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1 Notation

We will denote the set of real numbers by R. In general, lower case Greek letters such as α and β
will be used to denote real numbers. The set of complex numbers will be denoted by C. The set
of all d-dimensional real vectors will be denoted Rd and the set of all m × n real matrices will be
denoted Rm×n. Vectors in Rd will be column vectors, e.g.,

x =


x1

x2
...
xd

 , x ∈ Rd.

The corresponding row vector xT is written

xT =
[
x1 x2 · · · xd

]
.

2 Vector Norms

A vector is described by its “size” and its “direction”. The norm of a vector x, written ‖x‖, is
a way to measure the size of a vector. Every norm must satisfy three properties for all vectors x
and y:

1. ‖x‖ ≥ 0, and ‖x‖ = 0 iff x = 0;

2. ‖αx‖ = |α| · ‖x‖;

3. ‖x + y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality).

‖x‖2 denotes the 2-norm or the Euclidean norm of a vector x ∈ Rd and is equal to
√∑d

i=1 |xi|2.

Examples of other norms include the L1 norm, where ‖x‖1 =
∑d

i=1 |xi| and the L∞ norm, where

‖x‖∞ = max1≤i≤d |xi|. In general, the Lp norm is defined as p

√∑d
i=1 |xi|p. In the rest of this

discussion, we will write ‖x‖ to denote ‖x‖2.
For x,y ∈ Rd, their usual inner product or dot product is

∑d
i=1 xiyi and is written 〈x,y〉 or

xT y. An important property of the inner product is that it satisfies the Cauchy-Schwarz Inequality,

|xT y| ≤
√

xT x ·
√

yT y = ‖x‖‖y‖, for all x,y ∈ Rd.
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We get a strict equality only if x and y are in the same “direction”, that is, y = αx. For the
general case, let θ be the angle between x and y. Then

cos θ =
xT y
‖x‖‖y‖

,

so xT y = ‖x‖‖y‖ cos θ.

For non-zero x and y, when xT y = 0, x and y are said to be orthogonal.

3 Linear Independence

A set of n non-zero vectors y1,y2, . . . ,yn are linearly independent if
∑d

i=1 αi · yi = 0 implies that
α1 = α2 = . . . = αn = 0. The span of a set of vectors y1,y2, . . . ,yn is {

∑d
i=1 αiyi | αi ∈ R}, i.e.,

the set of all linear combinations of y1,y2, . . . ,yn, and is denoted span(y1,y2, . . . ,yn). A basis
of such a linear subspace is a maximal set of linearly independent vectors in the subspace. The
dimension of a given linear subspace is the number of vectors in its basis.

4 Matrices, Eigenvalues and Eigenvectors

An m× n matrix is an array of numbers; it can also be viewed as a linear transformation from Rn

to Rm. In particular, a matrix A in Rm×n maps any n-dimensional vector x to an m-dimensional
vector Ax. Matrix A is symmetric if A = AT . We will write the determinant of A as det(A). A
matrix is said to be singular if it has no inverse; a matrix A is singular if and only if det(A) = 0.
Also, just as we measured the “size” of a vector using a norm, we can also measure the “size” of a
matrix using a matrix norm. A matrix norm measures how much a matrix can “magnify” a vector.
One common matrix norm is the matrix 2-norm, where

‖A‖2 = max
x 6=0

‖Ax‖2
‖x‖2

.

As with vectors, we can generalize this to a matrix p-norm by replacing the vector 2-norms with
vector p-norms. The 2-norm of a matrix turns out to be equal to the maximum singular value of
A (see Section 5). For example, the identity matrix I has a 2-norm of 1 (since for all x, Ix = x).

A number λ is an eigenvalue and a vector q (q 6= 0) is the corresponding eigenvector of an
n× n matrix A if Aq = λq. By observing that (A− λI)q = 0, we know that (A− λI) is singular.
Thus det(A − λI) = 0. Since the determinant is a polynomial of degree n, we know that it has n
roots in C. These n roots are the eigenvalues λ1, λ2, . . . , λn of A. Without loss of generality, we
will order the eigenvalues such that |λ1| ≥ |λ2| ≥ · · · ≥ |λn|. The eigenvector qi corresponding to
the eigenvalue λi satisfies Aqi = λiqi. The dominant eigenvector of a matrix is the eigenvector
corresponding to the largest eigenvalue.

If A is real and symmetric, then it can be shown that all of its eigenvalues are real and that
every pair of eigenvectors is orthogonal if the corresponding eigenvalues are distinct. To see why
eigenvectors qi and qj (i 6= j) are orthogonal, consider 0 = qT

i (Aqj) − (qT
i A)qj = λjqT

i qj −
λiqT

i qj = (λj − λi)qT
i qj . If λi and λj are distinct, then qi and qj must be orthogonal. Even when

eigenvalues are equal, the eigenvectors of a real, symmetric matrix may be chosen to be orthogonal.
Further, if A is positive definite, then all eigenvalues are positive.
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Let Q be the matrix [q1,q2, . . . ,qn], and let Λ be the diagonal matrix of eigenvalues:
λ1

λ2

. . .
λn

 .
Then, by the definition of eigenvectors we know that AQ = QΛ. Now, since all of the eigenvectors
can be chosen to be orthogonal, we know that QT Q = QQT = I, so we can write A = QΛQT .
This is called the eigenvalue decomposition of A. An equivalent way to write the eigenvalue de-
composition of A is

∑n
i=1 λiqiqT

i .
From the eigenvalue decomposition we can see that Ak = QΛkQT , so the eigenvalues of Ak are

λk
1, λ

k
2, . . . , λ

k
n, and the eigenvectors are still q1,q2, . . . ,qn (see Theorem 3 in section 6). Suppose

that the first eigenvalue has greatest magnitude, i.e., |λ1| > λ2 ≥ · · · ≥ |λn|. Then as k approaches
infinity, then Akx/‖Akx‖ converges to q1 as long as qT

1 x is non-zero.

