111 =uuT

)1(),(1111111 uuSuuu TT
PL −+= λλ

⇒=⇒=
∂
∂

111
1

0 uSu
u

λPL u1 is an eigenvector of S
λ1 is an eigenvalue of S

111111 λλ ==⇒ uuSuu TT

⇒ λ1 is the largest eigenvalue of S.

PCA (Maximum Variance, M = 1)

•  λ1 is the largest eigenvalue of S.
•  u1 is the eigenvector corresponding to λ1:

–  also called the first principal component.

•  For M < D dimensions:
–  u1 u2 … uM are the eigenvectors corresponding to the largest

eigenvalues λ1 λ2 … λM of S.
–  proof by induction.

38
Lecture 10

Principal Component Analysis vs.
Fisher Linear Discriminant

•  Both methods can be used for linear dimensionality
reduction.

•  PCA is unsupervised:
–  it depends only on the values xn.

•  Fisher linear discriminant is supervised:
–  it depends on both the observations and the labels (xn, tn).

39
Lecture 10

Principal Component Analysis vs.
Fisher Linear Discriminant

40
Lecture 10

PCA for High-Dimensional Data

•  If N < D, it does not make sense to use PCA for M > N-1:
–  The set of N points define a linear subspace with dimensionality at

most N-1.
–  PCA will find at least D-N+1 eigenvalues that are 0.
–  Typical algorithms for finding eigenvalues are O(D3).

•  Solution:
–  Let X by the N×D matrix with nth row given by
–  Then the sample covariance matrix S can be written as:

41
Lecture 10

()Tn xx −

XXS T

N
1

=

PCA for High-Dimensional Data

42
Lecture 10

iii
T

iii N
uXuXuSu λλ =⇒=

1

() ()iii
T

N
XuXuXX λ=⇒

1

ii Xuv = Define

iii
T

N
vvXX λ=⎟

⎠

⎞
⎜
⎝

⎛⇒
1

an N×N matrix ⇒ O(N3) instead of O(D3) cost.

•  Same eigenvalues as original problem, but what are the original,
principal eigenvectors?

PCA for High-Dimensional Data

⇒ XTvi is an eigenvector of S with eigenvalue λi.

•  Summary of solution:
1.  evaluate XTX.
2.  find its eigenvectors and eigenvalues.
3.  compute the eigenvectors in the original dataspace.

43
Lecture 10

() ()iT
ii

TT
iii

T

NN
vXvXXXvvXX λλ =⎟

⎠

⎞
⎜
⎝

⎛⇒=⎟
⎠

⎞
⎜
⎝

⎛ 11

i
T

i
T

i vX
vXu =⇒

PCA, Fisher & Kernels

•  Minimum error formulation leads to the same solution
[12.1.2].
–  shows how PCA can be used for compression.

•  Kernel PCA [12.3].

•  Kernel Fisher linear discriminant [Mika et al., 1999]

44
Lecture 10

