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Abstract

We introduce and analyze a new algorithm for linear classification which combines Rosen-
blatt's perceptron algorithm with Helmbold and Warmuth's leave-one-out method. Like Vap-
nik's maximal-margin classifier, our algorithm takes advantage of data that are linearly sep-
arable with large margins. Compared to Vapnik's algorithm,however, ours is much simpler
to implement, and much more efficient in terms of computationtime. We also show that our
algorithm can be efficiently used in very high dimensional spaces using kernel functions. We
performed some experiments using our algorithm, and some variants of it, for classifying im-
ages of handwritten digits. The performance of our algorithm is close to, but not as good as, the
performance of maximal-margin classifiers on the same problem, while saving significantly on
computation time and programming effort.

1 Introduction

One of the most influential developments in the theory of machine learning in the lastfew years
is Vapnik's work on support vector machines (SVM) [18]. Vapnik's analysis suggests the follow-
ing simple method for learning complex binary classifiers. First, use some fixed mapping� to
map the instances into some very high dimensional space in which the two classes are linearly
separable. Then use quadratic programming to find the vector that classifies all the data correctly
and maximizes themargin, i.e., the minimal distance between the separating hyperplane and the
instances.

There are two main contributions of his work. The first is a proof of a new bound on the
difference between the training error and the test error of a linear classifier that maximizes the�A preliminary version of this paper appeared in theProceedings of the Eleventh Annual Conference on Computa-
tional Learning Theory, 1998. The current draft has been submitted for journal publication.



margin. The significance of this bound is that it depends only on the size of the margin (or the
number of support vectors) and not on the dimension. It is superior to the bounds that can be given
for arbitrary consistent linear classifiers.

The second contribution is a method for computing the maximal-margin classifierefficiently
for some specific high dimensional mappings. This method is based on the idea of kernel functions,
which are described in detail in Section 4.

The main part of algorithms for finding the maximal-margin classifier is a computation of a
solution for a large quadratic program. The constraints in the program correspond to thetraining
examples so their number can be very large. Much of the recent practical work onsupport vector
machines is centered on finding efficient ways of solving these quadratic programmingproblems.

In this paper, we introduce a new and simpler algorithm for linear classification which takes
advantage of data that are linearly separable with large margins. We named the new algorithm
thevoted-perceptronalgorithm. The algorithm is based on the well known perceptron algorithm of
Rosenblatt [16, 17] and a transformation of online learning algorithms to batch learning algorithms
developed by Helmbold and Warmuth [9]. Moreover, following the work of Aizerman, Braverman
and Rozonoer [1], we show that kernel functions can be used with our algorithm so that we can run
our algorithm efficiently in very high dimensional spaces. Our algorithm and its analysis involve
little more than combining these three known methods. On the other hand, the resultingalgorithm
is very simple and easy to implement, and the theoretical bounds on the expected generalization
error of the new algorithm are almost identical to the bounds for SVM's given by Vapnikand
Chervonenkis [19] in the linearly separable case.

We repeated some of the experiments performed by Cortes and Vapnik [6] on the use of SVM
on the problem of classifying handwritten digits. We tested both the voted-perceptron algorithm
and a variant based on averaging rather than voting. These experiments indicatethat the use of ker-
nel functions with the perceptron algorithm yields a dramatic improvement in performance, both
in test accuracy and in computation time. In addition, we found that, when training time is limited,
the voted-perceptron algorithm performs better than the traditional way of using the perceptron
algorithm (although all methods converge eventually to roughly the same level of performance).

Recently, Friess, Cristianini and Campbell [7] have experimented witha different online learn-
ing algorithm called theadatron. This algorithm was suggested by Anlauf and Biehl [2] as a
method for calculating the largest margin classifier (also called the “maximally stable perceptron”).
They proved that their algorithm converges asymptotically to the correct solution.

Our paper is organized as follows. In Section 2, we describe the voted perceptron algorithm.
In Section 3, we derive upper bounds on the expected generalization error for both the linearly
separable and inseparable cases. In Section 4, we review the method of kernelsand describe how
it is used in our algorithm. In Section 5, we summarize the results of our experiments on the
handwritten digit recognition problem. We conclude with Section 6 in which we summarize our
observations on the relations between the theory and the experiments and suggest somenew open
problems.
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2 The Algorithm

We assume that all instances are pointsx 2 Rn. We usejjxjj to denote the Euclidean length ofx.
For most of the paper, we assume that labelsy are inf�1;+1g.

The basis of our study is the classical perceptron algorithm invented by Rosenblatt [16, 17].
This is a very simple algorithm most naturally studied in the online learning model. The online
perceptron algorithm starts with an initial zero prediction vectorv = 0. It predicts the label of
a new instancex to beŷ = sign(v � x). If this prediction differs from the labely, it updates the
prediction vector tov = v + yx. If the prediction is correct thenv is not changed. The process
then repeats with the next example.

The most common way the perceptron algorithm is used for learning from a batch of training
examples is to run the algorithm repeatedly through the training set until it finds a prediction vector
which is correct on all of the training set. This prediction rule is then used for predicting the labels
on the test set.

Block [3], Novikoff [15] and Minsky and Papert [14] have shown that if the data are linearly
separable, then the perceptron algorithm will make a finite number of mistakes, and therefore, if
repeatedly cycled through the training set, will converge to a vector which correctly classifies all
of the examples. Moreover, the number of mistakes is upper bounded by a function of the gap
between the positive and negative examples, a fact that will be central to ouranalysis.

