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A Tutorial on Support Vector Machines for PatternRecognitionCHRISTOPHER J.C. BURGES burges@lucent.comBell Laboratories, Lucent TechnologiesEditor: Usama FayyadAbstract. The tutorial starts with an overview of the concepts of VC dimension and structural riskminimization. We then describe linear Support Vector Machines (SVMs) for separable and non-separabledata, working through a non-trivial example in detail. We describe a mechanical analogy, and discusswhen SVM solutions are unique and when they are global. We describe how support vector training canbe practically implemented, and discuss in detail the kernel mapping technique which is used to constructSVM solutions which are nonlinear in the data. We show how Support Vector machines can have very large(even in�nite) VC dimension by computing the VC dimension for homogeneous polynomial and Gaussianradial basis function kernels. While very high VC dimension would normally bode ill for generalizationperformance, and while at present there exists no theory which shows that good generalization performanceis guaranteed for SVMs, there are several arguments which support the observed high accuracy of SVMs,which we review. Results of some experiments which were inspired by these arguments are also presented.We give numerous examples and proofs of most of the key theorems. There is new material, and I hope thatthe reader will �nd that even old material is cast in a fresh light.Keywords: Support Vector Machines, Statistical Learning Theory, VC Dimension, Pattern Recognition1. IntroductionThe purpose of this paper is to provide an introductory yet extensive tutorial on the basicideas behind Support Vector Machines (SVMs). The books (Vapnik, 1995; Vapnik, 1998)contain excellent descriptions of SVMs, but they leave room for an account whose purposefrom the start is to teach. Although the subject can be said to have started in the lateseventies (Vapnik, 1979), it is only now receiving increasing attention, and so the timeappears suitable for an introductory review. The tutorial dwells entirely on the patternrecognition problem. Many of the ideas there carry directly over to the cases of regressionestimation and linear operator inversion, but space constraints precluded the exploration ofthese topics here.The tutorial contains some new material. All of the proofs are my own versions, whereI have placed a strong emphasis on their being both clear and self-contained, to make thematerial as accessible as possible. This was done at the expense of some elegance andgenerality: however generality is usually easily added once the basic ideas are clear. Thelonger proofs are collected in the Appendix.By way of motivation, and to alert the reader to some of the literature, we summarizesome recent applications and extensions of support vector machines. For the pattern recog-nition case, SVMs have been used for isolated handwritten digit recognition (Cortes andVapnik, 1995; Sch�olkopf, Burges and Vapnik, 1995; Sch�olkopf, Burges and Vapnik, 1996;Burges and Sch�olkopf, 1997), object recognition (Blanz et al., 1996), speaker identi�cation(Schmidt, 1996), charmed quark detection1, face detection in images (Osuna, Freund andGirosi, 1997a), and text categorization (Joachims, 1997). For the regression estimationcase, SVMs have been compared on benchmark time series prediction tests (M�uller et al.,1997; Mukherjee, Osuna and Girosi, 1997), the Boston housing problem (Drucker et al.,1997), and (on arti�cial data) on the PET operator inversion problem (Vapnik, Golowich



2and Smola, 1996). In most of these cases, SVM generalization performance (i.e. error rateson test sets) either matches or is signi�cantly better than that of competing methods. Theuse of SVMs for density estimation (Weston et al., 1997) and ANOVA decomposition (Stit-son et al., 1997) has also been studied. Regarding extensions, the basic SVMs contain noprior knowledge of the problem (for example, a large class of SVMs for the image recogni-tion problem would give the same results if the pixels were �rst permuted randomly (witheach image su�ering the same permutation), an act of vandalism that would leave the bestperforming neural networks severely handicapped) and much work has been done on in-corporating prior knowledge into SVMs (Sch�olkopf, Burges and Vapnik, 1996; Sch�olkopf etal., 1998a; Burges, 1998). Although SVMs have good generalization performance, they canbe abysmally slow in test phase, a problem addressed in (Burges, 1996; Osuna and Girosi,1998). Recent work has generalized the basic ideas (Smola, Sch�olkopf and M�uller, 1998a;Smola and Sch�olkopf, 1998), shown connections to regularization theory (Smola, Sch�olkopfand M�uller, 1998b; Girosi, 1998; Wahba, 1998), and shown how SVM ideas can be incorpo-rated in a wide range of other algorithms (Sch�olkopf, Smola and M�uller, 1998b; Sch�olkopfet al, 1998c). The reader may also �nd the thesis of (Sch�olkopf, 1997) helpful.The problem which drove the initial development of SVMs occurs in several guises - thebias variance tradeo� (Geman and Bienenstock, 1992), capacity control (Guyon et al., 1992),over�tting (Montgomery and Peck, 1992) - but the basic idea is the same. Roughly speaking,for a given learning task, with a given �nite amount of training data, the best generalizationperformance will be achieved if the right balance is struck between the accuracy attainedon that particular training set, and the \capacity" of the machine, that is, the ability of themachine to learn any training set without error. A machine with too much capacity is likea botanist with a photographic memory who, when presented with a new tree, concludesthat it is not a tree because it has a di�erent number of leaves from anything she has seenbefore; a machine with too little capacity is like the botanist's lazy brother, who declaresthat if it's green, it's a tree. Neither can generalize well. The exploration and formalizationof these concepts has resulted in one of the shining peaks of the theory of statistical learning(Vapnik, 1979).In the following, bold typeface will indicate vector or matrix quantities; normal typefacewill be used for vector and matrix components and for scalars. We will label componentsof vectors and matrices with Greek indices, and label vectors and matrices themselves withRoman indices. Familiarity with the use of Lagrange multipliers to solve problems withequality or inequality constraints is assumed2.2. A Bound on the Generalization Performance of a Pattern Recognition Learn-ing MachineThere is a remarkable family of bounds governing the relation between the capacity of alearning machine and its performance3. The theory grew out of considerations of under whatcircumstances, and how quickly, the mean of some empirical quantity converges uniformly,as the number of data points increases, to the true mean (that which would be calculatedfrom an in�nite amount of data) (Vapnik, 1979). Let us start with one of these bounds.The notation here will largely follow that of (Vapnik, 1995). Suppose we are given lobservations. Each observation consists of a pair: a vector xi 2 Rn; i = 1; : : : ; l and theassociated \truth" yi, given to us by a trusted source. In the tree recognition problem, ximight be a vector of pixel values (e.g. n = 256 for a 16x16 image), and yi would be 1 if theimage contains a tree, and -1 otherwise (we use -1 here rather than 0 to simplify subsequentformulae). Now it is assumed that there exists some unknown probability distribution



3P (x; y) from which these data are drawn, i.e., the data are assumed \iid" (independentlydrawn and identically distributed). (We will use P for cumulative probability distributions,and p for their densities). Note that this assumption is more general than associating a�xed y with every x: it allows there to be a distribution of y for a given x. In that case,the trusted source would assign labels yi according to a �xed distribution, conditional onxi. However, after this Section, we will be assuming �xed y for given x.Now suppose we have a machine whose task it is to learn the mapping xi 7! yi. Themachine is actually de�ned by a set of possible mappings x 7! f(x; �), where the functionsf(x; �) themselves are labeled by the adjustable parameters �. The machine is assumed tobe deterministic: for a given input x, and choice of �, it will always give the same outputf(x; �). A particular choice of � generates what we will call a \trained machine." Thus,for example, a neural network with �xed architecture, with � corresponding to the weightsand biases, is a learning machine in this sense.The expectation of the test error for a trained machine is therefore:R(�) = Z 12 jy � f(x; �)jdP (x; y) (1)Note that, when a density p(x; y) exists, dP (x; y) may be written p(x; y)dxdy. This is anice way of writing the true mean error, but unless we have an estimate of what P (x; y) is,it is not very useful.The quantity R(�) is called the expected risk, or just the risk. Here we will call it theactual risk, to emphasize that it is the quantity that we are ultimately interested in. The\empirical risk" Remp(�) is de�ned to be just the measured mean error rate on the trainingset (for a �xed, �nite number of observations)4:Remp(�) = 12l lXi=1 jyi � f(xi; �)j: (2)Note that no probability distribution appears here. Remp(�) is a �xed number for aparticular choice of � and for a particular training set fxi; yig.The quantity 12 jyi � f(xi; �)j is called the loss. For the case described here, it can onlytake the values 0 and 1. Now choose some � such that 0 � � � 1. Then for losses takingthese values, with probability 1� �, the following bound holds (Vapnik, 1995):R(�) � Remp(�) +s�h(log(2l=h) + 1)� log(�=4)l � (3)where h is a non-negative integer called the Vapnik Chervonenkis (VC) dimension, and isa measure of the notion of capacity mentioned above. In the following we will call the righthand side of Eq. (3) the \risk bound." We depart here from some previous nomenclature:the authors of (Guyon et al., 1992) call it the \guaranteed risk", but this is something of amisnomer, since it is really a bound on a risk, not a risk, and it holds only with a certainprobability, and so is not guaranteed. The second term on the right hand side is called the\VC con�dence."We note three key points about this bound. First, remarkably, it is independent of P (x; y).It assumes only that both the training data and the test data are drawn independentlyaccording to some P (x; y). Second, it is usually not possible to compute the left handside. Third, if we know h, we can easily compute the right hand side. Thus given several



4di�erent learning machines (recall that \learning machine" is just another name for a familyof functions f(x; �)), and choosing a �xed, su�ciently small �, by then taking that machinewhich minimizes the right hand side, we are choosing that machine which gives the lowestupper bound on the actual risk. This gives a principled method for choosing a learningmachine for a given task, and is the essential idea of structural risk minimization (seeSection 2.6). Given a �xed family of learning machines to choose from, to the extent thatthe bound is tight for at least one of the machines, one will not be able to do better thanthis. To the extent that the bound is not tight for any, the hope is that the right handside still gives useful information as to which learning machine minimizes the actual risk.The bound not being tight for the whole chosen family of learning machines gives critics ajusti�able target at which to �re their complaints. At present, for this case, we must relyon experiment to be the judge.2.1. The VC DimensionThe VC dimension is a property of a set of functions ff(�)g (again, we use � as a generic setof parameters: a choice of � speci�es a particular function), and can be de�ned for variousclasses of function f . Here we will only consider functions that correspond to the two-classpattern recognition case, so that f(x; �) 2 f�1; 1g 8x; �. Now if a given set of l points canbe labeled in all possible 2l ways, and for each labeling, a member of the set ff(�)g canbe found which correctly assigns those labels, we say that that set of points is shattered bythat set of functions. The VC dimension for the set of functions ff(�)g is de�ned as themaximum number of training points that can be shattered by ff(�)g. Note that, if the VCdimension is h, then there exists at least one set of h points that can be shattered, but it ingeneral it will not be true that every set of h points can be shattered.2.2. Shattering Points with Oriented Hyperplanes in RnSuppose that the space in which the data live is R2, and the set ff(�)g consists of orientedstraight lines, so that for a given line, all points on one side are assigned the class 1, and allpoints on the other side, the class �1. The orientation is shown in Figure 1 by an arrow,specifying on which side of the line points are to be assigned the label 1. While it is possibleto �nd three points that can be shattered by this set of functions, it is not possible to �ndfour. Thus the VC dimension of the set of oriented lines in R2 is three.

Figure 1. Three points in R2, shattered by oriented lines.



5Let's now consider hyperplanes in Rn. The following theorem will prove useful (the proofis in the Appendix):Theorem 1 Consider some set of m points in Rn. Choose any one of the points as origin.Then the m points can be shattered by oriented hyperplanes5 if and only if the positionvectors of the remaining points are linearly independent6.Corollary: The VC dimension of the set of oriented hyperplanes in Rn is n+1, since wecan always choose n + 1 points, and then choose one of the points as origin, such that theposition vectors of the remaining n points are linearly independent, but can never choosen+ 2 such points (since no n+ 1 vectors in Rn can be linearly independent).An alternative proof of the corollary can be found in (Anthony and Biggs, 1995), andreferences therein.2.3. The VC Dimension and the Number of ParametersThe VC dimension thus gives concreteness to the notion of the capacity of a given setof functions. Intuitively, one might be led to expect that learning machines with manyparameters would have high VC dimension, while learning machines with few parameterswould have low VC dimension. There is a striking counterexample to this, due to E. Levinand J.S. Denker (Vapnik, 1995): A learning machine with just one parameter, but within�nite VC dimension (a family of classi�ers is said to have in�nite VC dimension if it canshatter l points, no matter how large l). De�ne the step function �(x); x 2 R : f�(x) =1 8x > 0; �(x) = �1 8x � 0g. Consider the one-parameter family of functions, de�ned byf(x; �) � �(sin(�x)); x; � 2 R: (4)You choose some number l, and present me with the task of �nding l points that can beshattered. I choose them to be:xi = 10�i; i = 1; � � � ; l: (5)You specify any labels you like:y1; y2; � � � ; yl; yi 2 f�1; 1g: (6)Then f(�) gives this labeling if I choose � to be� = �(1 + lXi=1 (1� yi)10i2 ): (7)Thus the VC dimension of this machine is in�nite.Interestingly, even though we can shatter an arbitrarily large number of points, we canalso �nd just four points that cannot be shattered. They simply have to be equally spaced,and assigned labels as shown in Figure 2. This can be seen as follows: Write the phase atx1 as �1 = 2n� + �. Then the choice of label y1 = 1 requires 0 < � < �. The phase at x2,mod 2�, is 2�; then y2 = 1 ) 0 < � < �=2. Similarly, point x3 forces � > �=3. Then atx4, �=3 < � < �=2 implies that f(x4; �) = �1, contrary to the assigned label. These fourpoints are the analogy, for the set of functions in Eq. (4), of the set of three points lyingalong a line, for oriented hyperplanes in Rn. Neither set can be shattered by the chosenfamily of functions.



