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Unsupervised Learning: Clustering 

•  Partition unlabeled examples into disjoint clusters such that: 
–  Examples in the same cluster are very similar. 
–  Examples in different clusters are very different. 
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Hierarchical Agglomerative Clustering (HAC) 

•  Start out with n clusters, one example per cluster. 
•  At each step merge the nearest two clusters. 
•  Stop when there is only one cluster left, or: 

–  there are only k clusters left. 
–  distance is above a threshold τ. 

•  History of clustering decision can be represented as a 
binary tree.  
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The HAC Algorithm 

1.   let Ci = {xi}, for i∈1…n 

2.   let C = {Ci}, for i∈1…n 

3.   while |C| > 1: 

4.    set   

5.    replace Ci , Cj in C with Ci ∪ Cj  
 
Q: How do we compute the distance d between two clusters? 
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Distance Measures 

•  Assume a distance function between any two instances: 
–  Euclidean distance ||x-y|| 

•  Single Link: 

•  Complete Link: 

•  Group Average: 

•  Centroid Distance: 
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Single Link (Nearest Neighbor) 

•  Distance function 
 

•  It favors elongated clusters. 

•  Equivalent with Kruskal’s MST algorithm. 

7 
Lecture 10 

yx
yx

−=
∈∈ ji CCji CCd
,
min),(



Single Link 
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Complete Link (Farthest Neighbor) 

•  Distance function 
 

•  It favors tight, spherical clusters. 

•  d(Ci,Cj) is the diameter of the cluster Ci ∪ Cj. 
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Complete Link 
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Divisive Clustering with k-Means 

•  The goal is to produce k clusters such that instances are 
close to the cluster centroids: 
–  The cluster centroid is the mean of all instances in the cluster. 

•  Optimization problem: 
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The k-Means Algorithm 

1.   start with some seed centroids 
2.   set t ← 0. 
3.   while not converged: 
4.    for each x:  
5.          set 

6.    set 

7.    set 

8.    set t ← t + 1  
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The k-Means Algorithm (k = 2) 
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Pick seeds 
Reassign clusters 
Compute centroids 
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Converged! 



The k-Means Algorithm (k = 2) 
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The k-Means Algorithm (k = 2) 
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The k-Means Algorithm (k = 2) 
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The k-Means Algorithm (k = 2) 
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The k-Means Algorithm (k = 2) 
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The k-Means Algorithm (k = 2) 
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The k-Means Algorithm (k = 2) 
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The k-Means Algorithm 

•  The objective function monotonically decreases at every 
iteration: 
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The k-Means Algorithm 

•  Optimization problem is NP-hard: 
–  Results depend on seed selection. 
–  Improve performance by providing  must-link and/or cannot-link 

constraints ⇒ semi-supervised clustering. 

•  Time complexity for each iteration is O(knm): 
–  number of clusters is k. 
–  feature vectors have dimensionality m. 
–  total number of instances is n. 
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Soft Clustering 

•  Clustering typically assumes that each instance is given a 
“hard” assignment to exactly one cluster. 

•  Does not allow uncertainty in class membership or for an 
instance to belong to more than one cluster. 

•  Soft clustering gives probabilities that an instance belongs 
to each of a set of clusters. 

•  Each instance is assigned a probability distribution across a 
set of discovered categories. 
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Soft Clustering with EM 

•  Soft version of k-means. 
•  Assumes a probabilistic model of categories that allows 

computing P(ci | x) for each category, ci, for a given 
example x. 
–  For text, typically assume a naïve-Bayes category model. 

•  Parameters θ = {P(ci), P(wj | ci) | i∈{1,…k}, j ∈{1,…,|V|}} 
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Soft Clustering with EM 

•  Iterative method for learning probabilistic categorization 
model from unsupervised data. 

•  Initially assume random assignment of examples to 
categories. 

•  Learn an initial probabilistic model by estimating model 
parameters θ from this randomly labeled data. 

•  Iterate following two steps until convergence: 
–  Expectation (E-step): Compute P(ci | x) for each example given the 

current model, and probabilistically re-label the examples based on 
these posterior probability estimates. 

–  Maximization (M-step): Re-estimate the model parameters, θ, 
from the probabilistically re-labeled data. 
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Learning with Probabilistic Labels 

•  Instead of training data labeled with “hard” category 
labels, training data is labeled with “soft” probabilistic 
category labels. 

•  When estimating model parameters θ from training data, 
weight counts by the corresponding probability of the 
given category label. 