In this paper, we propose to use a more sophisticated method of applying the online perceptron
algorithm to batch learning, namely, a variation of the leave-one-out method of Helmbold and
Warmuth [9]. In thevoted-perceptronalgorithm, we store more information during training and
then use this elaborate information to generate better predictions on the test data. The algorithm
is detailed in Figure 1. The information we maintain during training is the list of all prediction
vectors that were generated after each and every mistake. For each such vector, we count the
number of iterations it “survives” until the next mistake is made; we refer to this count as the
“weight” of the prediction vector.1 To calculate a prediction we compute the binary prediction of
each one of the prediction vectors and combine all these predictions by a weighted majority vote.
The weights used are the survival times described above. This makes intuitive sense as “good”
prediction vectors tend to survive for a long time and thus have larger weight in the majority vote.

3 Analysis

In this section, we give an analysis of the voted-perceptron algorithm for the caseT = 1 in which
the algorithm runs exactly once through the training data. We also quote a theorem of Vapnik and
Chervonenkis [19] for the linearly separable case. This theorem bounds the generalization error of
the consistent perceptron found after the perceptron algorithm is run to convergence. Interestingly,
for the linearly separable case, the theorems yield very similar bounds.

As we shall see in the experiments, the algorithm actually continues to improve performance
afterT = 1. We have no theoretical explanation for this improvement.

If the data are linearly separable, then the perceptron algorithm will eventually converge on1Storing all of these vectors might seem an excessive waste ofmemory. However, as we shall see, when perceptrons
are used together with kernels, the excess in memory and computition is really quite minimal.
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Training
Input: a labeled training seth(x1; y1); : : : ; (xm; ym)i

number of epochsT
Output: a list of weighted perceptronsh(v1; c1); : : : ; (vk; ck)i� Initialize: k := 0, v1 := 0, c1 := 0.� RepeatT times:

– For i = 1; : : : ;m:� Compute prediction:̂y := sign(vk � xi)� If ŷ = y thenck := ck + 1.
elsevk+1 := vk + yixi;ck+1 := 1;k := k + 1.

Prediction
Given: the list of weighted perceptrons:h(v1; c1); : : : ; (vk; ck)i

an unlabeled instance:x
compute a predicted labelŷ as follows:s = kXi=1 ci sign(vi � x); ŷ = sign(s) :

Figure 1: The voted-perceptron algorithm.

some consistent hypothesis (i.e., a prediction vector that is correct on all of the training examples).
As this prediction vector makes no further mistakes, it will eventually dominate the weighted vote
in the voted-perceptron algorithm. Thus, for linearly separable data, whenT ! 1, the voted-
perceptron algorithm converges to the regular use of the perceptron algorithm, which is to predict
using the final prediction vector.

As we have recently learned, the performance of the final prediction vector has been analyzed
by Vapnik and Chervonenkis [19]. We discuss their bound at the end of this section.

We now give our analysis for the caseT = 1. The analysis is in two parts and mostly com-
bines known material. First, we review the classical analysis of the onlineperceptron algorithm
in the linearly separable case, as well as an extension to the inseparablecase. Second, we review
an analysis of the leave-one-out conversion of an online learning algorithm to a batch learning
algorithm.

3.1 The online perceptron algorithm in the separable case

Our analysis is based on the following well known result first proved by Block [3] and Novikoff [15].
The significance of this result is that the number of mistakes does not depend on the dimension
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of the instances. This gives reason to believe that the perceptron algorithm might perform well in
high dimensional spaces.

Theorem 1 (Block, Novikoff) Leth(x1; y1); : : : ; (xm; ym)i be a sequence of labeled examples withjjxijj � R. Suppose that there exists a vectoru such thatjjujj = 1 andyi(u � xi) �  for all ex-
amples in the sequence. Then the number of mistakes made by the online perceptron algorithm on
this sequence is at most(R=)2.
Proof: Although the proof is well known, we repeat it for completeness.

Let vk denote the prediction vector used prior to thekth mistake. Thus,v1 = 0 and, if thekth
mistake occurs on(xi; yi) thenyi(vk � xi) � 0 andvk+1 = vk + yixi.

We have vk+1 � u = vk � u+ yi(u � xi) � vk � u+ :
Therefore,vk+1 � u � k.

Similarly, jjvk+1jj2 = jjvkjj2 + 2yi(vk � xi) + jjxijj2 � jjvkjj2 +R2:
Therefore,jjvk+1jj2 � kR2.

Combining, gives pkR � jjvk+1jj � vk+1 � u � k
which impliesk � (R=)2 proving the theorem.

3.2 Analysis for the inseparable case

If the data are not linearly separable then Theorem 1 cannot be used directly. However, we now
give a generalized version of the theorem which allows for some mistakes inthe training set. As
far as we know, this theorem is new, although the proof technique is very similar tothat of Klasner
and Simon [11, Theorem 2.2].

Theorem 2 Let h(x1; y1); : : : ; (xm; ym)i be a sequence of labeled examples withjjxijj � R. Letu
be any vector withjjujj = 1 and let > 0. Define the deviation of each example asdi = maxf0;  � yi(u � xi)g ;
and defineD = qPmi=1 d2i . Then the number of mistakes of the online perceptron algorithm on this
sequence is bounded by  R +D !2 :
Proof: The caseD = 0 follows from Theorem 1, so we can assume thatD > 0.

The proof is based on a reduction of the inseparable case to a separable case in a higher dimen-
sional space. As we will see, the reduction does not change the algorithm.