6
1 2 3 4x=0Figure 2. Four points that cannot be shattered by �(sin(�x)), despite in�nite VC dimension.
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h / l = VC Dimension / Sample SizeFigure 3. VC con�dence is monotonic in h2.4. Minimizing The Bound by Minimizing hFigure 3 shows how the second term on the right hand side of Eq. (3) varies with h, givena choice of 95% con�dence level (� = 0:05) and assuming a training sample of size 10,000.The VC con�dence is a monotonic increasing function of h. This will be true for any valueof l.Thus, given some selection of learning machines whose empirical risk is zero, one wants tochoose that learning machine whose associated set of functions has minimal VC dimension.This will lead to a better upper bound on the actual error. In general, for non zero empiricalrisk, one wants to choose that learning machine which minimizes the right hand side of Eq.(3).Note that in adopting this strategy, we are only using Eq. (3) as a guide. Eq. (3) gives(with some chosen probability) an upper bound on the actual risk. This does not prevent aparticular machine with the same value for empirical risk, and whose function set has higherVC dimension, from having better performance. In fact an example of a system that givesgood performance despite having in�nite VC dimension is given in the next Section. Notealso that the graph shows that for h=l > 0:37 (and for � = 0:05 and l = 10; 000), the VCcon�dence exceeds unity, and so for higher values the bound is guaranteed not tight.2.5. Two ExamplesConsider the k'th nearest neighbour classi�er, with k = 1. This set of functions has in�niteVC dimension and zero empirical risk, since any number of points, labeled arbitrarily, willbe successfully learned by the algorithm (provided no two points of opposite class lie righton top of each other). Thus the bound provides no information. In fact, for any classi�erwith in�nite VC dimension, the bound is not even valid7. However, even though the bound



7is not valid, nearest neighbour classi�ers can still perform well. Thus this �rst example is acautionary tale: in�nite \capacity" does not guarantee poor performance.Let's follow the time honoured tradition of understanding things by trying to break them,and see if we can come up with a classi�er for which the bound is supposed to hold, butwhich violates the bound. We want the left hand side of Eq. (3) to be as large as possible,and the right hand side to be as small as possible. So we want a family of classi�ers whichgives the worst possible actual risk of 0:5, zero empirical risk up to some number of trainingobservations, and whose VC dimension is easy to compute and is less than l (so that thebound is non trivial). An example is the following, which I call the \notebook classi�er."This classi�er consists of a notebook with enough room to write down the classes of mtraining observations, where m � l. For all subsequent patterns, the classi�er simply saysthat all patterns have the same class. Suppose also that the data have as many positive(y = +1) as negative (y = �1) examples, and that the samples are chosen randomly. Thenotebook classi�er will have zero empirical risk for up to m observations; 0:5 training errorfor all subsequent observations; 0:5 actual error, and VC dimension h = m. Substitutingthese values in Eq. (3), the bound becomes:m4l � ln(2l=m) + 1� (1=m) ln(�=4) (8)which is certainly met for all � iff(z) = �z2� exp(z=4�1) � 1; z � (m=l); 0 � z � 1 (9)which is true, since f(z) is monotonic increasing, and f(z = 1) = 0:236.2.6. Structural Risk MinimizationWe can now summarize the principle of structural risk minimization (SRM) (Vapnik, 1979).Note that the VC con�dence term in Eq. (3) depends on the chosen class of functions,whereas the empirical risk and actual risk depend on the one particular function chosen bythe training procedure. We would like to �nd that subset of the chosen set of functions, suchthat the risk bound for that subset is minimized. Clearly we cannot arrange things so thatthe VC dimension h varies smoothly, since it is an integer. Instead, introduce a \structure"by dividing the entire class of functions into nested subsets (Figure 4). For each subset,we must be able either to compute h, or to get a bound on h itself. SRM then consists of�nding that subset of functions which minimizes the bound on the actual risk. This can bedone by simply training a series of machines, one for each subset, where for a given subsetthe goal of training is simply to minimize the empirical risk. One then takes that trainedmachine in the series whose sum of empirical risk and VC con�dence is minimal.
h1h2h3h4 h1 < h2 < h3 ...

Figure 4. Nested subsets of functions, ordered by VC dimension.



8We have now laid the groundwork necessary to begin our exploration of support vectormachines.3. Linear Support Vector Machines3.1. The Separable CaseWe will start with the simplest case: linear machines trained on separable data (as we shallsee, the analysis for the general case - nonlinear machines trained on non-separable data -results in a very similar quadratic programming problem). Again label the training datafxi; yig; i = 1; � � � ; l; yi 2 f�1; 1g; xi 2 Rd. Suppose we have some hyperplane whichseparates the positive from the negative examples (a \separating hyperplane"). The pointsx which lie on the hyperplane satisfy w � x + b = 0, where w is normal to the hyperplane,jbj=kwk is the perpendicular distance from the hyperplane to the origin, and kwk is theEuclidean norm of w. Let d+ (d�) be the shortest distance from the separating hyperplaneto the closest positive (negative) example. De�ne the \margin" of a separating hyperplaneto be d++d�. For the linearly separable case, the support vector algorithm simply looks forthe separating hyperplane with largest margin. This can be formulated as follows: supposethat all the training data satisfy the following constraints:xi �w+ b � +1 for yi = +1 (10)xi �w+ b � �1 for yi = �1 (11)These can be combined into one set of inequalities:yi(xi �w+ b)� 1 � 0 8i (12)Now consider the points for which the equality in Eq. (10) holds (requiring that thereexists such a point is equivalent to choosing a scale for w and b). These points lie onthe hyperplane H1 : xi � w + b = 1 with normal w and perpendicular distance from theorigin j1� bj=kwk. Similarly, the points for which the equality in Eq. (11) holds lie on thehyperplane H2 : xi � w + b = �1, with normal again w, and perpendicular distance fromthe origin j � 1� bj=kwk. Hence d+ = d� = 1=kwk and the margin is simply 2=kwk. Notethat H1 and H2 are parallel (they have the same normal) and that no training points fallbetween them. Thus we can �nd the pair of hyperplanes which gives the maximum marginby minimizing kwk2, subject to constraints (12).Thus we expect the solution for a typical two dimensional case to have the form shownin Figure 5. Those training points for which the equality in Eq. (12) holds (i.e. thosewhich wind up lying on one of the hyperplanes H1, H2), and whose removal would changethe solution found, are called support vectors; they are indicated in Figure 5 by the extracircles.We will now switch to a Lagrangian formulation of the problem. There are two reasonsfor doing this. The �rst is that the constraints (12) will be replaced by constraints on theLagrange multipliers themselves, which will be much easier to handle. The second is that inthis reformulation of the problem, the training data will only appear (in the actual trainingand test algorithms) in the form of dot products between vectors. This is a crucial propertywhich will allow us to generalize the procedure to the nonlinear case (Section 4).Thus, we introduce positive Lagrange multipliers �i; i = 1; � � � ; l, one for each of theinequality constraints (12). Recall that the rule is that for constraints of the form ci � 0,
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Figure 5. Linear separating hyperplanes for the separable case. The support vectors are circled.the constraint equations are multiplied by positive Lagrange multipliers and subtractedfrom the objective function, to form the Lagrangian. For equality constraints, the Lagrangemultipliers are unconstrained. This gives Lagrangian:LP � 12kwk2 � lXi=1 �iyi(xi �w+ b) + lXi=1 �i (13)We must now minimize LP with respect to w; b, and simultaneously require that thederivatives of LP with respect to all the �i vanish, all subject to the constraints �i � 0(let's call this particular set of constraints C1). Now this is a convex quadratic programmingproblem, since the objective function is itself convex, and those points which satisfy theconstraints also form a convex set (any linear constraint de�nes a convex set, and a set ofN simultaneous linear constraints de�nes the intersection of N convex sets, which is alsoa convex set). This means that we can equivalently solve the following \dual" problem:maximize LP , subject to the constraints that the gradient of LP with respect to w and bvanish, and subject also to the constraints that the �i � 0 (let's call that particular set ofconstraints C2). This particular dual formulation of the problem is called the Wolfe dual(Fletcher, 1987). It has the property that the maximum of LP , subject to constraints C2,occurs at the same values of the w, b and �, as the minimum of LP , subject to constraintsC18.Requiring that the gradient of LP with respect to w and b vanish give the conditions:w =Xi �iyixi (14)Xi �iyi = 0: (15)Since these are equality constraints in the dual formulation, we can substitute them intoEq. (13) to giveLD =Xi �i � 12Xi;j �i�jyiyjxi � xj (16)



10Note that we have now given the Lagrangian di�erent labels (P for primal, D for dual) toemphasize that the two formulations are di�erent: LP and LD arise from the same objectivefunction but with di�erent constraints; and the solution is found by minimizing LP or bymaximizing LD. Note also that if we formulate the problem with b = 0, which amounts torequiring that all hyperplanes contain the origin, the constraint (15) does not appear. Thisis a mild restriction for high dimensional spaces, since it amounts to reducing the numberof degrees of freedom by one.Support vector training (for the separable, linear case) therefore amounts to maximizingLD with respect to the �i, subject to constraints (15) and positivity of the �i, with solutiongiven by (14). Notice that there is a Lagrange multiplier �i for every training point. Inthe solution, those points for which �i > 0 are called \support vectors", and lie on one ofthe hyperplanes H1; H2. All other training points have �i = 0 and lie either on H1 orH2 (such that the equality in Eq. (12) holds), or on that side of H1 or H2 such that thestrict inequality in Eq. (12) holds. For these machines, the support vectors are the criticalelements of the training set. They lie closest to the decision boundary; if all other trainingpoints were removed (or moved around, but so as not to cross H1 or H2), and training wasrepeated, the same separating hyperplane would be found.3.2. The Karush-Kuhn-Tucker ConditionsThe Karush-Kuhn-Tucker (KKT) conditions play a central role in both the theory andpractice of constrained optimization. For the primal problem above, the KKT conditionsmay be stated (Fletcher, 1987):@@w� LP = w� �Xi �iyixi� = 0 � = 1; � � � ; d (17)@@bLP = �Xi �iyi = 0 (18)yi(xi �w+ b)� 1 � 0 i = 1; � � � ; l (19)�i � 0 8i (20)�i(yi(w � xi + b)� 1) = 0 8i (21)The KKT conditions are satis�ed at the solution of any constrained optimization problem(convex or not), with any kind of constraints, provided that the intersection of the setof feasible directions with the set of descent directions coincides with the intersection ofthe set of feasible directions for linearized constraints with the set of descent directions(see Fletcher, 1987; McCormick, 1983)). This rather technical regularity assumption holdsfor all support vector machines, since the constraints are always linear. Furthermore, theproblem for SVMs is convex (a convex objective function, with constraints which give aconvex feasible region), and for convex problems (if the regularity condition holds), theKKT conditions are necessary and su�cient for w; b; � to be a solution (Fletcher, 1987).Thus solving the SVM problem is equivalent to �nding a solution to the KKT conditions.This fact results in several approaches to �nding the solution (for example, the primal-dualpath following method mentioned in Section 5).As an immediate application, note that, while w is explicitly determined by the trainingprocedure, the threshold b is not, although it is implicitly determined. However b is easilyfound by using the KKT \complementarity" condition, Eq. (21), by choosing any i for