5 Singular Value Decomposition

Unlike the eigenvalue decomposition which exists only for square matrices, the singular value decom-
position(SVD) exists for all matrices — it is a more fundamental decomposition. Let
A ∈ Rm×n, m ≥ n, be a matrix. The singular value decomposition of A is the factorization
A = UΣVT , where U ∈ Rm×n,V ∈ Rn×n and UT U = VT V = In, and Σ is a diagonal matrix,
diag(σ1, . . . , σn) with σi ≥ 0, 1 ≤ i ≤ n, and σ1 ≥ σ2 ≥ · · · ≥ σn. The columns of U and V are
referred to as the left and right singular vectors, respectively, and the singular values of A are the
diagonal elements of Σ.

Using the singular value decomposition of A, we have AAT = UΣVT VΣT UT = UΣIΣUT =
UΣ2UT . Thus, the columns of U are the eigenvectors of AAT . Similarly, AT A = VΣ2VT .
Therefore, the columns of V are the eigenvectors of AT A. The singular values of A are the
non-negative square roots of the eigenvalues of AAT or AT A.

Let ui ∈ Rm and vi ∈ Rn, 1 ≤ i ≤ n, denote the i-th columns of U and V, respectively. Then,

A =
[

u1 u2 · · · un

] 
σ1 0 · · · 0
0 σ2 · · · 0
. . . . . . . . . . . . . . .

0 0 · · · σn




vT
1

vT
2
...

vT
n



=
[

u1 u2 · · · un

]

σ1vT

1

σ2vT
2

...
σnvT

n


= σ1u1vT

1 + σ2u2vT
2 + · · · + σnunvT

n

Let Ak = σ1u1vT
1 + σ2u2vT

2 + · · · + σkukvT
k , k ≤ n, be the k-truncated SVD. Observe that

Ak is a matrix of rank k. Among all matrices of rank k, Ak serves as the “best” approximation
to A in the following sense. The 2-norm of the approximation error ‖A−Ak‖2 ≤ ‖A−Mk‖2, for
any matrix Mk of rank k. This is a classical result in linear algebra, for a proof see Theorem 2.5.3
on page 72 of [GL96].
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6 Further Properties

Both the matrices AAT and AT A are symmetric and positive semi-definite, that is, all eigenvalues
are non-negative.

Theorem 1 Let A ∈ Rm×n. Then AAT and AT A have identical non-zero eigenvalues. Further, if
q is an eigenvector of AAT then AT q is an eigenvector of AT A.

Proof: Let λ be a non-zero eigenvalue of AAT and q be the eigenvector corresponding to λ.
Then (AAT ) q = λ q. Premultiplying both sides by AT , we have AT (AAT ) q = (AT A) · (AT q) =
λ · (AT q). Therefore λ is an eigenvalue of AT A with AT q as the corresponding eigenvector.

Theorem 2 Let A ∈ Rm×n. Then AAT is a positive semi-definite matrix.

Proof: Let λ be an eigenvalue of AAT and q be the eigenvector corresponding to λ. Then
(AAT ) q = λ q. Premultiplying both sides by qT , we have qT AAT q = λ qT q which implies that

λ = qT AAT q
qT q

= zT z
qT q

, where z = AT q. Observe that qT q > 0 and zT z ≥ 0. Therefore λ ≥ 0

implying that all eigenvalues of AAT are non-negative.

We now prove that the eigenvalues of (AAT )k, k ≥ 1, are related to the eigenvalues of AAT .
In particular, if λ is an eigenvalue of AAT then λk is an eigenvalue of (AAT )k. Moreover, AAT

and (AAT )k have identical eigenvectors.

Theorem 3 Let A ∈ Rm×n. Further, let q an eigenvector of AAT corresponding to the eigenvalue
λ. Then the matrix (AAT )k has λk as an eigenvalue with q being the corresponding eigenvector.

Proof: We know that (AAT ) q = λ q. Premultiplying both sides by AAT , we have (AAT )2 q =
λ (AAT ) q = λ (λ q) = λ2 q. Thus, by mathematical induction, (AAT )k q = λk q, k ≥ 1.

Let λi and qi, 0 < i ≤ n, be the eigenvalues and the corresponding eigenvectors, respectively,
of AAT . Without loss of generality, assume that λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. We can write

(AAT )k h0 = λk
1q1qT

1 h0 + λk
2q2qT

2 h0 + · · ·+ λk
nqnqT

nh0,

so hk =
(AAT )k h0

‖(AAT )k h0‖
→ q1 as k →∞,

if qT
1 h0 6= 0 and λ1 > λ2.

NOTE: Video lectures(Realvideo) from an MIT course on linear algebra are available at
http://web.mit.edu/18.06/www/Video/video-fall-99.html. Gil Strang is also the author of some ex-
cellent undergraduate textbooks on linear algebra and applied mathematics.
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