We extend the instance spaceRn toRn+m by addingm new dimensions, one for each example.
Let x0i 2 Rn+m denote the extension of the instancexi. We set the firstn coordinates ofx0i equal to
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xi. We set the(n + i)' th coordinate to� where� is a positive real constant whose value will be
specified later. The rest of the coordinates ofx0i are set to zero.

Next we extend the comparison vectoru 2 Rn tou0 2 Rn+m. We use the constantZ, which we
calculate shortly, to ensure that the length ofu0 is one. We set the firstn coordinates ofu0 equal
to u=Z. We set the(n + i)' th coordinate to(yidi)=(Z�). It is easy to check that the appropriate

normalization isZ = q1 +D2=�2.
Consider the value ofyi(u0 � x0i):yi(u0 � x0i) = yi  u � xiZ +�yidiZ�!= yi(u � xi)Z + diZ� yi(u � xi)Z +  � yi(u � xi)Z= Z :

Thus the extended prediction vectoru0 achieves a margin of=q1 +D2=�2 on the extended
examples.

In order to apply Theorem 1, we need a bound on the length of the instances. AsR � jjxijj for
all i, and the only additional non-zero coordinate has value�, we get thatjjx0ijj2 � R2+�2. Using
these values in Theorem 1 we get that the number of mistakes of the online perceptron algorithm
if run in the extended space is at most(R2 +�2)(1 +D2=�2)2 :
Setting� = pRD minimizes the bound and yields the bound given in the statement of the theo-
rem.

To finish the proof we show that the predictions of the perceptron algorithm in the extended
space are equal to the predictions of the perceptron in the original space. We usevi to denote
the prediction vector used for predicting the instancexi in the original space andv0i to denote the
prediction vector used for predicting the corresponding instancex0i in the extended space. The
claim follows by induction over1 � i � m of the following three claims:

1. The firstn coordinates ofv0i are equal to those ofvi.
2. The(n+ i)' th coordinate ofv0i is equal to zero.

3. sign(v0i � x0i) = sign(vi � xi).
3.3 Converting online to batch

We now have an algorithm that will make few mistakes when presented with theexamples one
by one. However, the setup we are interested in here is the batch setup in which we are given a
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training set, according to which we generate a hypothesis, which is then tested on a seperate test
set. If the data are linearly separable then the perceptron algorithm eventually converges and we
can use this final prediction rule as our hypothesis. However, the data might not be separable or
we might not want to wait till convergence is achieved. In this case, we haveto decide on the best
prediction rule given the sequence of different classifiers that the online algorithm genarates. One
solution to this problem is to use the prediction rule that has survived for the longesttime before it
was changed. A prediction rule that has survived for a long time is likely to be better than one that
has only survived for a few iterations. This method was suggested by Gallant [8]who called it the
pocket method. Littlestone [13], suggested a two-phase method in which the performance of allof
the rules is tested on a seperate test set and the rule with the least error is then used. Here we use
a different method for converting the online perceptron algorithm into a batch learning algorithm;
the method combines all of the rules generated by the online algorithm after it was run for just a
single time through the training data.

We now describe Helmbold and Warmuth's [9] very simple “leave-one-out” methodof convert-
ing an online learning algorithm into a batch learning algorithm. Our voted-perceptron algorithm
is a simple application of this general method. We start with the randomized version. Given a
training seth(x1; y1); : : : ; (xm; ym)i and an unlabeled instancex, we do the following. We select
a numberr in f0; : : : ;mg uniformly at random. We then take the firstr examples in the training
sequence and append the unlabeled instance to the end of this subsequence. We run the online
algorithm on this sequence of lengthr + 1, and use the prediction of the online algorithm on the
last unlabeled instance.

In the deterministic leave-one-out conversion, we modify the randomized leave-one-out con-
version to make it deterministic in the obvious way by choosing the most likely prediction. That is,
we compute the prediction that would result for all possible choices ofr in f0; : : : ;mg, and we take
majority vote of these predictions. It is straightforward to show that takinga majority vote runs the
risk of doubling the probability of mistake while it has the potential of significantly decreasing it.
In this work we decided to focus primarily on deterministic voting rather than randomization.

The following theorem follows directly from Helmbold and Warmuth [9]. (See also Kivinen
and Warmuth [10] and Cesa-Bianchi et al. [5].)

Theorem 3 Assume all examples(x; y) are generated i.i.d. LetE be theexpectednumber of
mistakes that the online algorithmA makes on a randomly generated sequence ofm+1 examples.
Then givenm random training examples, the expected probability that the randomized leave-one-
out conversion ofA makes a mistake on a randomly generated test instance is at mostE=(m+1).
For the deterministic leave-one-out conversion, this expected probability is at most2E=(m + 1).
3.4 Putting it all together

It can be verified that the deterministic leave-one-out conversion of the online perceptron algorithm
is exactly equivalent to the voted-perceptron algorithm of Figure 1 withT = 1. Thus, combining
Theorems 2 and 3, we have:

Corollary 4 Assume all examples are generated i.i.d. at random. Leth(x1; y1); : : : ; (xm; ym)i be a
sequence of training examples and let(xm+1; ym+1) be a test example. LetR = max1�i�m+1 jjxijj.
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For jjujj = 1 and > 0, let Du; = vuutm+1Xi=1 (maxf0;  � yi(u � xi)g)2:
Then the probability (over the choice of allm+ 1 examples) that the voted-perceptron algorithm
with T = 1 does not predictym+1 on test instancexm+1 is at most2m+ 1 E24 infjjujj=1;>0 R +Du; !235
(where the expectation is also over the choice of allm+ 1 examples).