11which �i 6= 0 and computing b (note that it is numerically safer to take the mean value ofb resulting from all such equations).Notice that all we've done so far is to cast the problem into an optimization problemwhere the constraints are rather more manageable than those in Eqs. (10), (11). Findingthe solution for real world problems will usually require numerical methods. We will havemore to say on this later. However, let's �rst work out a rare case where the problem isnontrivial (the number of dimensions is arbitrary, and the solution certainly not obvious),but where the solution can be found analytically.3.3. Optimal Hyperplanes: An ExampleWhile the main aim of this Section is to explore a non-trivial pattern recognition problemwhere the support vector solution can be found analytically, the results derived here willalso be useful in a later proof. For the problem considered, every training point will turnout to be a support vector, which is one reason we can �nd the solution analytically.Consider n + 1 symmetrically placed points lying on a sphere Sn�1 of radius R: moreprecisely, the points form the vertices of an n-dimensional symmetric simplex. It is conve-nient to embed the points in Rn+1 in such a way that they all lie in the hyperplane whichpasses through the origin and which is perpendicular to the (n+1)-vector (1; 1; :::; 1) (in thisformulation, the points lie on Sn�1, they span Rn, and are embedded in Rn+1). Explicitly,recalling that vectors themselves are labeled by Roman indices and their coordinates byGreek, the coordinates are given by:xi� = �(1� �i;�)s Rn(n+ 1) + �i;�r Rnn+ 1 (22)where the Kronecker delta, �i;�, is de�ned by �i;� = 1 if � = i, 0 otherwise. Thus, forexample, the vectors for three equidistant points on the unit circle (see Figure 12) are:x1 = (r23 ; �1p6 ; �1p6)x2 = (�1p6 ; r23 ; �1p6)x3 = (�1p6 ; �1p6 ; r23) (23)One consequence of the symmetry is that the angle between any pair of vectors is thesame (and is equal to arccos(�1=n)):kxik2 = R2 (24)xi � xj = �R2=n (25)or, more succinctly,xi � xjR2 = �i;j � (1� �i;j) 1n: (26)Assigning a class label C 2 f+1;�1g arbitrarily to each point, we wish to �nd thathyperplane which separates the two classes with widest margin. Thus we must maximize



12LD in Eq. (16), subject to �i � 0 and also subject to the equality constraint, Eq. (15).Our strategy is to simply solve the problem as though there were no inequality constraints.If the resulting solution does in fact satisfy �i � 0 8i, then we will have found the generalsolution, since the actual maximum of LD will then lie in the feasible region, provided theequality constraint, Eq. (15), is also met. In order to impose the equality constraint weintroduce an additional Lagrange multiplier �. Thus we seek to maximizeLD � n+1Xi=1 �i � 12 n+1Xi;j=1�iHij�j � � n+1Xi=1 �iyi; (27)where we have introduced the HessianHij � yiyjxi � xj : (28)Setting @LD@�i = 0 gives(H�)i + �yi = 1 8i (29)Now H has a very simple structure: the o�-diagonal elements are �yiyjR2=n, and thediagonal elements are R2. The fact that all the o�-diagonal elements di�er only by factorsof yi suggests looking for a solution which has the form:�i = �1 + yi2 � a+�1� yi2 � b (30)where a and b are unknowns. Plugging this form in Eq. (29) gives:�n+ 1n ��a+ b2 �� yipn �a+ b2 � = 1� �yiR2 (31)where p is de�ned byp � n+1Xi=1 yi: (32)Thusa+ b = 2nR2(n+ 1) (33)and substituting this into the equality constraint Eq. (15) to �nd a, b givesa = nR2(n+ 1) �1� pn+ 1� ; b = nR2(n+ 1) �1 + pn+ 1� (34)which gives for the solution�i = nR2(n+ 1) �1� yipn+ 1� (35)Also,(H�)i = 1� yipn+ 1 : (36)



13Hencekwk2 = n+1Xi;j=1�i�jyiyjxi � xj = �TH�= n+1Xi=1 �i�1� yipn+ 1� = n+1Xi=1 �i = � nR2� 1�� pn+ 1�2! (37)Note that this is one of those cases where the Lagrange multiplier � can remain undeter-mined (although determining it is trivial). We have now solved the problem, since all the�i are clearly positive or zero (in fact the �i will only be zero if all training points havethe same class). Note that kwk depends only on the number of positive (negative) polaritypoints, and not on how the class labels are assigned to the points in Eq. (22). This is clearlynot true of w itself, which is given byw = nR2(n+ 1) n+1Xi=1 �yi � pn+ 1�xi (38)The margin, M = 2=kwk, is thus given byM = 2Rpn (1� (p=(n+ 1))2) : (39)Thus when the number of points n+ 1 is even, the minimum margin occurs when p = 0(equal numbers of positive and negative examples), in which case the margin is Mmin =2R=pn. If n+ 1 is odd, the minimum margin occurs when p = �1, in which case Mmin =2R(n+1)=(npn+ 2). In both cases, the maximum margin is given byMmax = R(n+1)=n.Thus, for example, for the two dimensional simplex consisting of three points lying on S1(and spanning R2), and with labeling such that not all three points have the same polarity,the maximum and minimum margin are both 3R=2 (see Figure (12)).Note that the results of this Section amount to an alternative, constructive proof that theVC dimension of oriented separating hyperplanes in Rn is at least n+ 1.3.4. Test PhaseOnce we have trained a Support Vector Machine, how can we use it? We simply determineon which side of the decision boundary (that hyperplane lying half way between H1 and H2and parallel to them) a given test pattern x lies and assign the corresponding class label,i.e. we take the class of x to be sgn(w � x+ b).3.5. The Non-Separable CaseThe above algorithm for separable data, when applied to non-separable data, will �nd nofeasible solution: this will be evidenced by the objective function (i.e. the dual Lagrangian)growing arbitrarily large. So how can we extend these ideas to handle non-separable data?We would like to relax the constraints (10) and (11), but only when necessary, that is, wewould like to introduce a further cost (i.e. an increase in the primal objective function) fordoing so. This can be done by introducing positive slack variables �i; i = 1; � � � ; l in theconstraints (Cortes and Vapnik, 1995), which then become:



14 xi �w+ b � +1� �i for yi = +1 (40)xi �w+ b � �1 + �i for yi = �1 (41)�i � 0 8i: (42)Thus, for an error to occur, the corresponding �i must exceed unity, so Pi �i is an upperbound on the number of training errors. Hence a natural way to assign an extra costfor errors is to change the objective function to be minimized from kwk2=2 to kwk2=2 +C (Pi �i)k, where C is a parameter to be chosen by the user, a larger C corresponding toassigning a higher penalty to errors. As it stands, this is a convex programming problemfor any positive integer k; for k = 2 and k = 1 it is also a quadratic programming problem,and the choice k = 1 has the further advantage that neither the �i, nor their Lagrangemultipliers, appear in the Wolfe dual problem, which becomes:Maximize:LD �Xi �i � 12Xi;j �i�jyiyjxi � xj (43)subject to:0 � �i � C; (44)Xi �iyi = 0: (45)The solution is again given byw = NSXi=1 �iyixi: (46)where NS is the number of support vectors. Thus the only di�erence from the optimalhyperplane case is that the �i now have an upper bound of C. The situation is summarizedschematically in Figure 6.We will need the Karush-Kuhn-Tucker conditions for the primal problem. The primalLagrangian isLP = 12kwk2 + CXi �i �Xi �ifyi(xi �w+ b)� 1 + �ig �Xi �i�i (47)where the �i are the Lagrange multipliers introduced to enforce positivity of the �i. TheKKT conditions for the primal problem are therefore (note i runs from 1 to the number oftraining points, and � from 1 to the dimension of the data)@LP@w� = w� �Xi �iyixi� = 0 (48)@LP@b = �Xi �iyi = 0 (49)



15@LP@�i = C � �i � �i = 0 (50)yi(xi �w+ b)� 1 + �i � 0 (51)�i � 0 (52)�i � 0 (53)�i � 0 (54)�ifyi(xi �w+ b)� 1 + �ig = 0 (55)�i�i = 0 (56)As before, we can use the KKT complementarity conditions, Eqs. (55) and (56), todetermine the threshold b. Note that Eq. (50) combined with Eq. (56) shows that �i = 0 if�i < C. Thus we can simply take any training point for which 0 < �i < C to use Eq. (55)(with �i = 0) to compute b. (As before, it is numerically wiser to take the average over allsuch training points.)
-b
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Figure 6. Linear separating hyperplanes for the non-separable case.3.6. A Mechanical AnalogyConsider the case in which the data are in R2. Suppose that the i'th support vector exertsa force Fi = �iyiŵ on a sti� sheet lying along the decision surface (the \decision sheet")(here ŵ denotes the unit vector in the direction w). Then the solution (46) satis�es theconditions of mechanical equilibrium:XForces = Xi �iyiŵ = 0 (57)XTorques = Xi si ^ (�iyiŵ) = ŵ ^w = 0: (58)(Here the si are the support vectors, and ^ denotes the vector product.) For data in Rn,clearly the condition that the sum of forces vanish is still met. One can easily show thatthe torque also vanishes.9This mechanical analogy depends only on the form of the solution (46), and therefore holdsfor both the separable and the non-separable cases. In fact this analogy holds in general



16(i.e., also for the nonlinear case described below). The analogy emphasizes the interestingpoint that the \most important" data points are the support vectors with highest values of�, since they exert the highest forces on the decision sheet. For the non-separable case, theupper bound �i � C corresponds to an upper bound on the force any given point is allowedto exert on the sheet. This analogy also provides a reason (as good as any other) to callthese particular vectors \support vectors"10.3.7. Examples by PicturesFigure 7 shows two examples of a two-class pattern recognition problem, one separable andone not. The two classes are denoted by circles and disks respectively. Support vectors areidenti�ed with an extra circle. The error in the non-separable case is identi�ed with a cross.The reader is invited to use Lucent's SVM Applet (Burges, Knirsch and Haratsch, 1996) toexperiment and create pictures like these (if possible, try using 16 or 24 bit color).

Figure 7. The linear case, separable (left) and not (right). The background colour shows the shape of thedecision surface.4. Nonlinear Support Vector MachinesHow can the above methods be generalized to the case where the decision function11 is nota linear function of the data? (Boser, Guyon and Vapnik, 1992), showed that a rather oldtrick (Aizerman, 1964) can be used to accomplish this in an astonishingly straightforwardway. First notice that the only way in which the data appears in the training problem, Eqs.(43) - (45), is in the form of dot products, xi � xj . Now suppose we �rst mapped the datato some other (possibly in�nite dimensional) Euclidean space H, using a mapping which wewill call �:� : Rd 7! H: (59)Then of course the training algorithmwould only depend on the data through dot productsin H, i.e. on functions of the form �(xi) � �(xj). Now if there were a \kernel function" Ksuch that K(xi;xj) = �(xi) ��(xj), we would only need to use K in the training algorithm,and would never need to explicitly even know what � is. One example is