•  For example, if P(c1 | x) = 0.8 and P(c2 | x) = 0.2, each 
word wj in x contributes only 0.8 towards the counts n1 and 
n1j, and 0.2 towards the counts n2 and n2j . 
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Naïve Bayes EM 
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1.  Randomly assign examples probabilistic category labels. 
2.  Use standard naïve-Bayes training to learn a probabilistic 

model with parameters θ from the labeled data. 

3.  Until convergence or until maximum number of iterations 

reached: 
•  E-Step: Use the naïve Bayes model θ to compute P(ci | x) for each 

category and example, and re-label each example using these 
probability values as soft category labels. 

•  M-Step: Use standard naïve-Bayes training to re-estimate the 
parameters θ using these new probabilistic category labels. 

 



The k-Means Algorithm 

1.   start with some seed centroids 
2.   set t ← 0. 
3.   while not converged: 
4.    for each x:  
5.          set 

6.    set 

7.    set 

8.    set t ← t + 1  
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The k-Medoids Algorithm 

1.   start with some random seed centroids 
2.   set t ← 0. 
3.   while not converged: 
4.    for each x:  
5.          set 

6.    set 

7.    set 

8.    set t ← t + 1  
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Principal Component Analysis (PCA) 

•  A technique widely used for: 
–  dimensionality reduction. 
–  data compression. 
–  feature extraction. 
–  data visualization. 

•  Two equivalent definitions of PCA: 
1)  Project the data onto a lower dimensional space such that the 

variance of the projected data is maximized. 
2)  Project the data onto a lower dimensional space such that the 

mean squared distance between data points and their projections 
(average projection cost) is minimized. 
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Principal Component Analysis (PCA) 
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PCA (Maximum Variance) 

•  Let X = {xn}1≤n≤N be a set of observations: 

–  Each xn∈RD (D is the dimensionality of xn). 

•  Project X onto an M dimensional space (M < D) such that 
the variance of the projected X is maximized. 

•  Work out solution for M = 1, then generalize to any M < D. 
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PCA (Maximum Variance, M = 1) 

•  The lower dimensional space is defined by a vector u1∈RD. 

–  Show that only direction is important ⇒ choose  ||u1||=1. 

•  Each xn is projected onto a scalar 

•  The (sample) mean of the data is: 

•  The (sample) mean of the projected data is 
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PCA (Maximum Variance, M = 1) 

•  The (sample) variance of the projected data: 

 

    where S is the data covariance matrix: 
 
 

•  Optimization problem is: 
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PCA (Maximum Variance, M = 1) 

•  Lagrangian function: 

 where λ1  is the Lagrangian multiplier for constraint 

•  Solve: 
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PCA (Maximum Variance, M = 1) 

•  λ1 is the largest eigenvalue of S. 
•  u1 is the eigenvector corresponding to λ1: 

–  also called the first principal component. 

•  For M < D dimensions: 
–  u1 u2 … uM  are the eigenvectors corresponding to the largest 

eigenvalues λ1 λ2 … λM  of S. 
–  proof by induction. 

38 
Lecture 10 



Principal Component Analysis vs.  
Fisher Linear Discriminant 

•  Both methods can be used for linear dimensionality 
reduction. 

•  PCA is unsupervised: 
–  it depends only on the values xn.  

•  Fisher linear discriminant is supervised: 
–  it depends on both the observations and the labels (xn, tn). 
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Principal Component Analysis vs.  
Fisher Linear Discriminant 
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PCA for High-Dimensional Data 

•  If N < D, it does not make sense to use PCA for M > N-1: 
–  The set of N points define a linear subspace with dimensionality at 

most N-1. 
–  PCA will find at least D-N+1 eigenvalues that are 0. 
–  Typical algorithms for finding eigenvalues are O(D3). 

•  Solution: 
–  Let X by the N×D matrix with nth row given by 
–  Then the sample covariance matrix S can be written as: 
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PCA for High-Dimensional Data 
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an N×N matrix ⇒ O(N3) instead of O(D3) cost. 

•   Same eigenvalues as original problem, but what are the original, 
principal eigenvectors?  



PCA for High-Dimensional Data 

 
⇒ XTvi is an eigenvector of S with eigenvalue λi. 

•  Summary of solution: 
1.  evaluate XTX. 
2.  find its eigenvectors and eigenvalues. 
3.  compute the eigenvectors in the original dataspace. 
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PCA, Fisher & Kernels 

•  Minimum error formulation leads to the same solution 
[12.1.2]. 
–  shows how PCA can be used for compression. 

•  Kernel PCA [12.3]. 

•  Kernel Fisher linear discriminant [Mika et al., 1999] 
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