In fact, the same proof yields a slightly stronger statement which depends only on examples on
which mistakes occur. Formally, this can be stated as follows:

Corollary 5 Assume all examples are generated i.i.d. at random. Suppose that we run the online
perceptron algorithm once on the sequenceh(x1; y1); : : : ; (xm+1; ym+1)i, and thatk mistakes occur
on examples with indicesi1; : : : ; ik. RedefineR = max1�j�k jjxij jj, and redefineDu; = vuuut kXj=1 �maxf0;  � yij(u � xij )g�2:
Now suppose that we run the voted-perceptron algorithm on training examplesh(x1; y1); : : : ; (xm; ym)i
for a single epoch. Then the probability (over the choice of allm + 1 examples) that the voted-
perceptron algorithm does not predictym+1 on test instancexm+1 is at most2m+ 1 E [k] � 2m+ 1 E24 infjjujj=1;>0 R+Du; !235
(where the expectation is also over the choice of allm+ 1 examples).

A rather similar theorem was proved by Vapnik and Chervonenkis [19, Theorem 6.1] for train-
ing the perceptron algorithm to convergence and predicting with the final perceptron vector.

Theorem 6 (Vapnik and Chervonenkis) Assume all examples are generated i.i.d. at random.
Suppose that we run the online perceptron algorithm on the sequenceh(x1; y1); : : : ; (xm+1; ym+1)i
repeatedly until convergence, and that mistakes occur on a total ofk examples with indicesi1; : : : ; ik.
LetR = max1�j�k jjxij jj, and let  = maxjjujj=1 min1�j�k yij(u � xij):
Assume > 0 with probability one.
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Now suppose that we run the perceptron algorithm to convergence on training examplesh(x1; y1); : : : ; (xm; ym)i. Then the probability (over the choice of allm + 1 examples) that the
final perceptron does not predictym+1 on test instancexm+1 is at most1m+ 1E24min8<:k; R !29=;35
(where the expectation is also over the choice of allm+ 1 examples).

For the separable case (in whichDu; can be set to zero), Corollary 5 is almost identical to
Theorem 6. One difference is that in Corolary 5, we lose a factor of 2. This is because we use the
deterministic algorithm, rather than the randomized one. The other, more important difference is
thatk, the number of mistakes that the perceptron makes, will almost certainly be larger when the
perceptron is run to convergence than when it is run just for a single epoch. This gives us some
indication that running the voted-perceptron algorithm withT = 1 might be better than running it
to convergence; however, our experiments do not support this prediction.

Vapnik [20] also gives a very similar bound for the expected error of support-vector machines.
There are two differences between the bounds. First, the set of vectors on which the perceptron
makes a mistake is replaced by the set of “essential support vectors.” Second,the radiusR is the
maximal distance of any support vector from some optimally chosen vector, rather than from the
origin. (The support vectors are the training examples which fall closest to thedecision boundary.)

4 Kernel-based Classification

We have seen that the voted-perceptron algorithm has guaranteed performance bounds when the
data are (almost) linearly separable. However, linear separabilityis a rather strict condition. One
way to make the method more powerful is by adding dimensions or features to the input space.
These new coordinates are nonlinear functions of the original coordinates. Usually if we add
enough coordinates we can make the data linearly separable. If the separation issufficiently good
(in the senses of Theorems 1 and 2) then the expected generalization error willbe small (provided
we do not increase the complexity of instances too much by moving to the higher dimensional
space).

However, from a computational point of view, computing the values of the additional coor-
dinates can become prohibitively hard. This problem can sometimes be solved by theelegant
method of kernel functions. The use of kernel functions for classification problems wasproposed
by suggested Aizerman, Braverman and Rozonoer [1] who specifically describeda method for
combining kernal functions with the perceptron algorithm. Continuing their work, Boser,Guyon
and Vapnik [4] suggested using kernel functions with SVM's.

Kernel functions are functions of two variablesK(x; y) which can be represented as an inner
product�(x) � �(y) for some function� : Rn ! RN and someN > 0. In other words, we can
calculateK(x; y) by mappingx andy to vectors�(x) and�(y) and then taking their inner product.

For instance, an important kernel function that we use in this paper is the polynomial expansionK(x; y) = (1 + x � y)d : (1)
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There exist general conditions for checking if a function is a kernel function. In this particular case,
however, it is straightforward to construct� witnessing thatK is a kernel function. For instance,
for n = 3 andd = 2, we can choose�(x) = (1; x21; x22; x23;p2x1;p2x2;p2x3;p2x1x2;p2x1x3;p2x2x3):
In general, ford > 2, we can define�(x) to have one coordinatecM(x) for each monomialM(x)
of degree at mostd over the variablesx1; : : : ; xn, and wherec is an appropriately chosen constant.

Aizerman, Braverman and Rozonoer observed that the perceptron algorithm can beformulated
in such a way that all computations involving instances are in fact in termsof inner products
x � y between pairs of instances. Thus, if we want to map each instancex to a vector�(x) in a
high dimensional space, we only need to be able to compute inner products�(x) � �(y), which
is exactly what is computed by a kernel function. Conceptually, then, with the kernelmethod,
we can work with vectors in a very high dimensional space and the algorithm's performance only
depends on linear separability in this expanded space. Computationally, however,we only need
to modify the algorithm by replacing each inner product computationx � y with a kernel function
computationK(x; y). Similar observations were made by Boser, Guyon and Vapnik for Vapnik's
SVM algorithm.