17K(xi;xj) = e�kxi�xjk2=2�2 : (60)In this particular example, H is in�nite dimensional, so it would not be very easy to workwith � explicitly. However, if one replaces xi � xj by K(xi;xj) everywhere in the trainingalgorithm, the algorithm will happily produce a support vector machine which lives in anin�nite dimensional space, and furthermore do so in roughly the same amount of time itwould take to train on the un-mapped data. All the considerations of the previous sectionshold, since we are still doing a linear separation, but in a di�erent space.But how can we use this machine? After all, we need w, and that will live in H also (seeEq. (46)). But in test phase an SVM is used by computing dot products of a given testpoint x with w, or more speci�cally by computing the sign off(x) = NSXi=1 �iyi�(si) ��(x) + b = NSXi=1 �iyiK(si;x) + b (61)where the si are the support vectors. So again we can avoid computing �(x) explicitlyand use the K(si;x) = �(si) � �(x) instead.Let us call the space in which the data live, L. (Here and below we use L as a mnemonicfor \low dimensional", and H for \high dimensional": it is usually the case that the range of� is of much higher dimension than its domain). Note that, in addition to the fact that wlives in H, there will in general be no vector in L which maps, via the map �, to w. If therewere, f(x) in Eq. (61) could be computed in one step, avoiding the sum (and making thecorresponding SVM NS times faster, where NS is the number of support vectors). Despitethis, ideas along these lines can be used to signi�cantly speed up the test phase of SVMs(Burges, 1996). Note also that it is easy to �nd kernels (for example, kernels which arefunctions of the dot products of the xi in L) such that the training algorithm and solutionfound are independent of the dimension of both L and H.In the next Section we will discuss which functions K are allowable and which are not.Let us end this Section with a very simple example of an allowed kernel, for which we canconstruct the mapping �.Suppose that your data are vectors in R2, and you choose K(xi;xj) = (xi � xj)2. Thenit's easy to �nd a space H, and mapping � from R2 to H, such that (x � y)2 = �(x) ��(y):we choose H = R3 and�(x) = 0@ x21p2 x1x2x22 1A (62)(note that here the subscripts refer to vector components). For data in L de�ned on thesquare [�1; 1] � [�1; 1] 2 R2 (a typical situation, for grey level image data), the (entire)image of � is shown in Figure 8. This Figure also illustrates how to think of this mapping:the image of � may live in a space of very high dimension, but it is just a (possibly verycontorted) surface whose intrinsic dimension12 is just that of L.Note that neither the mapping � nor the space H are unique for a given kernel. We couldequally well have chosen H to again be R3 and�(x) = 1p2 0@ (x21 � x22)2x1x2(x21 + x22) 1A (63)
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Figure 8. Image, in H, of the square [�1; 1]� [�1; 1] 2 R2 under the mapping �.or H to be R4 and�(x) = 0BB@ x21x1x2x1x2x22 1CCA : (64)The literature on SVMs usually refers to the space H as a Hilbert space, so let's end thisSection with a few notes on this point. You can think of a Hilbert space as a generalizationof Euclidean space that behaves in a gentlemanly fashion. Speci�cally, it is any linear space,with an inner product de�ned, which is also complete with respect to the correspondingnorm (that is, any Cauchy sequence of points converges to a point in the space). Someauthors (e.g. (Kolmogorov, 1970)) also require that it be separable (that is, it must have acountable subset whose closure is the space itself), and some (e.g. Halmos, 1967) don't. It's ageneralization mainly because its inner product can be any inner product, not just the scalar(\dot") product used here (and in Euclidean spaces in general). It's interesting that theolder mathematical literature (e.g. Kolmogorov, 1970) also required that Hilbert spaces bein�nite dimensional, and that mathematicians are quite happy de�ning in�nite dimensionalEuclidean spaces. Research on Hilbert spaces centers on operators in those spaces, sincethe basic properties have long since been worked out. Since some people understandablyblanch at the mention of Hilbert spaces, I decided to use the term Euclidean throughoutthis tutorial.4.1. Mercer's ConditionFor which kernels does there exist a pair fH;�g, with the properties described above, andfor which does there not? The answer is given by Mercer's condition (Vapnik, 1995; Courantand Hilbert, 1953): There exists a mapping � and an expansionK(x;y) =Xi �(x)i�(y)i (65)



19if and only if, for any g(x) such thatZ g(x)2dx is �nite (66)thenZ K(x;y)g(x)g(y)dxdy � 0: (67)Note that for speci�c cases, it may not be easy to check whether Mercer's condition issatis�ed. Eq. (67) must hold for every g with �nite L2 norm (i.e. which satis�es Eq. (66)).However, we can easily prove that the condition is satis�ed for positive integral powers ofthe dot product: K(x;y) = (x � y)p. We must show thatZ ( dXi=1 xiyi)pg(x)g(y)dxdy � 0: (68)The typical term in the multinomial expansion of (Pdi=1 xiyi)p contributes a term of theform p!r1!r2! � � � (p� r1 � r2 � � �)! Z xr11 xr22 � � � yr11 yr22 � � � g(x)g(y)dxdy (69)to the left hand side of Eq. (67), which factorizes:= p!r1!r2! � � � (p� r1 � r2 � � �)! (Z xr11 xr22 � � � g(x)dx)2 � 0: (70)One simple consequence is that any kernel which can be expressed asK(x;y) =P1p=0 cp(x�y)p, where the cp are positive real coe�cients and the series is uniformly convergent, satis�esMercer's condition, a fact also noted in (Smola, Sch�olkopf and M�uller, 1998b).Finally, what happens if one uses a kernel which does not satisfy Mercer's condition? Ingeneral, there may exist data such that the Hessian is inde�nite, and for which the quadraticprogramming problem will have no solution (the dual objective function can become arbi-trarily large). However, even for kernels that do not satisfy Mercer's condition, one mightstill �nd that a given training set results in a positive semide�nite Hessian, in which case thetraining will converge perfectly well. In this case, however, the geometrical interpretationdescribed above is lacking.4.2. Some Notes on � and HMercer's condition tells us whether or not a prospective kernel is actually a dot productin some space, but it does not tell us how to construct � or even what H is. However, aswith the homogeneous (that is, homogeneous in the dot product in L) quadratic polynomialkernel discussed above, we can explicitly construct the mapping for some kernels. In Section6.1 we show how Eq. (62) can be extended to arbitrary homogeneous polynomial kernels,and that the corresponding space H is a Euclidean space of dimension �d+p�1p �. Thus forexample, for a degree p = 4 polynomial, and for data consisting of 16 by 16 images (d=256),dim(H) is 183,181,376.Usually, mapping your data to a \feature space" with an enormous number of dimensionswould bode ill for the generalization performance of the resulting machine. After all, the



20set of all hyperplanes fw; bg are parameterized by dim(H) +1 numbers. Most patternrecognition systems with billions, or even an in�nite, number of parameters would not makeit past the start gate. How come SVMs do so well? One might argue that, given the formof solution, there are at most l+1 adjustable parameters (where l is the number of trainingsamples), but this seems to be begging the question13. It must be something to do with ourrequirement of maximum margin hyperplanes that is saving the day. As we shall see below,a strong case can be made for this claim.Since the mapped surface is of intrinsic dimension dim(L), unless dim(L) = dim(H), itis obvious that the mapping cannot be onto (surjective). It also need not be one to one(bijective): consider x1 ! �x1; x2 ! �x2 in Eq. (62). The image of � need not itself bea vector space: again, considering the above simple quadratic example, the vector ��(x) isnot in the image of � unless x = 0. Further, a little playing with the inhomogeneous kernelK(xi;xj) = (xi � xj + 1)2 (71)will convince you that the corresponding� can map two vectors that are linearly dependentin L onto two vectors that are linearly independent in H.So far we have considered cases where � is done implicitly. One can equally well turnthings around and start with �, and then construct the corresponding kernel. For example(Vapnik, 1996), if L = R1, then a Fourier expansion in the data x, cut o� after N terms,has the formf(x) = a02 + NXr=1(a1r cos(rx) + a2r sin(rx)) (72)and this can be viewed as a dot product between two vectors inR2N+1: a = ( a0p2 ; a11; : : : ; a21; : : :),and the mapped �(x) = ( 1p2 ; cos(x); cos(2x); : : : ; sin(x); sin(2x); : : :). Then the correspond-ing (Dirichlet) kernel can be computed in closed form:�(xi) � �(xj) = K(xi; xj) = sin((N + 1=2)(xi � xj))2 sin((xi � xj)=2) : (73)This is easily seen as follows: letting � � xi � xj ,�(xi) � �(xj) = 12 + NXr=1 cos(rxi) cos(rxj ) + sin(rxi) sin(rxj)= �12 + NXr=0 cos(r�) = �12 +Ref NXr=0 e(ir�)g= �12 +Ref(1� ei(N+1)�)=(1� ei�)g= (sin((N + 1=2)�))=2 sin(�=2):Finally, it is clear that the above implicit mapping trick will work for any algorithm inwhich the data only appear as dot products (for example, the nearest neighbor algorithm).This fact has been used to derive a nonlinear version of principal component analysis by(Sch�olkopf, Smola and M�uller, 1998b); it seems likely that this trick will continue to �nduses elsewhere.



214.3. Some Examples of Nonlinear SVMsThe �rst kernels investigated for the pattern recognition problem were the following:K(x;y) = (x � y+ 1)p (74)K(x;y) = e�kx�yk2=2�2 (75)K(x;y) = tanh(�x � y� �) (76)Eq. (74) results in a classi�er that is a polynomial of degree p in the data; Eq. (75) givesa Gaussian radial basis function classi�er, and Eq. (76) gives a particular kind of two-layersigmoidal neural network. For the RBF case, the number of centers (NS in Eq. (61)),the centers themselves (the si), the weights (�i), and the threshold (b) are all producedautomatically by the SVM training and give excellent results compared to classical RBFs,for the case of Gaussian RBFs (Sch�olkopf et al, 1997). For the neural network case, the�rst layer consists of NS sets of weights, each set consisting of dL (the dimension of thedata) weights, and the second layer consists of NS weights (the �i), so that an evaluationsimply requires taking a weighted sum of sigmoids, themselves evaluated on dot products ofthe test data with the support vectors. Thus for the neural network case, the architecture(number of weights) is determined by SVM training.Note, however, that the hyperbolic tangent kernel only satis�es Mercer's condition forcertain values of the parameters � and � (and of the data kxk2). This was �rst noticedexperimentally (Vapnik, 1995); however some necessary conditions on these parameters forpositivity are now known14.Figure 9 shows results for the same pattern recognition problem as that shown in Figure7, but where the kernel was chosen to be a cubic polynomial. Notice that, even thoughthe number of degrees of freedom is higher, for the linearly separable case (left panel), thesolution is roughly linear, indicating that the capacity is being controlled; and that thelinearly non-separable case (right panel) has become separable.

Figure 9. Degree 3 polynomial kernel. The background colour shows the shape of the decision surface.Finally, note that although the SVM classi�ers described above are binary classi�ers, theyare easily combined to handle the multiclass case. A simple, e�ective combination trains



22N one-versus-rest classi�ers (say, \one" positive, \rest" negative) for the N -class case andtakes the class for a test point to be that corresponding to the largest positive distance(Boser, Guyon and Vapnik, 1992).4.4. Global Solutions and UniquenessWhen is the solution to the support vector training problem global, and when is it unique?By \global", we mean that there exists no other point in the feasible region at which theobjective function takes a lower value. We will address two kinds of ways in which uniquenessmay not hold: solutions for which fw; bg are themselves unique, but for which the expansionof w in Eq. (46) is not; and solutions whose fw; bg di�er. Both are of interest: even if thepair fw; bg is unique, if the �i are not, there may be equivalent expansions of w whichrequire fewer support vectors (a trivial example of this is given below), and which thereforerequire fewer instructions during test phase.It turns out that every local solution is also global. This is a property of any convexprogramming problem (Fletcher, 1987). Furthermore, the solution is guaranteed to beunique if the objective function (Eq. (43)) is strictly convex, which in our case meansthat the Hessian must be positive de�nite (note that for quadratic objective functions F ,the Hessian is positive de�nite if and only if F is strictly convex; this is not true for non-quadratic F : there, a positive de�nite Hessian implies a strictly convex objective function,but not vice versa (consider F = x4) (Fletcher, 1987)). However, even if the Hessian ispositive semide�nite, the solution can still be unique: consider two points along the realline with coordinates x1 = 1 and x2 = 2, and with polarities + and �. Here the Hessian ispositive semide�nite, but the solution (w = �2; b = 3; �i = 0 in Eqs. (40), (41), (42)) isunique. It is also easy to �nd solutions which are not unique in the sense that the �i in theexpansion of w are not unique:: for example, consider the problem of four separable pointson a square in R2: x1 = [1; 1], x2 = [�1; 1], x3 = [�1;�1] and x4 = [1;�1], with polarities[+;�;�;+] respectively. One solution is w = [1; 0], b = 0, � = [0:25; 0:25; 0:25; 0:25];another has the same w and b, but � = [0:5; 0:5; 0; 0] (note that both solutions satisfy theconstraints �i > 0 andPi �iyi = 0). When can this occur in general? Given some solution�, choose an �0 which is in the null space of the Hessian Hij = yiyjxi � xj , and require that�0 be orthogonal to the vector all of whose components are 1. Then adding �0 to � in Eq.(43) will leave LD unchanged. If 0 � �i + �0i � C and �0 satis�es Eq. (45), then � + �0 isalso a solution15.How about solutions where the fw; bg are themselves not unique? (We emphasize thatthis can only happen in principle if the Hessian is not positive de�nite, and even then,the solutions are necessarily global). The following very simple theorem shows that if non-unique solutions occur, then the solution at one optimal point is continuously deformableinto the solution at the other optimal point, in such a way that all intermediate points arealso solutions.Theorem 2 Let the variable X stand for the pair of variables fw; bg. Let the Hessian forthe problem be positive semide�nite, so that the objective function is convex. Let X0 and X1be two points at which the objective function attains its minimal value. Then there exists apath X = X(�) = (1� �)X0 + �X1; � 2 [0; 1], such that X(�) is a solution for all � .Proof: Let the minimum value of the objective function be Fmin. Then by assumption,F (X0) = F (X1) = Fmin. By convexity of F , F (X(�)) � (1� �)F (X0) + �F (X1) = Fmin.Furthermore, by linearity, the X(�) satisfy the constraints Eq. (40), (41): explicitly (againcombining both constraints into one):



23yi(w� � xi + b� ) = yi((1� �)(w0 � xi + b0) + �(w1 � xi + b1))� (1� �)(1� �i) + �(1� �i) = 1� �i (77)Although simple, this theorem is quite instructive. For example, one might think that theproblems depicted in Figure 10 have several di�erent optimal solutions (for the case of linearsupport vector machines). However, since one cannot smoothly move the hyperplane fromone proposed solution to another without generating hyperplanes which are not solutions,we know that these proposed solutions are in fact not solutions at all. In fact, for eachof these cases, the optimal unique solution is at w = 0, with a suitable choice of b (whichhas the e�ect of assigning the same label to all the points). Note that this is a perfectlyacceptable solution to the classi�cation problem: any proposed hyperplane (with w 6= 0)will cause the primal objective function to take a higher value.
Figure 10. Two problems, with proposed (incorrect) non-unique solutions.Finally, note that the fact that SVM training always �nds a global solution is in contrastto the case of neural networks, where many local minima usually exist.5. Methods of SolutionThe support vector optimization problem can be solved analytically only when the numberof training data is very small, or for the separable case when it is known beforehand whichof the training data become support vectors (as in Sections 3.3 and 6.2). Note that this canhappen when the problem has some symmetry (Section 3.3), but that it can also happenwhen it does not (Section 6.2). For the general analytic case, the worst case computationalcomplexity is of order N3S (inversion of the Hessian), where NS is the number of supportvectors, although the two examples given both have complexity of O(1).However, in most real world cases, Equations (43) (with dot products replaced by ker-nels), (44), and (45) must be solved numerically. For small problems, any general purposeoptimization package that solves linearly constrained convex quadratic programs will do. Agood survey of the available solvers, and where to get them, can be found16 in (Mor�e andWright, 1993).For larger problems, a range of existing techniques can be brought to bear. A full ex-ploration of the relative merits of these methods would �ll another tutorial. Here we justdescribe the general issues, and for concreteness, give a brief explanation of the techniquewe currently use. Below, a \face" means a set of points lying on the boundary of the feasibleregion, and an \active constraint" is a constraint for which the equality holds. For more



24on nonlinear programming techniques see (Fletcher, 1987; Mangasarian, 1969; McCormick,1983).The basic recipe is to (1) note the optimality (KKT) conditions which the solution mustsatisfy, (2) de�ne a strategy for approaching optimality by uniformly increasing the dualobjective function subject to the constraints, and (3) decide on a decomposition algorithmso that only portions of the training data need be handled at a given time (Boser, Guyonand Vapnik, 1992; Osuna, Freund and Girosi, 1997a). We give a brief description of someof the issues involved. One can view the problem as requiring the solution of a sequenceof equality constrained problems. A given equality constrained problem can be solved inone step by using the Newton method (although this requires storage for a factorization ofthe projected Hessian), or in at most l steps using conjugate gradient ascent (Press et al.,1992) (where l is the number of data points for the problem currently being solved: no extrastorage is required). Some algorithms move within a given face until a new constraint isencountered, in which case the algorithm is restarted with the new constraint added to thelist of equality constraints. This method has the disadvantage that only one new constraintis made active at a time. \Projection methods" have also been considered (Mor�e, 1991),where a point outside the feasible region is computed, and then line searches and projectionsare done so that the actual move remains inside the feasible region. This approach can addseveral new constraints at once. Note that in both approaches, several active constraintscan become inactive in one step. In all algorithms, only the essential part of the Hessian(the columns corresponding to �i 6= 0) need be computed (although some algorithms docompute the whole Hessian). For the Newton approach, one can also take advantage of thefact that the Hessian is positive semide�nite by diagonalizing it with the Bunch-Kaufmanalgorithm (Bunch and Kaufman, 1977; Bunch and Kaufman, 1980) (if the Hessian wereinde�nite, it could still be easily reduced to 2x2 block diagonal form with this algorithm).In this algorithm, when a new constraint is made active or inactive, the factorization ofthe projected Hessian is easily updated (as opposed to recomputing the factorization fromscratch). Finally, in interior point methods, the variables are essentially rescaled so as toalways remain inside the feasible region. An example is the \LOQO" algorithm of (Vander-bei, 1994a; Vanderbei, 1994b), which is a primal-dual path following algorithm. This lastmethod is likely to be useful for problems where the number of support vectors as a fractionof training sample size is expected to be large.We briey describe the core optimization method we currently use17. It is an active setmethod combining gradient and conjugate gradient ascent. Whenever the objective functionis computed, so is the gradient, at very little extra cost. In phase 1, the search directionss are along the gradient. The nearest face along the search direction is found. If the dotproduct of the gradient there with s indicates that the maximum along s lies between thecurrent point and the nearest face, the optimal point along the search direction is computedanalytically (note that this does not require a line search), and phase 2 is entered. Otherwise,we jump to the new face and repeat phase 1. In phase 2, Polak-Ribiere conjugate gradientascent (Press et al., 1992) is done, until a new face is encountered (in which case phase 1 isre-entered) or the stopping criterion is met. Note the following:� Search directions are always projected so that the �i continue to satisfy the equalityconstraint Eq. (45). Note that the conjugate gradient algorithm will still work; weare simply searching in a subspace. However, it is important that this projection isimplemented in such a way that not only is Eq. (45) met (easy), but also so that theangle between the resulting search direction, and the search direction prior to projection,is minimized (not quite so easy).



25� We also use a \sticky faces" algorithm: whenever a given face is hit more than once,the search directions are adjusted so that all subsequent searches are done within thatface. All \sticky faces" are reset (made \non-sticky") when the rate of increase of theobjective function falls below a threshold.� The algorithm stops when the fractional rate of increase of the objective function F fallsbelow a tolerance (typically 1e-10, for double precision). Note that one can also useas stopping criterion the condition that the size of the projected search direction fallsbelow a threshold. However, this criterion does not handle scaling well.� In my opinion the hardest thing to get right is handling precision problems correctlyeverywhere. If this is not done, the algorithm may not converge, or may be much slowerthan it needs to be.A good way to check that your algorithm is working is to check that the solution satis�esall the Karush-Kuhn-Tucker conditions for the primal problem, since these are necessaryand su�cient conditions that the solution be optimal. The KKT conditions are Eqs. (48)through (56), with dot products between data vectors replaced by kernels wherever theyappear (note w must be expanded as in Eq. (48) �rst, since w is not in general the mappingof a point in L). Thus to check the KKT conditions, it is su�cient to check that the�i satisfy 0 � �i � C, that the equality constraint (49) holds, that all points for which0 � �i < C satisfy Eq. (51) with �i = 0, and that all points with �i = C satisfy Eq. (51)for some �i � 0. These are su�cient conditions for all the KKT conditions to hold: notethat by doing this we never have to explicitly compute the �i or �i, although doing so istrivial.5.1. Complexity, Scalability, and ParallelizabilitySupport vector machines have the following very striking property. Both training and testfunctions depend on the data only through the kernel functions K(xi;xj). Even though itcorresponds to a dot product in a space of dimension dH , where dH can be very large orin�nite, the complexity of computing K can be far smaller. For example, for kernels of theformK = (xi �xj)p, a dot product in H would require of order �dL+p�1p � operations, whereasthe computation of K(xi;xj) requires only O(dL) operations (recall dL is the dimension ofthe data). It is this fact that allows us to construct hyperplanes in these very high dimen-sional spaces yet still be left with a tractable computation. Thus SVMs circumvent bothforms of the \curse of dimensionality": the proliferation of parameters causing intractablecomplexity, and the proliferation of parameters causing over�tting.5.1.1. Training For concreteness, we will give results for the computational complexity ofone the the above training algorithms (Bunch-Kaufman)18 (Kaufman, 1998). These resultsassume that di�erent strategies are used in di�erent situations. We consider the problem oftraining on just one \chunk" (see below). Again let l be the number of training points, NSthe number of support vectors (SVs), and dL the dimension of the input data. In the casewhere most SVs are not at the upper bound, and NS=l << 1, the number of operations Cis O(N3S + (N2S)l+NSdLl). If instead NS=l � 1, then C is O(N3S +NSl+NSdLl) (basicallyby starting in the interior of the feasible region). For the case where most SVs are at theupper bound, and NS=l << 1, then C is O(N2S + NSdLl). Finally, if most SVs are at theupper bound, and NS=l � 1, we have C of O(DLl2).For larger problems, two decomposition algorithms have been proposed to date. In the\chunking" method (Boser, Guyon and Vapnik, 1992), one starts with a small, arbitrary



26subset of the data and trains on that. The rest of the training data is tested on the resultingclassi�er, and a list of the errors is constructed, sorted by how far on the wrong side of themargin they lie (i.e. how egregiously the KKT conditions are violated). The next chunk isconstructed from the �rst N of these, combined with the NS support vectors already found,where N +NS is decided heuristically (a chunk size that is allowed to grow too quickly ortoo slowly will result in slow overall convergence). Note that vectors can be dropped froma chunk, and that support vectors in one chunk may not appear in the �nal solution. Thisprocess is continued until all data points are found to satisfy the KKT conditions.The above method requires that the number of support vectorsNS be small enough so thata Hessian of size NS by NS will �t in memory. An alternative decomposition algorithm hasbeen proposed which overcomes this limitation (Osuna, Freund and Girosi, 1997b). Again,in this algorithm, only a small portion of the training data is trained on at a given time, andfurthermore, only a subset of the support vectors need be in the \working set" (i.e. that setof points whose �'s are allowed to vary). This method has been shown to be able to easilyhandle a problem with 110,000 training points and 100,000 support vectors. However, itmust be noted that the speed of this approach relies on many of the support vectors havingcorresponding Lagrange multipliers �i at the upper bound, �i = C.These training algorithmsmay take advantage of parallel processing in several ways. First,all elements of the Hessian itself can be computed simultaneously. Second, each elementoften requires the computation of dot products of training data, which could also be par-allelized. Third, the computation of the objective function, or gradient, which is a speedbottleneck, can be parallelized (it requires a matrix multiplication). Finally, one can envisionparallelizing at a higher level, for example by training on di�erent chunks simultaneously.Schemes such as these, combined with the decomposition algorithm of (Osuna, Freund andGirosi, 1997b), will be needed to make very large problems (i.e. >> 100,000 support vectors,with many not at bound), tractable.5.1.2. Testing In test phase, one must simply evaluate Eq. (61), which will requireO(MNS) operations, where M is the number of operations required to evaluate the kernel.For dot product and RBF kernels, M is O(dL), the dimension of the data vectors. Again,both the evaluation of the kernel and of the sum are highly parallelizable procedures.In the absence of parallel hardware, one can still speed up test phase by a large factor, asdescribed in Section 9.6. The VC Dimension of Support Vector MachinesWe now show that the VC dimension of SVMs can be very large (even in�nite). We willthen explore several arguments as to why, in spite of this, SVMs usually exhibit goodgeneralization performance. However it should be emphasized that these are essentiallyplausibility arguments. Currently there exists no theory which guarantees that a givenfamily of SVMs will have high accuracy on a given problem.We will call any kernel that satis�es Mercer's condition a positive kernel, and the corre-sponding spaceH the embedding space. We will also call any embedding space with minimaldimension for a given kernel a \minimal embedding space". We have the followingTheorem 3 Let K be a positive kernel which corresponds to a minimal embedding spaceH. Then the VC dimension of the corresponding support vector machine (where the errorpenalty C in Eq. (44) is allowed to take all values) is dim(H) + 1.