In this paper, we observe that all the computations in the voted-perceptron learning algorithm
involving instances can also be written in terms of inner products, which means that we can apply
the kernel method to the voted-perceptron algorithm as well. Referring to Figure 1, we see that
both training and prediction involve inner products between instancesx and prediction vectorsvk.
In order to perform this operation efficiently, we store each prediction vector vk in an implicit
form, as the sum of instances that were added or subtracted in order to create it. That is, eachvk
can be written and stored as a sum vk = k�1Xj=1 yijxij
for appropriate indicesij. We can thus calculate the inner product withx asvk � x = k�1Xj=1 yij(xij � x):
To use a kernel functionK, we would merely replace eachxij � x byK(xij ; x).

Computing the prediction of the final vectorvk on a test instancex requiresk kernel calcu-
lations wherek is the number of mistakes made by the algorithm during training. Naively, the
prediction of the voted-perceptron would seem to requireO(k2) kernel calculations since we need
to computevj � x for eachj � k, and sincevj itself involves a sum ofj � 1 instances. However,
taking advantage of the recurrencevj+1 � x = vj � x + yij(xij � x), it is clear that we can compute
the prediction of the voted-perceptron also using onlyk kernel calculations.

Thus, calculating the prediction of the voted-perceptron when using kernels is only marginally
more expensive than calculating the prediction of the final prediction vector, assuming that both
methods are trained for the same number of epochs.
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Figure 2: Learning curves for algorithms tested on NIST data.

5 Experiments

In our experiments, we followed closely the experimental setup used by Cortesand Vapnik [6] in
their experiments on the NIST OCR database.2 We chose to use this setup because the dataset
is widely available and because LeCun et al. [12] have published a detailed comparison of the
performance of some of the best digit classification systems in this setup.

Examples in this NIST database consist of labeled digital images of individual handwritten
digits. Each instance is a28 � 28 matrix in which each entry is an 8-bit representation of a grey
value, and labels are from the setf0; : : : ; 9g. The dataset consists of 60,000 training examples and
10,000 test examples. We treat each image as a vector inR784, and, like Cortes and Vapnik, we use
the polynomial kernels of Eq. (1) to expand this vector into very high dimensions.

To handle multiclass data, we essentially reduced to 10 binary problems. Thatis, we trained the
voted-perceptron algorithm once for each of the 10 classes. When training on class `, we replaced
each labeled example(xi; yi) (whereyi 2 f0; : : : ; 9g) by the binary-labeled example(xi;+1) ifyi = ` and by(xi;�1) if yi 6= `. Let h(v1̀; c1̀); : : : ; (vk̀`; ck̀`)i
be the sequence of weighted prediction vectors which result from training on class `.

To make predictions on a new instancex, we tried four different methods. In each method,
we first compute a scores` for each` 2 f0; : : : ; 9g and then predict with the label receiving the2National Institute for Standards and Technology, Special Database 3. See
http://www.research.att.com/�yann/ocr/ for information on obtaining this dataset and for a list of
relevant publications.
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T = 0.1 1 2 3 4 10 30d = 1 Vote 10.7 8.5 8.3 8.2 8.2 8.1
Avg. (unnorm) 10.9 8.7 8.5 8.4 8.3 8.3

(norm) 10.9 8.5 8.3 8.2 8.2 8.1
Last (unnorm) 16.0 14.7 13.6 13.9 13.7 13.5

(norm) 15.4 14.1 13.1 13.5 13.2 13.0
Rand. (unnorm) 22.0 15.7 14.7 14.3 14.1 13.8

(norm) 21.5 15.2 14.2 13.8 13.6 13.2
SupVec 2,489 19,795 24,263 26,704 28,322 32,994
Mistake 3,342 25,461 48,431 70,915 93,090 223,657d = 2 Vote 6.0 2.8 2.4 2.2 2.1 1.8 1.8
Avg. (unnorm) 6.0 2.8 2.4 2.2 2.1 1.9 1.8

(norm) 6.2 3.0 2.5 2.3 2.2 1.9 1.8
Last (unnorm) 8.6 4.0 3.4 3.0 2.7 2.3 2.0

(norm) 8.4 3.9 3.3 3.0 2.7 2.3 1.9
Rand. (unnorm) 13.4 5.9 4.7 4.1 3.8 2.9 2.4

(norm) 13.2 5.9 4.7 4.1 3.8 2.9 2.3
SupVec 1,639 8,190 9,888 10,818 11,424 12,963 13,861
Mistake 2,150 10,201 15,290 19,093 22,100 32,451 41,614d = 3 Vote 5.4 2.3 1.9 1.8 1.7 1.6 1.6
Avg. (unnorm) 5.3 2.3 1.9 1.8 1.7 1.6 1.5

(norm) 5.5 2.5 2.0 1.8 1.8 1.6 1.5
Last (unnorm) 6.9 3.1 2.5 2.2 2.0 1.7 1.6

(norm) 6.8 3.1 2.5 2.2 2.0 1.7 1.6
Rand. (unnorm) 11.6 4.9 3.7 3.2 2.9 2.2 1.8

(norm) 11.5 4.8 3.7 3.2 2.9 2.2 1.8
SupVec 1,460 6,774 8,073 8,715 9,102 9,883 10,094
Mistake 1,937 8,475 11,739 13,757 15,129 18,422 19,473

Table 1: Results of experiments on NIST 10-class OCR data withd = 1; 2; 3. The rows marked
SupVec and Mistake give average number of support vectors and average number of mistakes. All
other rows give test error rate in percent for the various methods.