27Proof: If the minimal embedding space has dimension dH , then dH points in the image ofL under the mapping � can be found whose position vectors in H are linearly independent.From Theorem 1, these vectors can be shattered by hyperplanes in H. Thus by eitherrestricting ourselves to SVMs for the separable case (Section 3.1), or for which the errorpenalty C is allowed to take all values (so that, if the points are linearly separable, a C canbe found such that the solution does indeed separate them), the family of support vectormachines with kernel K can also shatter these points, and hence has VC dimension dH +1.Let's look at two examples.6.1. The VC Dimension for Polynomial KernelsConsider an SVM with homogeneous polynomial kernel, acting on data in RdL :K(x1;x2) = (x1 � x2)p; x1; x2 2 RdL (78)As in the case when dL = 2 and the kernel is quadratic (Section 4), one can explicitlyconstruct the map �. Letting zi = x1ix2i, so that K(x1;x2) = (z1+ � � �+ zdL)p, we see thateach dimension of H corresponds to a term with given powers of the zi in the expansion ofK. In fact if we choose to label the components of �(x) in this manner, we can explicitlywrite the mapping for any p and dL:�r1r2���rdL (x) =s� p!r1!r2! � � � rdL !�xr11 xr22 � � �xrdLdL ; dLXi=1 ri = p; ri � 0 (79)This leads toTheorem 4 If the space in which the data live has dimension dL (i.e. L = RdL), thedimension of the minimal embedding space, for homogeneous polynomial kernels of degree p(K(x1;x2) = (x1 � x2)p; x1; x2 2 RdL), is �dL+p�1p �.(The proof is in the Appendix). Thus the VC dimension of SVMs with these kernels is�dL+p�1p �+ 1. As noted above, this gets very large very quickly.6.2. The VC Dimension for Radial Basis Function KernelsTheorem 5 Consider the class of Mercer kernels for which K(x1;x2)! 0 as kx1�x2k !1, and for which K(x;x) is O(1), and assume that the data can be chosen arbitrarily fromRd. Then the family of classi�ers consisting of support vector machines using these kernels,and for which the error penalty is allowed to take all values, has in�nite VC dimension.Proof: The kernel matrix, Kij � K(xi;xj), is a Gram matrix (a matrix of dot products:see (Horn, 1985)) in H. Clearly we can choose training data such that all o�-diagonalelementsKi6=j can be made arbitrarily small, and by assumption all diagonal elementsKi=jare of O(1). The matrix K is then of full rank; hence the set of vectors, whose dot productsinH formK, are linearly independent (Horn, 1985); hence, by Theorem 1, the points can beshattered by hyperplanes in H, and hence also by support vector machines with su�cientlylarge error penalty. Since this is true for any �nite number of points, the VC dimension ofthese classi�ers is in�nite.



28Note that the assumptions in the theorem are stronger than necessary (they were chosento make the connection to radial basis functions clear). In fact it is only necessary that ltraining points can be chosen such that the rank of the matrix Kij increases without limitas l increases. For example, for Gaussian RBF kernels, this can also be accomplished (evenfor training data restricted to lie in a bounded subset of RdL) by choosing small enoughRBF widths. However in general the VC dimension of SVM RBF classi�ers can certainly be�nite, and indeed, for data restricted to lie in a bounded subset of RdL , choosing restrictionson the RBF widths is a good way to control the VC dimension.This case gives us a second opportunity to present a situation where the SVM solutioncan be computed analytically, which also amounts to a second, constructive proof of theTheorem. For concreteness we will take the case for Gaussian RBF kernels of the formK(x1;x2) = e�kx1�x2k2=2�2 . Let us choose training points such that the smallest distancebetween any pair of points is much larger than the width �. Consider the decision functionevaluated on the support vector sj :f(sj) =Xi �iyie�ksi�sjk2=2�2 + b: (80)The sum on the right hand side will then be largely dominated by the term i = j; in factthe ratio of that term to the contribution from the rest of the sum can be made arbitrarilylarge by choosing the training points to be arbitrarily far apart. In order to �nd the SVMsolution, we again assume for the moment that every training point becomes a supportvector, and we work with SVMs for the separable case (Section 3.1) (the same argumentwill hold for SVMs for the non-separable case if C in Eq. (44) is allowed to take largeenough values). Since all points are support vectors, the equalities in Eqs. (10), (11)will hold for them. Let there be N+ (N�) positive (negative) polarity points. We furtherassume that all positive (negative) polarity points have the same value �+ (��) for theirLagrange multiplier. (We will know that this assumption is correct if it delivers a solutionwhich satis�es all the KKT conditions and constraints). Then Eqs. (19), applied to all thetraining data, and the equality constraint Eq. (18), become�+ + b = 1��� + b = �1N+�+ �N��� = 0 (81)which are satis�ed by�+ = 2N�N� +N+�� = 2N+N� +N+b = N+ �N�N� +N+ (82)Thus, since the resulting �i are also positive, all the KKT conditions and constraints aresatis�ed, and we must have found the global solution (with zero training errors). Since thenumber of training points, and their labeling, is arbitrary, and they are separated withouterror, the VC dimension is in�nite.The situation is summarized schematically in Figure 11.
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Figure 11. Gaussian RBF SVMs of su�ciently small width can classify an arbitrarily large number oftraining points correctly, and thus have in�nite VC dimensionNow we are left with a striking conundrum. Even though their VC dimension is in�nite (ifthe data is allowed to take all values in RdL), SVM RBFs can have excellent performance(Sch�olkopf et al, 1997). A similar story holds for polynomial SVMs. How come?7. The Generalization Performance of SVMsIn this Section we collect various arguments and bounds relating to the generalization perfor-mance of SVMs. We start by presenting a family of SVM-like classi�ers for which structuralrisk minimization can be rigorously implemented, and which will give us some insight as towhy maximizing the margin is so important.7.1. VC Dimension of Gap Tolerant Classi�ersConsider a family of classi�ers (i.e. a set of functions � on Rd) which we will call \gaptolerant classi�ers." A particular classi�er � 2 � is speci�ed by the location and diameterof a ball in Rd, and by two hyperplanes, with parallel normals, also in Rd. Call the set ofpoints lying between, but not on, the hyperplanes the \margin set." The decision functions� are de�ned as follows: points that lie inside the ball, but not in the margin set, are assignedclass f�1g, depending on which side of the margin set they fall. All other points are simplyde�ned to be \correct", that is, they are not assigned a class by the classi�er, and do notcontribute to any risk. The situation is summarized, for d = 2, in Figure 12. This ratherodd family of classi�ers, together with a condition we will impose on how they are trained,will result in systems very similar to SVMs, and for which structural risk minimization canbe demonstrated. A rigorous discussion is given in the Appendix.Label the diameter of the ball D and the perpendicular distance between the two hyper-planesM . The VC dimension is de�ned as before to be the maximum number of points thatcan be shattered by the family, but by \shattered" we mean that the points can occur aserrors in all possible ways (see the Appendix for further discussion). Clearly we can controlthe VC dimension of a family of these classi�ers by controlling the minimum margin Mand maximum diameter D that members of the family are allowed to assume. For example,consider the family of gap tolerant classi�ers in R2 with diameter D = 2, shown in Figure12. Those with margin satisfying M � 3=2 can shatter three points; if 3=2 < M < 2, theycan shatter two; and if M � 2, they can shatter only one. Each of these three families of



30classi�ers corresponds to one of the sets of classi�ers in Figure 4, with just three nestedsubsets of functions, and with h1 = 1, h2 = 2, and h3 = 3.
M = 3/2

D = 2

Φ=0

Φ=0

Φ=1

Φ=−1
Φ=0Figure 12. A gap tolerant classi�er on data in R2.These ideas can be used to show how gap tolerant classi�ers implement structural riskminimization. The extension of the above example to spaces of arbitrary dimension isencapsulated in a (modi�ed) theorem of (Vapnik, 1995):Theorem 6 For data in Rd, the VC dimension h of gap tolerant classi�ers of minimummargin Mmin and maximum diameter Dmax is bounded above19 by minfdD2max=M2mine; dg+1.For the proof we assume the following lemma, which in (Vapnik, 1979) is held to followfrom symmetry arguments20:Lemma: Consider n � d+1 points lying in a ball B 2 Rd. Let the points be shatterableby gap tolerant classi�ers with marginM . Then in order forM to be maximized, the pointsmust lie on the vertices of an (n� 1)-dimensional symmetric simplex, and must also lie onthe surface of the ball.Proof: We need only consider the case where the number of points n satis�es n � d + 1.(n > d+1 points will not be shatterable, since the VC dimension of oriented hyperplanes inRd is d+1, and any distribution of points which can be shattered by a gap tolerant classi�ercan also be shattered by an oriented hyperplane; this also shows that h � d+1). Again weconsider points on a sphere of diameter D, where the sphere itself is of dimension d� 2. Wewill need two results from Section 3.3, namely (1) if n is even, we can �nd a distribution of npoints (the vertices of the (n�1)-dimensional symmetric simplex) which can be shattered bygap tolerant classi�ers if D2max=M2min = n�1, and (2) if n is odd, we can �nd a distributionof n points which can be so shattered if D2max=M2min = (n� 1)2(n+ 1)=n2.If n is even, at most n points can be shattered whenevern� 1 � D2max=M2min < n: (83)



31Thus for n even the maximum number of points that can be shattered may be writtenbD2max=M2minc+ 1.If n is odd, at most n points can be shattered when D2max=M2min = (n � 1)2(n + 1)=n2.However, the quantity on the right hand side satis�esn� 2 < (n� 1)2(n+ 1)=n2 < n� 1 (84)for all integer n > 1. Thus for n odd the largest number of points that can be shatteredis certainly bounded above by dD2max=M2mine + 1, and from the above this bound is alsosatis�ed when n is even. Hence in general the VC dimension h of gap tolerant classi�ersmust satisfyh � dD2maxM2min e+ 1: (85)This result, together with h � d+ 1, concludes the proof.7.2. Gap Tolerant Classi�ers, Structural Risk Minimization, and SVMsLet's see how we can do structural risk minimization with gap tolerant classi�ers. We needonly consider that subset of the �, call it �S , for which training \succeeds", where by successwe mean that all training data are assigned a label 2 f�1g (note that these labels do nothave to coincide with the actual labels, i.e. training errors are allowed). Within �S , �ndthe subset which gives the fewest training errors - call this number of errors Nmin. Withinthat subset, �nd the function � which gives maximum margin (and hence the lowest boundon the VC dimension). Note the value of the resulting risk bound (the right hand side ofEq. (3), using the bound on the VC dimension in place of the VC dimension). Next, within�S , �nd that subset which gives Nmin + 1 training errors. Again, within that subset, �ndthe � which gives the maximum margin, and note the corresponding risk bound. Iterate,and take that classi�er which gives the overall minimum risk bound.An alternative approach is to divide the functions � into nested subsets �i; i 2 Z ; i � 1,as follows: all � 2 �i have fD;Mg satisfying dD2=M2e � i. Thus the family of functionsin �i has VC dimension bounded above by min(i; d) + 1. Note also that �i � �i+1. SRMthen proceeds by taking that � for which training succeeds in each subset and for whichthe empirical risk is minimized in that subset, and again, choosing that � which gives thelowest overall risk bound.Note that it is essential to these arguments that the bound (3) holds for any chosen decisionfunction, not just the one that minimizes the empirical risk (otherwise eliminating solutionsfor which some training point x satis�es �(x) = 0 would invalidate the argument).The resulting gap tolerant classi�er is in fact a special kind of support vector machinewhich simply does not count data falling outside the sphere containing all the training data,or inside the separating margin, as an error. It seems very reasonable to conclude thatsupport vector machines, which are trained with very similar objectives, also gain a similarkind of capacity control from their training. However, a gap tolerant classi�er is not anSVM, and so the argument does not constitute a rigorous demonstration of structural riskminimization for SVMs. The original argument for structural risk minimization for SVMs isknown to be awed, since the structure there is determined by the data (see (Vapnik, 1995),Section 5.11). I believe that there is a further subtle problem with the original argument.The structure is de�ned so that no training points are members of the margin set. However,one must still specify how test points that fall into the margin are to be labeled. If one simply



32assigns the same, �xed class to them (say +1), then the VC dimension will be higher21 thanthe bound derived in Theorem 6. However, the same is true if one labels them all as errors(see the Appendix). If one labels them all as \correct", one arrives at gap tolerant classi�ers.On the other hand, it is known how to do structural risk minimization for systems wherethe structure does depend on the data (Shawe-Taylor et al., 1996a; Shawe-Taylor et al.,1996b). Unfortunately the resulting bounds are much looser than the VC bounds above,which are already very loose (we will examine a typical case below where the VC bound isa factor of 100 higher than the measured test error). Thus at the moment structural riskminimization alone does not provide a rigorous explanation as to why SVMs often have goodgeneralization performance. However, the above arguments strongly suggest that algorithmsthat minimize D2=M2 can be expected to give better generalization performance. Furtherevidence for this is found in the following theorem of (Vapnik, 1998), which we quote withoutproof22:Theorem 7 For optimal hyperplanes passing through the origin, we haveE[P (error)] � E[D2=M2]l (86)where P (error) is the probability of error on the test set, the expectation on the left is overall training sets of size l� 1, and the expectation on the right is over all training sets of sizel.However, in order for these observations to be useful for real problems, we need a way tocompute the diameter of the minimal enclosing sphere described above, for any number oftraining points and for any kernel mapping.7.3. How to Compute the Minimal Enclosing SphereAgain let � be the mapping to the embedding space H. We wish to compute the radiusof the smallest sphere in H which encloses the mapped training data: that is, we wish tominimize R2 subject tok�(xi)�Ck2 � R2 8i (87)where C 2 H is the (unknown) center of the sphere. Thus introducing positive Lagrangemultipliers �i, the primal Lagrangian isLP = R2 �Xi �i(R2 � k�(xi)�Ck2): (88)This is again a convex quadratic programming problem, so we can instead maximize theWolfe dualLD =Xi �iK(xi;xi)�Xi;j �i�jK(xi;xj) (89)(where we have again replaced �(xi) ��(xj) by K(xi;xj)) subject to:Xi �i = 1 (90)�i � 0 (91)