highest score: ŷ = arg max` s`:
The first method is to compute each score using the respective final prediction vector:s` = vk̀` � x:
This method is denoted “last (unnormalized)” in the results. A variant of this method is to compute
scores after first normalizing the final prediction vectors:s` = vk̀` � xjjvk̀`jj :
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T = 0.1 1 2 3 4 10 30d = 4 Vote 5.4 2.2 1.8 1.7 1.6 1.6 1.6
Avg. (unnorm) 5.3 2.2 1.8 1.7 1.7 1.6 1.6

(norm) 5.5 2.3 1.9 1.7 1.6 1.6 1.6
Last (unnorm) 6.5 2.8 2.3 2.0 1.9 1.6 1.6

(norm) 6.5 2.8 2.3 2.0 1.9 1.6 1.6
Rand. (unnorm) 11.5 4.6 3.5 3.1 2.7 2.1 1.8

(norm) 11.3 4.5 3.4 3.0 2.7 2.1 1.8
SupVec 1,406 6,338 7,453 7,944 8,214 8,673 8,717
Mistake 1,882 7,977 10,543 11,933 12,780 14,375 14,538d = 5 Vote 5.7 2.2 1.9 1.8 1.8 1.7 1.7
Avg. (unnorm) 5.7 2.3 1.9 1.8 1.7 1.7 1.7

(norm) 5.7 2.3 1.9 1.8 1.7 1.7 1.6
Last (unnorm) 6.6 3.0 2.2 1.9 1.9 1.8 1.7

(norm) 6.3 2.9 2.1 1.9 1.9 1.7 1.7
Rand. (unnorm) 11.9 4.7 3.5 3.0 2.7 2.1 1.9

(norm) 11.5 4.5 3.4 2.9 2.6 2.0 1.8
SupVec 1,439 6,327 7,367 7,788 7,990 8,295 8,313
Mistake 1,953 8,044 10,379 11,563 12,215 13,234 13,289d = 6 Vote 6.0 2.5 2.1 2.0 1.9 1.9 1.9
Avg. (unnorm) 6.2 2.5 2.1 2.0 1.9 1.9 1.9

(norm) 6.0 2.5 2.1 2.0 1.9 1.8 1.8
Last (unnorm) 7.3 3.2 2.4 2.2 2.0 1.9 1.9

(norm) 6.9 3.0 2.3 2.1 2.0 1.9 1.9
Rand. (unnorm) 12.8 5.0 3.8 3.3 3.0 2.3 2.0

(norm) 12.1 4.8 3.6 3.2 2.8 2.2 2.0
SupVec 1,488 6,521 7,572 7,947 8,117 8,284 8,285
Mistake 2,034 8,351 10,764 11,892 12,472 13,108 13,118

Table 2: Results of experiments on NIST 10-class OCR data withd = 4; 5; 6. The rows marked
SupVec and Mistake give average number of support vectors and average number of mistakes. All
other rows give test error rate in percent for the various methods.

This method is denoted “last (normalized)” in the results. Note that normalizing vectors has no
effect for binary problems, but can plausibly be important in the multiclass case.

The next method (denoted “vote”) uses the analog of the deterministic leave-one-outconver-
sion. Here we set s` = kX̀i=1 cì sign(vì � x):

The third method (denoted “average (unnormalized)”) uses anaverageof the predictions of the
prediction vectors s` = kX̀i=1 cì (vì � x):
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label 0 1 2 3 4 5 6 7 8 9T = 0:1 Vote 0.7 0.5 1.3 1.5 1.4 1.4 0.9 1.3 1.8 2.1
Avg. (unnorm) 0.7 0.5 1.3 1.5 1.3 1.3 0.9 1.3 1.8 2.0

(norm) 0.7 0.5 1.3 1.5 1.4 1.4 0.9 1.3 1.8 2.1
Last 1.0 0.7 1.7 2.1 1.5 2.8 1.2 1.8 2.4 2.7
Rand. 2.1 1.3 3.0 3.7 3.0 3.2 2.2 2.7 4.7 4.5
SupVec 133 89 180 228 179 202 136 160 285 290
Mistake 133 89 180 228 179 202 136 160 285 290T = 1 Vote 0.3 0.3 0.6 0.5 0.5 0.5 0.5 0.6 0.7 0.9
Avg. (unnorm) 0.3 0.2 0.6 0.5 0.5 0.5 0.4 0.6 0.7 0.9

(norm) 0.3 0.2 0.6 0.6 0.5 0.5 0.4 0.6 0.8 1.0
Last 0.5 0.5 1.0 1.1 0.7 0.8 0.5 1.0 1.2 1.3
Rand. 0.8 0.6 1.4 1.5 1.2 1.3 0.9 1.2 1.9 2.1
SupVec 506 407 782 996 734 849 541 738 1,183 1,240
Mistake 506 407 782 996 734 849 541 738 1,183 1,240T = 10 Vote 0.2 0.2 0.4 0.4 0.4 0.4 0.3 0.5 0.6 0.7
Avg. (unnorm) 0.2 0.2 0.4 0.4 0.4 0.4 0.3 0.5 0.6 0.7

(norm) 0.2 0.2 0.4 0.4 0.4 0.4 0.3 0.5 0.6 0.7
Last 0.2 0.2 0.4 0.4 0.4 0.4 0.4 0.5 0.6 0.7
Rand. 0.3 0.3 0.5 0.6 0.5 0.6 0.5 0.6 0.8 0.9
SupVec 736 636 1,164 1,504 1,075 1,271 817 1,103 1,833 1,899
Mistake 837 824 1,339 1,796 1,218 1,487 951 1,323 2,278 2,323T = 30 Vote 0.2 0.2 0.4 0.4 0.4 0.4 0.4 0.5 0.6 0.7
Avg. (unnorm) 0.2 0.2 0.4 0.4 0.4 0.4 0.3 0.5 0.6 0.6