33with solution given byC =Xi �i�(xi): (92)Thus the problem is very similar to that of support vector training, and in fact the codefor the latter is easily modi�ed to solve the above problem. Note that we were in a sense\lucky", because the above analysis shows us that there exists an expansion (92) for thecenter; there is no a priori reason why we should expect that the center of the sphere in Hshould be expressible in terms of the mapped training data in this way. The same can besaid of the solution for the support vector problem, Eq. (46). (Had we chosen some othergeometrical construction, we might not have been so fortunate. Consider the smallest areaequilateral triangle containing two given points in R2. If the points' position vectors arelinearly dependent, the center of the triangle cannot be expressed in terms of them.)7.4. A Bound from Leave-One-Out(Vapnik, 1995) gives an alternative bound on the actual risk of support vector machines:E[P (error)] � E[Number of support vectors]Number of training samples ; (93)where P (error) is the actual risk for a machine trained on l � 1 examples, E[P (error)]is the expectation of the actual risk over all choices of training set of size l � 1, andE[Number of support vectors] is the expectation of the number of support vectors over allchoices of training sets of size l. It's easy to see how this bound arises: consider the typicalsituation after training on a given training set, shown in Figure 13.

Figure 13. Support vectors (circles) can become errors (cross) after removal and re-training (the dotted linedenotes the new decision surface).We can get an estimate of the test error by removing one of the training points, re-training,and then testing on the removed point; and then repeating this, for all training points. Fromthe support vector solution we know that removing any training points that are not supportvectors (the latter include the errors) will have no e�ect on the hyperplane found. Thusthe worst that can happen is that every support vector will become an error. Taking theexpectation over all such training sets therefore gives an upper bound on the actual risk,for training sets of size l � 1.



34Although elegant, I have yet to �nd a use for this bound. There seem to be many situationswhere the actual error increases even though the number of support vectors decreases, sothe intuitive conclusion (systems that give fewer support vectors give better performance)often seems to fail. Furthermore, although the bound can be tighter than that found usingthe estimate of the VC dimension combined with Eq. (3), it can at the same time be lesspredictive, as we shall see in the next Section.7.5. VC, SV Bounds and the Actual RiskLet us put these observations to some use. As mentioned above, training an SVM RBFclassi�er will automatically give values for the RBF weights, number of centers, centerpositions, and threshold. For Gaussian RBFs, there is only one parameter left: the RBFwidth (� in Eq. (80)) (we assume here only one RBF width for the problem). Can we�nd the optimal value for that too, by choosing that � which minimizes D2=M2? Figure 14shows a series of experiments done on 28x28 NIST digit data, with 10,000 training points and60,000 test points. The top curve in the left hand panel shows the VC bound (i.e. the boundresulting from approximating the VC dimension in Eq. (3)23 by Eq. (85)), the middle curveshows the bound from leave-one-out (Eq. (93)), and the bottom curve shows the measuredtest error. Clearly, in this case, the bounds are very loose. The right hand panel shows justthe VC bound (the top curve, for �2 > 200), together with the test error, with the latterscaled up by a factor of 100 (note that the two curves cross). It is striking that the twocurves have minima in the same place: thus in this case, the VC bound, although loose,seems to be nevertheless predictive. Experiments on digits 2 through 9 showed that the VCbound gave a minimum for which �2 was within a factor of two of that which minimized thetest error (digit 1 was inconclusive). Interestingly, in those cases the VC bound consistentlygave a lower prediction for �2 than that which minimized the test error. On the other hand,the leave-one-out bound, although tighter, does not seem to be predictive, since it had nominimum for the values of �2 tested.
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358. LimitationsPerhaps the biggest limitation of the support vector approach lies in choice of the kernel.Once the kernel is �xed, SVM classi�ers have only one user-chosen parameter (the errorpenalty), but the kernel is a very big rug under which to sweep parameters. Some work hasbeen done on limiting kernels using prior knowledge (Sch�olkopf et al., 1998a; Burges, 1998),but the best choice of kernel for a given problem is still a research issue.A second limitation is speed and size, both in training and testing. While the speedproblem in test phase is largely solved in (Burges, 1996), this still requires two trainingpasses. Training for very large datasets (millions of support vectors) is an unsolved problem.Discrete data presents another problem, although with suitable rescaling excellent resultshave nevertheless been obtained (Joachims, 1997). Finally, although some work has beendone on training a multiclass SVM in one step24, the optimal design for multiclass SVMclassi�ers is a further area for research.9. ExtensionsWe very briey describe two of the simplest, and most e�ective, methods for improving theperformance of SVMs.The virtual support vector method (Sch�olkopf, Burges and Vapnik, 1996; Burges andSch�olkopf, 1997), attempts to incorporate known invariances of the problem (for example,translation invariance for the image recognition problem) by �rst training a system, andthen creating new data by distorting the resulting support vectors (translating them, in thecase mentioned), and �nally training a new system on the distorted (and the undistorted)data. The idea is easy to implement and seems to work better than other methods forincorporating invariances proposed so far.The reduced set method (Burges, 1996; Burges and Sch�olkopf, 1997) was introduced toaddress the speed of support vector machines in test phase, and also starts with a trainedSVM. The idea is to replace the sum in Eq. (46) by a similar sum, where instead of supportvectors, computed vectors (which are not elements of the training set) are used, and insteadof the �i, a di�erent set of weights are computed. The number of parameters is chosenbeforehand to give the speedup desired. The resulting vector is still a vector in H, andthe parameters are found by minimizing the Euclidean norm of the di�erence between theoriginal vector w and the approximation to it. The same technique could be used for SVMregression to �nd much more e�cient function representations (which could be used, forexample, in data compression).Combining these two methods gave a factor of 50 speedup (while the error rate increasedfrom 1.0% to 1.1%) on the NIST digits (Burges and Sch�olkopf, 1997).10. ConclusionsSVMs provide a new approach to the problem of pattern recognition (together with re-gression estimation and linear operator inversion) with clear connections to the underlyingstatistical learning theory. They di�er radically from comparable approaches such as neuralnetworks: SVM training always �nds a global minimum, and their simple geometric inter-pretation provides fertile ground for further investigation. An SVM is largely characterizedby the choice of its kernel, and SVMs thus link the problems they are designed for with alarge body of existing work on kernel based methods. I hope that this tutorial will encouragesome to explore SVMs for themselves.



36AcknowledgmentsI'm very grateful to P. Knirsch, C. Nohl, E. Osuna, E. Rietman, B. Sch�olkopf, Y. Singer, A.Smola, C. Stenard, and V. Vapnik, for their comments on the manuscript. Thanks also tothe reviewers, and to the Editor, U. Fayyad, for extensive, useful comments. Special thanksare due to V. Vapnik, under whose patient guidance I learned the ropes; to A. Smola andB. Sch�olkopf, for many interesting and fruitful discussions; and to J. Shawe-Taylor and D.Schuurmans, for valuable discussions on structural risk minimization.AppendixA.1. Proofs of TheoremsWe collect here the theorems stated in the text, together with their proofs. The Lemma hasa shorter proof using a \Theorem of the Alternative," (Mangasarian, 1969) but we wishedto keep the proofs as self-contained as possible.Lemma 1 Two sets of points in Rn may be separated by a hyperplane if and only if theintersection of their convex hulls is empty.Proof: We allow the notions of points in Rn, and position vectors of those points, to beused interchangeably in this proof. Let CA, CB be the convex hulls of two sets of pointsA, B in Rn. Let A � B denote the set of points whose position vectors are given bya� b; a 2 A; b 2 B (note that A�B does not contain the origin), and let CA � CB havethe corresponding meaning for the convex hulls. Then showing that A and B are linearlyseparable (separable by a hyperplane) is equivalent to showing that the set A�B is linearlyseparable from the origin O. For suppose the latter: then 9 w 2 Rn; b 2 R; b < 0 suchthat x � w + b > 0 8x 2 A � B. Now pick some y 2 B, and denote the set of all pointsa�b+y; a 2 A; b 2 B by A�B+y. Then x �w+ b > y �w 8x 2 A�B+y, and clearlyy �w+ b < y �w, so the sets A�B+y and y are linearly separable. Repeating this processshows that A � B is linearly separable from the origin if and only if A and B are linearlyseparable.We now show that, if CATCB = ;, then CA � CB is linearly separable from the origin.Clearly CA � CB does not contain the origin. Furthermore CA � CB is convex, since8x1 = a1�b1; x2 = a2�b2; � 2 [0; 1]; a1; a2 2 CA; b1;b2 2 CB , we have (1��)x1+�x2 =((1 � �)a1 + �a2) � ((1� �)b1 + �b2) 2 CA � CB . Hence it is su�cient to show that anyconvex set S, which does not contain O, is linearly separable from O. Let xmin 2 S bethat point whose Euclidean distance from O, kxmink, is minimal. (Note there can be onlyone such point, since if there were two, the chord joining them, which also lies in S, wouldcontain points closer to O.) We will show that 8x 2 S, x � xmin > 0. Suppose 9 x 2 Ssuch that x � xmin � 0. Let L be the line segment joining xmin and x. Then convexityimplies that L � S. Thus O =2 L, since by assumption O =2 S. Hence the three points O, xand xmin form an obtuse (or right) triangle, with obtuse (or right) angle occurring at thepoint O. De�ne n̂ � (x � xmin)=kx � xmink. Then the distance from the closest point inL to O is kxmink2 � (xmin � n̂)2, which is less than kxmink2. Hence x � xmin > 0 and S islinearly separable from O. Thus CA�CB is linearly separable from O, and a fortiori A�Bis linearly separable from O, and thus A is linearly separable from B.It remains to show that, if the two sets of points A, B are linearly separable, the intersec-tion of their convex hulls if empty. By assumption there exists a pair w 2 Rn; b 2 R, suchthat 8ai 2 A; w �ai+b > 0 and 8bi 2 B; w �bi+b < 0. Consider a general point x 2 CA. It



37may be written x =Pi �iai; P�i = 1; 0 � �i � 1. Then w �x+ b =Pi �ifw �ai+ bg > 0.Similarly, for points y 2 CB , w � y + b < 0. Hence CATCB = ;, since otherwise wewould be able to �nd a point x = y which simultaneously satis�es both inequalities.Theorem 1: Consider some set of m points in Rn. Choose any one of the points asorigin. Then the m points can be shattered by oriented hyperplanes if and only if theposition vectors of the remaining points are linearly independent.Proof: Label the origin O, and assume that the m� 1 position vectors of the remainingpoints are linearly independent. Consider any partition of the m points into two subsets,S1 and S2, of order m1 and m2 respectively, so that m1 +m2 = m. Let S1 be the subsetcontaining O. Then the convex hull C1 of S1 is that set of points whose position vectors xsatisfyx = m1Xi=1 �is1i; m1Xi=1 �i = 1; �i � 0 (A.1)where the s1i are the position vectors of the m1 points in S1 (including the null positionvector of the origin). Similarly, the convex hull C2 of S2 is that set of points whose positionvectors x satisfyx = m2Xi=1 �is2i; m2Xi=1 �i = 1; �i � 0 (A.2)where the s2i are the position vectors of the m2 points in S2. Now suppose that C1 andC2 intersect. Then there exists an x 2 Rn which simultaneously satis�es Eq. (A.1) and Eq.(A.2). Subtracting these equations gives a linear combination of the m�1 non-null positionvectors which vanishes, which contradicts the assumption of linear independence. By thelemma, since C1 and C2 do not intersect, there exists a hyperplane separating S1 and S2.Since this is true for any choice of partition, the m points can be shattered.It remains to show that if the m�1 non-null position vectors are not linearly independent,then the m points cannot be shattered by oriented hyperplanes. If the m�1 position vectorsare not linearly independent, then there exist m� 1 numbers, i, such thatm�1Xi=1 isi = 0 (A.3)If all the i are of the same sign, then we can scale them so that i 2 [0; 1] andPi i = 1.Eq. (A.3) then states that the origin lies in the convex hull of the remaining points; hence,by the lemma, the origin cannot be separated from the remaining points by a hyperplane,and the points cannot be shattered.If the i are not all of the same sign, place all the terms with negative i on the right:Xj2I1 jj jsj = Xk2I2 jkjsk (A.4)where I1, I2 are the indices of the corresponding partition of SnO (i.e. of the set S with theorigin removed). Now scale this equation so that either Pj2I1 jj j = 1 and Pk2I2 jkj � 1,or Pj2I1 jj j � 1 and Pk2I2 jkj = 1. Suppose without loss of generality that the latterholds. Then the left hand side of Eq. (A.4) is the position vector of a point lying in the