(norm) 0.2 0.2 0.4 0.4 0.4 0.4 0.3 0.5 0.6 0.6
Last 0.2 0.2 0.4 0.4 0.4 0.4 0.4 0.5 0.6 0.7
Rand. 0.2 0.3 0.5 0.5 0.4 0.5 0.4 0.5 0.6 0.7
SupVec 740 643 1,168 1,512 1,078 1,277 823 1,103 1,856 1,920
Mistake 844 843 1,345 1,811 1,222 1,497 960 1,323 2,326 2,367

Cortes & Vapnik 0.2 0.1 0.4 0.4 0.4 0.5 0.3 0.4 0.5 0.6
SupVec 1,379 989 1,958 1,900 1,224 2,024 1,527 2,064 2,332 2,765

Table 3: Results of experiments on individual classes using polynomial kernels withd = 4. The
rows marked SupVec and Mistake give average number of support vectors and averagenumber of
mistakes. All other rows give test error rate in percent for the various methods.

As in the “last” method, we also tried a variant (denoted “average (normalized)”) using normalized
prediction vectors: s` = kX̀i=1 cì  vì � xjjvìjj! :

The final method (denoted “random (unnormalized)”), is a possible analog of the randomized
leave-one-out method in which we predict using the prediction vectors that existat a randomly
chosen “time slice.” That is, lett be the number of rounds executed (i.e., the number of examples
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T = 0.1 1 2 3 4 10 30d = 1 Vote 4.5 3.9 3.8 3.8 3.8 3.7
Avg. (unnorm) 4.5 3.9 3.8 3.8 3.8 3.7

(norm) 4.6 3.9 3.9 3.8 3.8 3.8
Last 7.9 6.4 5.7 6.3 5.8 5.9
Rand. 8.3 6.7 6.5 6.3 6.2 6.2
SupVec 513 4,085 5,240 5,888 6,337 7,661
Mistake 513 4,085 7,880 11,630 15,342 37,408d = 2 Vote 2.4 1.2 1.0 0.9 0.9 0.8 0.8
Avg. (unnorm) 2.4 1.2 1.0 1.0 0.9 0.9 0.8

(norm) 2.5 1.3 1.1 1.0 1.0 0.9 0.8
Last 4.1 1.8 1.6 1.6 1.3 1.1 1.0
Rand. 5.5 2.8 2.2 1.9 1.8 1.4 1.1
SupVec 337 1,668 2,105 2,358 2,527 2,983 3,290
Mistake 337 1,668 2,541 3,209 3,744 5,694 7,715d = 3 Vote 2.2 1.0 0.8 0.8 0.7 0.7 0.7
Avg. (unnorm) 2.1 0.9 0.8 0.8 0.7 0.7 0.6

(norm) 2.2 1.0 0.8 0.8 0.8 0.7 0.6
Last 2.9 1.3 1.0 1.0 0.8 0.7 0.7
Rand. 4.9 2.2 1.7 1.5 1.4 1.0 0.8
SupVec 302 1,352 1,666 1,842 1,952 2,192 2,283
Mistake 302 1,352 1,867 2,202 2,448 3,056 3,318d = 4 Vote 2.1 0.9 0.8 0.7 0.7 0.7 0.7
Avg. (unnorm) 2.0 0.9 0.8 0.7 0.7 0.7 0.6

(norm) 2.1 1.0 0.8 0.8 0.7 0.7 0.6
Last 2.7 1.3 1.0 0.8 0.8 0.7 0.7
Rand. 4.5 2.1 1.6 1.4 1.2 0.9 0.7
SupVec 290 1,240 1,528 1,669 1,746 1,899 1,920
Mistake 290 1,240 1,648 1,882 2,020 2,323 2,367d = 5 Vote 2.2 0.9 0.8 0.7 0.7 0.7 0.7
Avg. (unnorm) 2.2 0.9 0.8 0.7 0.7 0.7 0.7

(norm) 2.2 1.0 0.8 0.8 0.7 0.7 0.7
Last 2.7 1.3 1.0 0.9 0.8 0.7 0.7
Rand. 4.6 2.0 1.5 1.3 1.2 0.9 0.8
SupVec 294 1,229 1,502 1,628 1,693 1,817 1,827
Mistake 294 1,229 1,598 1,798 1,908 2,132 2,150d = 6 Vote 2.3 0.9 0.8 0.8 0.8 0.8 0.7
Avg. (unnorm) 2.3 0.9 0.8 0.8 0.8 0.7 0.7

(norm) 2.3 1.0 0.8 0.8 0.8 0.7 0.7
Last 2.7 1.3 1.0 0.9 0.8 0.8 0.7
Rand. 4.7 2.1 1.6 1.3 1.2 0.9 0.8
SupVec 302 1,263 1,537 1,655 1,715 1,774 1,776
Mistake 302 1,263 1,625 1,810 1,916 2,035 2,039

Table 4: Results of experiments on NIST data when distinguishing “9” from all other digits. The
rows marked SupVec and Mistake give average number of support vectors and averagenumber of
mistakes. All other rows give test error rate in percent for the various methods.
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processed by the inner loop of the algorithm) so thatt = kX̀i=1 cì
for all `. To classifyx, we choose a “time slice”r 2 f0; : : : ; tg uniformly at random. We then sets` = vr̀` � x
wherer` is the index of the final vector which existed at timer for label `. Formally,r` is the
largest number inf0; : : : ; k`g satisfying r`�1Xi=1 cì � r:
The analogous normalized method (“Random (normalized)”) usess` = vr̀` � xjjvr̀`jj :

Our analysis is applicable only for the cases of voted or randomly chosen predictions and
whereT = 1. However, in the experiments, we ran the algorithm withT up to30. When using
polynomial kernels of degree 5 or more, the data becomes linearly separable. Thus, after several
iterations, the perceptron algorithm converges to a consistent prediction vector and makes no more
mistakes. After this happens, the final perceptron gains more and more weight in both“vote” and
“average.” This tends to have the effect of causing all of the variants to converge eventually to the
same solution. By reaching this limit we compare the voted-perceptron algorithmto the standard
way in which the perceptron algorithm is used, which is to find a consistent prediction rule.

We performed experiments with polynomial kernels for dimensionsd = 1 (which corresponds
to no expansion) up tod = 6. We preprocessed the data on each experiment by randomly permuting
the training sequence. Each experiment was repeated 10 times, each time with a different random
permutation of the training examples. Ford = 1, we were only able to run the experiment for ten
epochs for reasons which are described below.

Figure 2 shows plots of the test error as a function of the number of epochs for four of the
prediction methods — “vote” and the unnormalized versions of “last,” “average”and “random”
(we omitted the normalized versions for the sake of readability). Test errors are averaged over the
multiple runs of the algorithm, and are plotted one point for every tenth of an epoch.

Some of the results are also summarized numerically in Tables 1 and 2 which show (average)
test error for several values ofT for the seven different methods in the rows marked “Vote,” “Avg.
(unnorm),” etc. The rows marked “SupVec” show the number of “support vectors,” thatis, the total
number of instances that actually are used in computing scores as above. In otherwords, this is the
size of the union of all instances on which a mistake occured during training. The rows marked
“Mistake” show the total number of mistakes made during training for the 10 different labels. In
every case, we have averaged over the multiple runs of the algorithm.

The column corresponding toT = 0:1 is helpful for getting an idea of how the algorithms
perform on smaller datasets since in this case, each algorithm has only useda tenth of the available
data (about 6000 training examples).
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Ironically, the algorithm runs slowest with small values ofd. For larger values ofd, we move to
a much higher dimensional space in which the data becomes linearly separable. Forsmall values
of d — especially ford = 1 — the data are not linearly separable which means that the perceptron
algorithm tends to make many mistakes which slows down the algorithm significantly. This is why,
for d = 1, we could not even complete a run out to 30 epochs but had to stop atT = 10 (after about
six days of computation). In comparison, ford = 2, we can run 30 epochs in about 25 hours, and
for d = 5 or 6, a complete run takes about 8 hours. (All running times are on a single SGI MIPS
R10000 processor running at 194 MHZ.)

The most significant improvement in performance is clearly betweend = 1 andd = 2. The
migration to a higher dimensional space makes a tremendous difference compared torunning the
algorithm in the given space. The improvements ford > 2 are not nearly as dramatic.

Our results indicate that voting and averaging perform better than using the last vector. This
is especially true prior to convergence of the perceptron updates. Ford = 1, the data are highly
inseparable, so in this case the improvement persists for as long as we were able to run the algo-
rithm. For higher dimensions (d > 1), the data becomes more separable and the perceptron update
rule converges (or almost converges), in which case the performance of all the prediction methods
is very similar. Still, even in this case, there is an advantage to using voting or averaging for a
relatively small number of epochs.

There does not seem to be any significant difference between voting and averagingin terms
of performance. However, using random vectors performs the worst in all cases, contrary to the
worst-case analysis. Using normalized vectors seems to sometimes help a bit for the “last” method,
but can help or hurt performance slightly for the “average” method; in any case,the differences in
performance between using normalized and unnormalized vectors are always minor.

LeCun et al. [12] give a detailed comparison of algorithms on this dataset. The best of the
algorithms that they tested is (a rather old version of) boosting on top of the neural net LeNet 4
which achieves an error rate of 0.7%. A version of the optimal margin classifier algorithm [6],
using the same kernel function, performs significantly better than ours, achieving atest error rate
of 1.1% ford = 4.

Table 3 shows how the variants of the perceptron algorithm perform on the ten binaryproblems
corresponding to the 10 class labels. For this table, we fixd = 4, and we also compare performance
to that reported by Cortes and Vapnik [6] for SVM's. Table 4 gives more details of how the
perceptron methods perform on the single binary problem of distinguishing “9” from all other
images. Note that these binary problems come closest to the theory discussed earlier in the paper.
It is interesting that the perceptron algorithm generally ends up using fewer support vectors than
with the SVM algorithm.

6 Conclusions and Summary

The most significant result of our experiments is that running the perceptron algorithm in a higher
dimensional space using kernel functions produces very significant improvements in performance,
yielding accuracy levels that are comparable, though still inferior, to thoseobtainable with support-
vector machines. On the other hand, our algorithm is much faster and easier to implement than the
latter method. In addition, the theoretical analysis of the expected error of the perceptron algorithm
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yields very similar bounds to those of support-vector machines. It is an open problem to develop a
better theoretical understanding of the empirical superiority of support-vector machines.

We also find it significant that voting and averaging work better than just using the final hypoth-
esis. This indicates that the theoretical analysis, which suggests using voting, is capturing some
of the truth. On the other hand, we do not have a theoretical explanation for the improvement in
performance following the first epoch.
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