38convex hull of the points fSj2I1 sjgSO (or, if the equality holds, of the points fSj2I1 sjg),and the right hand side is the position vector of a point lying in the convex hull of the pointsSk2I2 sk, so the convex hulls overlap, and by the lemma, the two sets of points cannot beseparated by a hyperplane. Thus the m points cannot be shattered.Theorem 4: If the data is d-dimensional (i.e. L = Rd), the dimension of the mini-mal embedding space, for homogeneous polynomial kernels of degree p (K(x1;x2) = (x1 �x2)p; x1; x2 2 Rd), is �d+p�1p �.Proof: First we show that the the number of components of �(x) is �p+d�1p �. Label thecomponents of � as in Eq. (79). Then a component is uniquely identi�ed by the choiceof the d integers ri � 0, Pdi=1 ri = p. Now consider p objects distributed amongst d � 1partitions (numbered 1 through d � 1), such that objects are allowed to be to the left ofall partitions, or to the right of all partitions. Suppose m objects fall between partitionsq and q + 1. Let this correspond to a term xmq+1 in the product in Eq. (79). Similarly, mobjects falling to the left of all partitions corresponds to a term xm1 , and m objects fallingto the right of all partitions corresponds to a term xmd . Thus the number of distinct termsof the form xr11 xr22 � � �xrdd ; Pdi=1 ri = p; ri � 0 is the number of way of distributingthe objects and partitions amongst themselves, modulo permutations of the partitions andpermutations of the objects, which is �p+d�1p �.Next we must show that the set of vectors with components �r1r2���rd(x) span the spaceH.This follows from the fact that the components of �(x) are linearly independent functions.For suppose instead that the image of � acting on x 2 L is a subspace of H. Then thereexists a �xed nonzero vector V 2 H such thatdim(H)Xi=1 Vi�i(x) = 0 8x 2 L: (A.5)Using the labeling introduced above, consider a particular component of �:�r1r2���rd(x); dXi=1 ri = p: (A.6)Since Eq. (A.5) holds for all x, and since the mapping � in Eq. (79) certainly has allderivatives de�ned, we can apply the operator( @@x1 )r1 � � � ( @@xd )rd (A.7)to Eq. (A.5), which will pick that one term with corresponding powers of the xi in Eq.(79), givingVr1r2���rd = 0: (A.8)Since this is true for all choices of r1; � � � ; rd such thatPdi=1 ri = p, every component ofV must vanish. Hence the image of � acting on x 2 L spans H.A.2. Gap Tolerant Classi�ers and VC BoundsThe following point is central to the argument. One normally thinks of a collection of pointsas being \shattered" by a set of functions, if for any choice of labels for the points, a function



39from the set can be found which assigns those labels to the points. The VC dimension of thatset of functions is then de�ned as the maximum number of points that can be so shattered.However, consider a slightly di�erent de�nition. Let a set of points be shattered by a setof functions if for any choice of labels for the points, a function from the set can be foundwhich assigns the incorrect labels to all the points. Again let the VC dimension of that setof functions be de�ned as the maximum number of points that can be so shattered.It is in fact this second de�nition (which we adopt from here on) that enters the VCbound proofs (Vapnik, 1979; Devroye, Gy�or� and Lugosi, 1996). Of course for functionswhose range is f�1g (i.e. all data will be assigned either positive or negative class), the twode�nitions are the same. However, if all points falling in some region are simply deemed tobe \errors", or \correct", the two de�nitions are di�erent. As a concrete example, supposewe de�ne \gap intolerant classi�ers", which are like gap tolerant classi�ers, but which labelall points lying in the margin or outside the sphere as errors. Consider again the situation inFigure 12, but assign positive class to all three points. Then a gap intolerant classi�er withmargin width greater than the ball diameter cannot shatter the points if we use the �rstde�nition of \shatter", but can shatter the points if we use the second (correct) de�nition.With this caveat in mind, we now outline how the VC bounds can apply to functions withrange f�1; 0g, where the label 0 means that the point is labeled \correct." (The boundswill also apply to functions where 0 is de�ned to mean \error", but the corresponding VCdimension will be higher, weakening the bound, and in our case, making it useless). We willfollow the notation of (Devroye, Gy�or� and Lugosi, 1996).Consider points x 2 Rd, and let p(x) denote a density on Rd. Let � be a function on Rdwith range f�1; 0g, and let � be a set of such functions. Let each x have an associatedlabel yx 2 f�1g. Let fx1; � � � ;xng be any �nite number of points in Rd: then we require �to have the property that there exists at least one � 2 � such that �(xi) 2 f�1g 8 xi. Forgiven �, de�ne the set of points A byA = fx : yx = 1; �(x) = �1g [ fx : yx = �1; �(x) = 1g (A.9)We require that the � be such that all sets A are measurable. Let A denote the set of allA.De�nition: Let xi; i = 1; � � � ; n be n points. We de�ne the empirical risk for the setfxi; �g to be�n(fxi; �g) = (1=n) nXi=1 Ixi2A: (A.10)where I is the indicator function. Note that the empirical risk is zero if �(xi) = 0 8 xi.De�nition: We de�ne the actual risk for the function � to be�(�) = P (x 2 A): (A.11)Note also that those points x for which �(x) = 0 do not contribute to the actual risk.De�nition: For �xed (x1; � � � ;xn) 2 Rd, let NA be the number of di�erent sets inffx1; � � � ;xng \ A : A 2 Ag (A.12)



40where the sets A are de�ned above. The n-th shatter coe�cient of A is de�neds(A; n) = maxx1;���;xn2fRdgnNA(x1; � � � ;xn): (A.13)We also de�ne the VC dimension for the class A to be the maximum integer k � 1 forwhich s(A; k) = 2k.Theorem 8 (adapted from Devroye, Gy�or� and Lugosi, 1996, Theorem 12.6):Given �n(fxi; �g),�(�) and s(A; n) de�ned above, and given n points (x1; :::;xn) 2 Rd, let �0 denote that sub-set of � such that all � 2 �0 satisfy �(xi) 2 f�1g 8 xi. (This restriction may be viewed aspart of the training algorithm). Then for any such �,P (j�n(fxi; �g)� �(�)j > �) � 8s(A; n) exp�n�2=32 (A.14)The proof is exactly that of (Devroye, Gy�or� and Lugosi, 1996), Sections 12.3, 12.4 and12.5, Theorems 12.5 and 12.6. We have dropped the \sup" to emphasize that this holdsfor any of the functions �. In particular, it holds for those � which minimize the empiricalerror and for which all training data take the values f�1g. Note however that the proofonly holds for the second de�nition of shattering given above. Finally, note that the usualform of the VC bounds is easily derived from Eq. (A.14) by using s(A; n) � (en=h)h (whereh is the VC dimension) (Vapnik, 1995), setting � = 8s(A; n) exp�n�2=32, and solving for �.Clearly these results apply to our gap tolerant classi�ers of Section 7.1. For them, aparticular classi�er � 2 � is speci�ed by a set of parameters fB; H; Mg, where B is aball in Rd, D 2 R is the diameter of B, H is a d � 1 dimensional oriented hyperplane inRd, and M 2 R is a scalar which we have called the margin. H itself is speci�ed by itsnormal (whose direction speci�es which points H+ (H�) are labeled positive (negative) bythe function), and by the minimal distance from H to the origin. For a given � 2 �, themargin set SM is de�ned as the set consisting of those points whose minimal distance to His less than M=2. De�ne Z � �SM TB, Z+ � ZTH+, and Z� � ZTH�. The function �is then de�ned as follows:�(x) = 1 8x 2 Z+; �(x) = �1 8x 2 Z�; �(x) = 0 otherwise (A.15)and the corresponding sets A as in Eq. (A.9).Notes1. K. M�uller, Private Communication2. The reader in whom this elicits a sinking feeling is urged to study (Strang, 1986; Fletcher,1987; Bishop, 1995). There is a simple geometrical interpretation of Lagrange multipliers: ata boundary corresponding to a single constraint, the gradient of the function being extremizedmust be parallel to the gradient of the function whose contours specify the boundary. At aboundary corresponding to the intersection of constraints, the gradient must be parallel to alinear combination (non-negative in the case of inequality constraints) of the gradients of thefunctions whose contours specify the boundary.3. In this paper, the phrase \learning machine" will be used for any function estimation algo-rithm, \training" for the parameter estimation procedure, \testing" for the computation of thefunction value, and \performance" for the generalization accuracy (i.e. error rate as test setsize tends to in�nity), unless otherwise stated.



414. Given the name \test set," perhaps we should also use \train set;" but the hobbyists got there�rst.5. We use the term \oriented hyperplane" to emphasize that the mathematical object consideredis the pair fH;ng, where H is the set of points which lie in the hyperplane and n is a particularchoice for the unit normal. Thus fH;ng and fH;�ng are di�erent oriented hyperplanes.6. Such a set of m points (which span an m� 1 dimensional subspace of a linear space) are saidto be \in general position" (Kolmogorov, 1970). The convex hull of a set of m points in generalposition de�nes an m� 1 dimensional simplex, the vertices of which are the points themselves.7. The derivation of the bound assumes that the empirical risk converges uniformly to the actualrisk as the number of training observations increases (Vapnik, 1979). A necessary and su�cientcondition for this is that liml!1H(l)=l = 0, where l is the number of training samples andH(l) is the VC entropy of the set of decision functions (Vapnik, 1979; Vapnik, 1995). For anyset of functions with in�nite VC dimension, the VC entropy is l log 2: hence for these classi�ers,the required uniform convergence does not hold, and so neither does the bound.8. There is a nice geometric interpretation for the dual problem: it is basically �nding the twoclosest points of convex hulls of the two sets. See (Bennett and Bredensteiner, 1998).9. One can de�ne the torque to be��1:::�n�2 = ��i:::�nx�n�1F�n (A.16)where repeated indices are summed over on the right hand side, and where � is the totallyantisymmetric tensor with �1:::n = 1. (Recall that Greek indices are used to denote tensorcomponents). The sum of torques on the decision sheet is then:Xi ��1:::�nsi�n�1Fi�n =Xi ��1:::�nsi�n�1�iyiŵ�n = ��1:::�nw�n�1 ŵ�n = 0 (A.17)10. In the original formulation (Vapnik, 1979) they were called \extreme vectors."11.By \decision function" we mean a function f(x) whose sign represents the class assigned todata point x.12.By \intrinsic dimension" we mean the number of parameters required to specify a point on themanifold.13.Alternatively one can argue that, given the form of the solution, the possible w must lie in asubspace of dimension l.14.Work in preparation.15.Thanks to A. Smola for pointing this out.16.Many thanks to one of the reviewers for pointing this out.17.The core quadratic optimizer is about 700 lines of C++. The higher level code (to handlecaching of dot products, chunking, IO, etc) is quite complex and considerably larger.18.Thanks to L. Kaufman for providing me with these results.19.Recall that the \ceiling" sign de means \smallest integer greater than or equal to." Also, thereis a typo in the actual formula given in (Vapnik, 1995), which I have corrected here.20.Note, for example, that the distance between every pair of vertices of the symmetric simplexis the same: see Eq. (26). However, a rigorous proof is needed, and as far as I know is lacking.21.Thanks to J. Shawe-Taylor for pointing this out.22.V. Vapnik, Private Communication.23.There is an alternative bound one might use, namely that corresponding to the set of totallybounded non-negative functions (Equation (3.28) in (Vapnik, 1995)). However, for loss func-tions taking the value zero or one, and if the empirical risk is zero, this bound is looser thanthat in Eq. (3) whenever h(log(2l=h)+1)�log(�=4)l > 1=16, which is the case here.24.V. Blanz, Private CommunicationReferences10M.A. Aizerman, E.M. Braverman, and L.I. Rozoner. Theoretical foundations of the potential functionmethod in pattern recognition learning. Automation and Remote Control, 25:821{837, 1964.
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